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A novel adaptive spectral method has been recently developed to numerically solve partial 
differential equations (PDEs) in unbounded domains. To achieve accuracy and improve 
efficiency, the method relies on the dynamic adjustment of three key tunable parameters: 
the scaling factor, a displacement of the basis functions, and the spectral expansion order. 
In this paper, we perform the first numerical analysis of the adaptive spectral method 
using generalized Hermite functions in both one- and multi-dimensional problems. Our 
analysis reveals why adaptive spectral methods work well when a “frequency indicator” 
of the numerical solution is controlled. We then investigate how the implementation of 
the adaptive spectral methods affects numerical results, thereby providing guidelines for 
the proper tuning of parameters. Finally, we further improve performance by extending 
the adaptive methods to allow bidirectional basis function translation, and the prospect of 
carrying out similar numerical analysis to solving PDEs arising from realistic difficult-to-
solve unbounded models with adaptive spectral methods is also briefly discussed.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of IMACS. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Unbounded domain problems require efficient numerical methods for computation. For example, resolving the decay 
of the solution of Schrödinger’s equations at infinity requires efficient unbounded domain algorithms [8]. In population 
dynamics, tracking cell volume blowup in structured population PDE models demands high-accuracy numerical methods in 
unbounded domains [26,27]. Furthermore, in solid-state physics, numerical methods for unbounded domains are required 
for studying long-range particle interactions [7,12]. Despite these numerous applications, there has been little research on 
developing efficient and accurate algorithms for solving models in unbounded domains.

Adaptive methods, such as re-defining grids for finite difference methods [16] and re-generating meshes for finite ele-
ment methods [1,2,9,21], which are applied to PDEs defined on finite domains, can dramatically improve not only accuracy 
but computational efficiency. Spectral methods provide a viable way to numerically solve differential equations defined in 
unbounded domains [18], with unbounded-domain basis functions such as the Laguerre functions defined in R+ [3,5] for 
solving elliptic-type PDEs and differential equations with a fractional derivative term, the modified mapped Gegenbauer 
function [23] and the generalized Hermite functions [19] defined in R for solving PDEs with a fractional Laplacian term, 
the mapped Chebyshev functions for solving PDEs with an integral-fractional Laplacian term [20], and the fractional order 
of rational Jacobi functions for solving the non-linear singular Thomas-Fermi equation [15]. Recently, novel adaptive tech-
niques for spectral methods have been developed and incorporated into efficient algorithms for numerically solving PDEs 
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in unbounded domains that posed substantial numerical difficulties when using previous numerical methods [28,29]. The 
adaptive spectral methods consist of three separate but interdependent procedures: (i) a scaling technique that adjusts the 
shape of the basis functions to capture the varying decay rate of the function at infinity, (ii) a moving technique that adjusts 
the displacement of the basis function to better assign allocation points and capture intrinsic translation of the solution, 
and (iii) a p-adaptive technique that adjusts the expansion order of the numerical solution to deal with oscillations of the 
solution. These adaptive spectral techniques require tuning of three key parameters: the scaling factor β , the displacement 
of the basis function x0, and the spectral expansion order N . For example, if we use the generalized Hermite functions [30]
as basis functions on R, the variables β, x0, and N appear in a spectral expansion according to

Uβ
N,x0

:=
N∑

i=0

uβ

i,x0
Ĥβ

i (x − x0) =
N∑

i=0

uβ

i,x0
Ĥi(β(x − x0)), (1)

where uβ

i,x0
is the coefficient of the ith-order generalized Hermite function Ĥβ

i

Ĥβ

i := 1√
2i i! Hi(βx)e− (βx)2

2 , Hi(x) = (−1)iex2
∂ i

x(e−x2
). (2)

For example, for PDEs involving a spatial variable x ∈ R and a temporal variable t ∈ [0, T ], we typically impose a spectral 
expansion using generalized Hermite functions of x and forward time t starting from an initial condition at t = 0.

Adaptive spectral techniques are implemented as shown in Fig. 1. Specifically, the algorithm changes the displacement 
of the basis function x0 to control an exterior-error indicator E(Uβ

N,x0
) that reflects the ratio of the numerical solution’s 

error outside a given domain to the error in the whole domain. It also changes the scaling factor β as well as the spectral 
expansion order N to control a frequency indicator F(Uβ

N,x0
) that measures the spread and oscillation of the solution. The 

indicators are defined in [28] as

E(Uβ
N,x0

) = ‖∂xUβ
N,x0

· I(xR ,∞)‖
‖∂xUβ

N,x0
· I(−∞,+∞)‖

, (3)

where xR = xβ

[ 2N+2
3 ] is the [ 2N+2

3 ]th collocation point of the generalized, x0-shifted Hermite functions, and

F(Uβ
N,x0

) = ‖(I − π
β
N−M,x0

)Uβ
N,x0

(·, t)‖
‖Uβ

N,x0
(·, t)‖

, (4)

with M is taken to be [ N
3 ].

The major advantage of the proposed adaptive spectral method Fig. 1 is that it depends only on the numerical solution 
Uβ

N,x0
and thus does not require any prior knowledge on how the solution will evolve. This feature is similar to that of the 

adaptive mesh generating method which also only depends on the numerical solution [24]. However, unlike the posterior 
error indicator that is usually used in finite element methods [10], the exterior-error and frequency indicators used in 
our adaptive spectral method does not directly furnish the error. The exterior-error indicator is specifically designed for 
spectral methods in unbounded-domain problems, and controlling it by properly translating the basis functions can lead to 
a better approximation at infinity. On the other hand, the frequency indicator applies to spectral methods in both bounded 
and unbounded domains, and more resembles a measure of the numerical error. Ultimately, the adaptive spectral method 
aims at controlling the error by maintaining a small frequency indicator. While adjusting the scaling factor or changing the 
expansion order directly controls the frequency indicator, changing the displacement of the basis functions to control the 
exterior-error indicator also helps control the frequency indicator, as was shown in [28].

Despite the numerical success of adaptive spectral methods when applied on unbounded domains, there exists no the-
oretical analysis of how the parameters β, x0, and N affect the algorithm’s performance and thus far no general rule on 
how to best adjust these parameters in the moving (x0 ← x̃0), scaling (β ← β̃), and expansion order adjustment (N ← Ñ) 
subroutines in order to minimize errors. Since the improper adjustment of β, x0, and N can lead to large errors [22,31], 
properly choosing them is crucial for the effective implementation of adaptive spectral methods.

In this paper, we carry out a numerical analysis of the adaptive spectral method to specify how algorithm parameters 
affect the accuracy of numerical results. We restrict ourselves to a parabolic model problem, in any dimension, and use 
generalized Hermite functions as basis functions to explore numerical performances and how parameters in the adaptive 
spectral algorithm control the tuning of the three key quantities β, x0, and N in Fig. 1. Furthermore, we will explicitly show 
how the frequency indicator is related to the lower error bound, justifying the maintenance of a small frequency indicator 
in the adaptive spectral algorithm.

Depending on the inverse inequality for generalized Hermite functions [17], such analyses for numerically solving 
unbounded-domain PDEs provide a posterior error estimate. This error estimate only relies on the numerical solution and 
the adjustment of β, x0, and N . Our main result is
202
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Fig. 1. Flow chart of an adaptive Hermite spectral method equipped with scaling, moving, and p-adaptive techniques. x0 and x̃0 are the displacements before 
and after the moving technique is used, and x̃0 is chosen such that the exterior-error indicator E(Uβ

x̃0,N ) is below a moving threshold Ethres . β and β̃ are 
the scaling factors before and after scaling when the scaling technique is used, where the scaling factor β̃ is chosen such that F(U β̃

x0,N ) is below a scaling 
threshold F s

thres . N and Ñ are the expansion orders before and after adjusting the expansion order when the p-adaptive technique is used. Ñ is chosen 
such that F(Uβ

x0,Ñ
) is below a p-adaptivity threshold F p

thres . The three thresholds Ethres, F s
thres , and F p

thres are updated dynamically as time progresses. 
Details are described in [28,29]. In addition, we impose constraints on the maximum allowable displacement dmax and expansion order increment Nmax

within a single step, and the minimum and maximum scaling factors β and β .

Theorem 1. The L2-error at time T when solving a parabolic PDE in (x, t) ∈ R × [0, T ] with the generalized Hermite functions and 
using adaptive techniques is bounded by

e(T ) := ‖u(·, T ) − Uβ
N,x0

(·, T )‖2 ≤ e0 + eS + eM + eC, (5)

where Uβ
N,x0

is the numerical solution; e0 is the numerical discretization error from numerically solving the PDE. eS is the error bound 
arising from changing the scaling factor from β to β̃; eM is the error bound for changing the displacement from x0 to x̃0; eC is the error 
bound for coarsening, i.e., reducing the expansion order from N to Ñ . More specifically, eS, eM, and eC take the forms

eS :=
∑
scale

|β̃ − β|
√

1 + β̃
β√

2β̃
‖x∂xUβ

N,x0
(·, t)‖2,

eM :=
∑
move

|x0 − x̃0|‖∂xUβ
N,x0

(·, t)‖2,

eC :=
∑

‖(I − π
β

Ñ,x0
)Uβ

N,x0
(·, t)‖2,

(6)
coarsen
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Table 1
Overview of variables and notation. List of the main variables and notations associated with the overall adaptive spectral method. Three key variables for 
adaptive spectral methods with generalized Hermite functions are the scaling factor β that determines the shape of the basis functions, the displacement 
of the basis functions x0, and the expansion order N of the spectral decomposition.

symbol definition

Ĥβ

i,x0
generalized ith-order Hermite function with a scaling factor β and displacement x0, defined in R as Ĥβ

i,x0
:= Ĥi(β(x − x0))

Pβ
N,x0

function space Pβ
N,x0

:= {Ĥβ

i,x0
}N

i=0

I the identity operator

π
β
N,x0

the projection operator πβ
N,x0

: L2(R) → P x0,β
N such that (π x0,β

N u(x), u(x) − π
x0,β
N u(x)) = 0

Iβ
N,x0

the interpolation operator Iβ
N,x0

: L2(R) → P x0,β
N such that Ix0,β

N u(xi) = u(xi) where {xN
i }N

i=0 are collocation points of 
{Ĥβ

i,x0
}N

i=0

Uβ
N,x0

spectral expansion Uβ
N,x0

=∑N
i=0 uβ

i,x0
Ĥi(β(x − x0))

N expansion order of the spectral expansion

β scaling factor of the generalized Hermite functions

x0 displacement of the generalized Hermite functions

ER (Uβ
N,x0

),EL(Uβ
N,x0

) ER : the right exterior-error indicator of the spectral expansion Uβ
N,x0

; EL : the left exterior-error indicator of the spectral 
expansion Uβ

N,x0

F(Uβ
N,x0

) frequency indicator for the spectral expansion Uβ
N,x0

q scaling factor update (β to β̃) ratio (β̃ ← qnβ or q−nβ, n ∈N+) in the scaling technique

ν threshold for activating the scaling technique

δ minimal displacement of updating the displacement x0 to x̃0 (x̃0 ← x0 + nx0 or x0 − nx0, n ∈N+) in the moving technique

μ threshold for activating the moving technique

η threshold for increasing the number of basis functions

η0 threshold for decreasing the number of basis functions

γ post-refinement adjustment factor for refinement threshold η̃ ← γ η

L2(a,b; V ) space of functions { f : [a, b] → V (V is a Banach space) such that f is measurable for dt and
∫ b

a f (t)2dt < ∞}
X(t1, t2) function space { f : f (x, s) ∈ L2((t1, t2), t; H1(R)), ∂s f (x, s) ∈ L2((t1, t2), t; H1(R))}
e(t) L2-norm of the error ‖u(·, t) − Uβ

N,x0
(·, t)‖L2 at time t

where the sum 
∑

scale
is taken over all scaling steps, the sum 

∑
move

is taken over all moving steps, and 
∑

coarsen
is taken over all coarsening 

steps. The operators I and πβ

Ñ,x0
are defined in Table 1.

This result allows us to provide general guidelines for selecting the parameters in the adaptive spectral algorithm that 
lead to the proper tuning of β, x0, and N . Specifically, the numerical discretization error e0 in Eq. (5) we aim to minimize 
depends on β, x0, N . The precise dependences will be given in Section 2. Since the adaptive techniques depend only on the 
numerical solution and do not require any prior knowledge of the solution, the last three terms in Eq. (5) depend only on 
the numerical solution. From this theorem, we can conclude that the smaller the adjustment in the scaling factor or in the 
displacement of the basis functions, the smaller the error bounds eS, eM for carrying out the adaptive techniques. However, 
given that improper β or x0 leads to very large e0, proper dynamic adjustment of β and x0 are still needed to keep e0
small, possibly at the expense of accumulating more error in eS, eM.

In Fig. 1, the threshold Em
thres is chosen to be the exterior-error indicator evaluated after the last adjustment of the 

displacement x0, multiplied by a constant μ > 1. As shown in [28], if the exterior-error indicator grows above such a 
threshold, the function is moving rightward, indicating that we should replace x0 with x̃0 > x0. As lim

x̃0→∞
E(Uβ

N,x0
(x + x̃ −

x0, t)) = 0, we can always find a x̃0 such that E(Uβ
N,x0

(x + x̃ − x0, t)) < Em
thres and renew x0 ← min{x̃0, x0 + dmax}. By the 

form of eM in Eq. (6), we can conclude that finding the smallest x̃0 such that E(Uβ
N,x0

(x + x̃ − x0, t)) < Em
thres while keeping 

x0 − x̃0 small can effectively reduce eM.
The scaling technique and the p-adaptive techniques are directly coupled to each other as they rely on monitoring the 

same frequency indicator. If the function decays more slowly at infinity, then the frequency indicator is likely to increase, 
whereas if the function decays faster, the frequency indicator is likely to decrease. When β is to be decreased (more slowly 
decaying function), the threshold F s

thres is chosen to be the frequency indicator, multiplied by a constant ν > 1, after the 
most recent scaling or change of expansion order. When β is to be increased (faster decaying function), we set the threshold 
to be the frequency indicator after the last scaling or expansion order change since a function that decreases more slowly 
is harder to approximate requiring us to be more tolerant of an increase in the frequency indicator. The explicit form of eS
in Eq. (6) suggests that to reduce eS, it is desirable to find a β̃ such that β̃ − β is small. However, there is no guarantee 
that one can find a β̃ such that F(U β̃

) < F s . If the frequency indicator cannot be suppressed below the threshold by 
N,x0 thres
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choosing β̃ , a probable cause is that the function becomes more oscillatory, implying that the expansion order should be 
adjusted.

The p-adaptive threshold F p
thres is chosen to be the frequency indicator after the last adjustment of expansion order, 

multiplied by a constant η > 1 if refinement is required. Alternatively, if coarsening is required, the threshold is chosen 
to be the frequency indicator after the last change of expansion order, multiplied by another constant η0 > 1 but η0 <

η. η is allowed to increase with time as functions that oscillate rapidly are harder to approximate, requiring us to be 
more tolerant of increases in the frequency indicator. Since lim

Ñ→∞
F(Uβ

Ñ,x0
(x, t)) = 0, we could always find a Ñ such that 

F(Uβ

Ñ,x0
(x, t)) ≤ F p

thres if refinement is needed. By maintaining the scaling factor below the p-adaptive threshold F p
thres

and using the relationship between the error and the frequency indicator, the lower error bound can be shown to be 
always smaller than F p

thres‖u(·, t)‖2 − ‖(I − π
β
N−M,x0

)u(·, t)‖2, where u is the analytical solution. However, tradeoffs arise. 
For example, refinement itself does not bring about an additional error, but could result in additional computational cost. 
On the other hand, if coarsening is implemented, a smaller Ñ could lead to a larger error eC in Eq. (6) but also result in 
smaller computational cost.

In the next section, we formulate the model problem using generalized Hermite functions and perform numerical 
analysis. In Section 3, numerical analysis for applying the adaptive techniques is carried out and Theorem 1 is proved. 
Furthermore, the relationship between the error and the frequency indicator is analyzed, explicitly explaining the efficacy 
of the algorithm shown in Fig. 1. In Section 4, numerical experiments are carried out, and an additional improvement of 
the adaptive spectral method in the moving technique is proposed and discussed. For completeness, we list the common 
variables and notations in Table 1 that we use throughout this paper.

2. Errors in solving a model problem with generalized Hermite functions

In this section, we first formulate a parabolic equation in weak form [11]:(
∂t u(·, t), v(·)) + a

(
u(x, t), v(x); t

)= ( f (·, t), v(·)), x ∈R, t ∈ [0, T ], ∀v(x) ∈ H1(R), (7)(
u(·,0), ṽ(·))= (u0(·), ṽ(·)), ∀ṽ(x) ∈ H1(R), (8)

where u0(x) ∈ L2(R) is the initial condition, f (x, t) is the inhomogeneous source term (e.g. heat source in the heat equation), 
and a(·, ·; t) is a coercive symmetric bilinear form such that there exist constants 0 < c0 < C0 satisfying

|a(u(x, t), v(x); t)| ≤ C0‖u(·, t)‖H1 ‖v(·)‖H1 and c0‖v(·)‖2
H1 ≤ a(v, v; t), ∀u(·, t), v(·) ∈ H1(R). (9)

In Eqs. (7), (8), and (9) and hereafter, the inner product is taken over the spatial variable x, and the norm ‖ · ‖ denotes the 
L2-norm taken over x unless otherwise specified.

The solution to the model problem, Eqs. (7) and (8), exists and is unique [4], and the solution u is in the so-called 
Bochner-Sobolev space

W
(
0, t; H1(R), H−1(R)

) := {u : u(x, s) ∈ L2 (0, t; H1(R)
)
, ∂su(x, s) ∈ L2 (0, t; H−1(R)

) }
(10)

where H−1(R) is the dual space of H1(R). For simplicity, we assume that f (x, t) ∈ C(R × [0, t]), ∂su(x, s) ∈ L2(0, t; H1(R))

and therefore u ∈ X(0, t), and its norm is given by

‖u‖2
X(0,t) =

t∫
0

(
‖u(·, s)‖2

H1(R)
+ ‖∂su(·, s)‖2

H1(R)

)
ds + ‖u(·,0)‖2. (11)

Analysis of finite element methods for solving Eqs. (7) and (8) for bounded x has already been performed [25]. Here, 
we wish to numerically solve Eqs. (7) and (8) using spectral methods with generalized Hermite functions. We first fix 
the scaling factor β , the displacement x0 of the basis functions Ĥβ

i,x0
, and the expansion order N of the trial and test 

functions. Integrating Eq. (7) w.r.t. time, we wish to find a Uβ
N,x0

(x, s) ∈ L2(0, t; Pβ
N,x0

(R)) such that for any test function 
vβ

N,x0
(x, t) ∈ L2(0, t; Pβ

N,x0
(R)) and ṽβ

N,x0
∈ Pβ

N,x0
(R),

t∫
0

[(
∂sUβ

N,x0
, vβ

N,x0

)+ a
(
Uβ

N,x0
, vβ

N,x0
; t
)]

ds + (Uβ
N,x0

(·,0), ṽβ
N,x0

(·))

=
t∫

0

(
f , vβ

N,x0

)
ds + (u(·,0), ṽβ

N,x0
(·)),

∀(vβ
, ṽβ

) ∈ L2(0, t; Pβ
(R)) × Pβ

(R).

(12)
N,x0 N,x0 N,x0 N,x0
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For notational simplicity, we denote

vβ
N,x0

:= (vβ
N,x0

, ṽβ
N,x0

), Y β
N,x0

:= L2(0, t; Pβ
N,x0

(R)) × Pβ
N,x0

(R) ⊆ X(0, t), (13)

and equip vβ
N,x0

∈ Y β
N,x0

with the norm

‖vβ
N,x0

‖2
Y β

N,x0

= ‖(vβ
N,x0

(x, t), ṽβ
N,x0

(x)
)‖2

Y β
N,x0

:=
t∫

0

‖vβ
N,x0

(·, s)‖2
H1(R)

ds + ‖ṽβ
N,x0

(·)‖2. (14)

The solution Uβ
N,x0

:=∑N
i=0 uβ

i,x0
(t)Ĥβ

i,x0
(x) of Eq. (12) can be explicitly evaluated through the matrix equation

uβ
N,x0

(t) = e−Aβ
N t uβ

N,x0
(0) + e−Aβ

N t

t∫
0

e Aβ
N s F N,x0(s)ds, (15)

where

uβ
N,x0

(s) := (uβ

0,x0
(s), . . . , uβ

N,x0
(s)
)T

,

F β
N,x0

(s) := ( f β

0,x0
(s), . . . , f β

N,x0
(s)
)T

,

f β

i,x0
= ( f (x, s), Ĥβ

i,x0
(x)
) (16)

are the vectors consisting of coefficients in the spectral expansion Uβ
N,x0

and the coefficients of the spectral expansion of 
the RHS term f in Eq. (12). The matrix Aβ

N is defined by

(Aβ
N)i j = a(Ĥβ

i,x0
, Ĥβ

j,x0
; t) (17)

where a is the bilinear operator in Eq. (7). The initial values uβ

i,x0
:= (u(·, 0), Ĥβ

i,x0
(·)).

Our goal is to analyze the error e(t) = ‖Uβ
N,x0

(·, t) − u(·, t)‖, where u gives the solution to the model problem (Eqs. (7)

and (8)) and Uβ
N,x0

is the numerical solution of Eq. (12).

Theorem 2. Suppose u solves Eqs. (7) and (8) and Uβ
N,x0

solves Eq. (12), then the error e(t) = ‖Uβ
N,x0

(·, t) − u(·, t)‖ can be bounded 
by

e(t) ≤ bN,β + B0

bN,β

inf
zβ

N,x0
∈Y β

N,x0

‖u − zβ
N,x0

‖X(0,t), (18)

where B0 is a constant that depends on the bilinear operator a(·, ·; t) and bN,β depends on a(·, ·; t), the scaling factor β , and the 
dimension of the space Pβ

N,x0
.

Proof. For simplicity, we define the operator (denoting the LHS of Eq. (12))

B(u,vβ
N,x0

) :=
t∫

0

[
(∂su, vβ

N,x0
) + a(u, vβ

N,x0
; t)
]

ds + (u0, ṽβ
N,x0

), u ∈ X(0, t),vβ
N,x0

∈ Y β
N,x0

. (19)

It can be proved that B(u, vβ
N,x0

) is a continuous operator, i.e., there exists a constant B0 such that

B(u,vβ
N,x0

) ≤ B0‖u‖X(0,t)‖vβ
N,x0

‖
Y β

N,x0

. (20)

Furthermore, there exists a positive constant that depends on the dimension of the basis function space Pβ
N,x0

as well as 
the scaling factor β denoted by bN,β such that

inf
0≤Uβ

N,x0
∈Xβ

N,x0

sup
0≤vβ

N,x0
∈Xβ

N,x0

B(Uβ
N,x0

,vβ
N,x0

)

‖Uβ
N,x0

‖X(0,t)‖vβ
N,x0

‖
Y β

N,x0

≥ bN,β . (21)

Actually, we can take
206
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vβ
N,x0

= (Uβ
N,x0

(x, s) + c0

(2Nβ2 + 1)(C0 + 1)2
∂sUβ

N,x0
(x, s), Uβ

N,x0
(x,0)) (22)

where c0, C0 are the constants in Eq. (9). Therefore, by substituting v as defined in Eq. (22) into Eq. (19), we find

B(Uβ
N,x0

,vβ
N,x0

) ≥1

2

(‖Uβ
N,x0

(·,0)‖2 + ‖Uβ
N,x0

(·, t)‖2)

+ c0

t∫
0

(
‖Uβ

N,x0
‖2

H1 + 1

(2Nβ2 + 1)(C0 + 1)2
‖∂sUβ

N,x0
‖2
)

ds

− c0

2

t∫
0

(
‖Uβ

N,x0
‖2

H1 + C2
0

(2Nβ2 + 1)2(C0 + 1)4
‖∂sUβ

N,x0
‖2

H1

)
ds

≥1

2

(‖Uβ
N,x0

(·,0)‖2 + ‖Uβ
N,x0

(·, t)‖2)+ c0

t∫
0

‖Uβ
N,x0

‖2
H1 ds − c0

2

t∫
0

‖Uβ
N,x0

‖2
H1 ds

+ c0

(2Nβ2 + 1)2(C0 + 1)2

t∫
0

‖∂sUβ
N,x0

‖2
H1 ds

− c0

2(2Nβ2 + 1)2(C0 + 1)2

t∫
0

‖∂sUβ
N,x0

‖2
H1 ds

≥min
{1

2
,

c0

2
,

c0

2(2Nβ2 + 1)2(C0 + 1)2

}
‖Uβ

N,x0
‖2

X(0,t)

≥min
{1

4
,

c0

4
,

c0

2(2Nβ2 + 1)2(C0 + 1)2

}
‖Uβ

N,x0
‖X(0,t) ‖vβ

N,x0
‖

Y β
N,x0

,

(23)

where in the second inequality we have used the inverse inequality of generalized Hermite functions [17] that states

‖∂sUβ
N,x0

(·, s)‖2
H1 ≤ (2Nβ2 + 1)‖∂sUβ

N,x0
(·, s)‖2. (24)

Here, bN,β := min{ 1
4 , c0

4 , c0
2(2Nβ2+1)2(C0+1)2 } is the constant that satisfies Eq. (21).

For any vβ
N,x0

∈ Y β
N,x0

, if Uβ
N,x0

solves Eq. (12) and u solves Eqs. (7) and (8),

B(Uβ
N,x0

,vβ
N,x0

) = B(u,vβ
N,x0

) =
t∫

0

(
f , vβ

N,x0

)
ds + (u0, ṽβ

N,x0
). (25)

By combining Eqs. (21) and (25), we find

‖Uβ
N,x0

‖X(0,t) ≤ 1

bN,β

sup
vβ

N,x0

B(Uβ
N,x0

,vβ
N,x0

)

‖vβ
N,x0

‖
Y β

N,x0

= sup
vβ

N,x0

1

bN,β

B(u,vβ
N,x0

)

‖vβ
N,x0

‖
Y β

N,x0

≤ B0

bN,β

‖u‖X(0,t). (26)

Finally, by the triangular inequality, we can conclude that the approximation error is bounded:

‖u − Uβ
N,x0

‖X(0,t) ≤ inf
zβ

N,x0
∈Y β

N,x0

(‖u − zβ
N,x0

‖X(0,t) + ‖Uβ
N,x0

− zβ
N,x0

‖X(0,t))

≤ bN,β + B0

bN,β

inf
zβ

N,x0
∈Y β

N,x0

‖u − zβ
N,x0

‖X(0,t).

(27)

Notice that the L2-error e(t) = ‖u(·, t) − Uβ
N,x0

(·, t)‖ at time t can be bounded by ‖u − Uβ
N,x0

‖X(0,t) , and therefore Eq. (18)
holds. �
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We can also use generalized Hermite functions to numerically solve the D-dimensional model problem Eq. (12),

t∫
0

[(
∂sUβ

N,x0
(x, s), vβ

N,x0
(x, s)

)+ a
(
Uβ

N,x0
(x, s), vβ

N,x0
(x, s; t)

)]
ds

+ (Uβ
N,x0

(x,0), ṽβ
N,x0

(x)
)=

t∫
0

(
f (x, s), vβ

N,x0
(x, s)

)
ds + (u(x,0), ṽβ

N,x0
(x)
)
,

(28)

where

x := (x1, . . . , xD), β := (β1, . . . , βD), x0 := (x1
0, . . . , xD

0 ), N := (N1, . . . , N D) (29)

are the D-dimensional scaling factors, displacements, and expansion orders and

Uβ
N,x0

(x, s), vβ
N,x0

(x, s) ∈ L2(0, t;
D⊗

h=1

Pβh

Nh,xh
0
(R)
)
, ṽβ

N,x0
∈

D⊗
h=1

Pβh

Nh,xh
0
(R). (30)

A multiple dimension version of the error bound Eq. (18) can be similarly derived

‖u(·, t) − Uβ
N,x0

(·, t)‖ ≤ bN,β + B0

bN,β
inf

zβ
N,x0

∈Y β
N,x0

‖u − zβ
N,x0

‖X(0,t), (31)

where bN,β := min{ 1
4 , c0

4 , c0

2(
∑D

h=1 2Niβ
2
i +1)(C0+1)2

}. The function spaces are

X(0, t) :=
{

u : u(x, s) ∈ L2
(

0, t; H1(RD)
)

, ∂su(x, s) ∈ L2
(

0, t; H1(RD)
)}

.

Y β
N,x0

:= L2(0, t;
D⊗

h=1

Pβh

Nh,xh
0
(R)
)× D⊗

h=1

Pβh

Nh,xh
0
(R).

(32)

3. Errors of adaptive techniques

In this section, we analyze the errors directly associated with the moving, scaling, and p-adaptive techniques that au-
tomatically change the shape, the translation, and the order of the numerical solution through adjustment of β , x0 , and 
N , respectively [28,29]. We derive the error bound when solving Eq. (12) and prove Theorem 1 presented in Introduction. 
Doing so explicitly shows how changing β, x0, and N affects the error, thus providing insight on how to choose parameters 
in the adaptive algorithm that leads to the proper tuning of β, x0, and N .

Instead of using collocation methods to carry out the scaling, moving, or p-adaptive methods as was done in previous 
work [28,29] (i.e., enforcing the updated numerical solution to be the same as the original numerical solution on the new 
collocation points), we now use the Galerkin method (i.e., projecting the numerical solution onto the space of adjusted 
basis functions). For example, given the numerical solution Uβ

N,x0
(x, t) at time t , if we change its scaling factor from β

to β̃ , previous implementation in [28,29] replaces Uβ
N,x0

(x, t) with I β̃
N,x0

Uβ
N,x0

∈ P β̃
N,x0

as the new numerical solution. This 

new numerical solution I β̃
N,x0

Uβ
N,x0

takes on the same values as Uβ
N,x0

at the collocation points for the new basis functions 

{Ĥβ̃

i,x0
}N

i=0. Therefore, the error after changing β to β̃ and replacing Uβ
N,x0

(x, t) with I β̃
N,x0

Uβ
N,x0

can be bounded by

‖u − I β̃
N,x0

Uβ
N,x0

‖ ≤ ‖u − Uβ
N,x0

‖ + ‖(I − I β̃
N,x0

)Uβ
N,x0

‖. (33)

In this work, we project the numerical solution onto P β̃
N,x0

:= {Ĥβ̃

i,x0
}N

i=0, i.e., using πβ̃
N,x0

Uβ
N,x0

as the new numerical solution. 
Therefore, the error bound after changing the scaling factor is

‖u − π
β̃
N,x0

Uβ
N,x0

‖ ≤ ‖u − Uβ
N,x0

‖ + ‖(I − π
β̃
N,x0

)Uβ
N,x0

‖. (34)

The second term on the RHSs of Eqs. (33) and (34) can be viewed as an additional error bound resulting from changing the 
scaling factor. Furthermore, we are able to show

‖(I − I β̃
N,x0

)Uβ
N,x0

‖ ≥ ‖(I − π
β̃
N,x0

)Uβ
N,x0

‖. (35)

The proof is straightforward. Assuming the spectral expansion of Uβ under the new basis functions {Ĥβ } is
N,x0 i,x0
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Uβ
N,x0

=
∞∑

i=0

uβ

i,x0
Ĥβ

i,x0
. (36)

By definition,

π
β̃
N,x0

Uβ
N,x0

=
N∑

i=0

uβ

i,x0
Ĥβ

i,x0
, I β̃

N,x0
Uβ

N,x0
=

N∑
i=0

ũβ

i,x0
Ĥβ

i,x0
. (37)

Therefore,

‖(I − I β̃
N,x0

)Uβ
N,x0

‖ =
⎡
⎣ N∑

i=0

(ũβ

i,x0
− uβ

i,x0
)2‖Ĥβ

i,x0
‖2 +

∞∑
i=N+1

(uβ

i,x0
)2‖Ĥβ

i,x0
‖2

⎤
⎦

1
2

≥
⎡
⎣ ∞∑

i=N+1

(uβ

i,x0
)2‖Ĥβ

i,x0
‖2

⎤
⎦

1
2

= ‖(I − π
β̃
N,x0

)Uβ
N,x0

‖.

(38)

With Eq. (35), using the projected πβ̃
N,x0

Uβ
N,x0

as the new numerical solution instead of the interpolated I β̃
N,x0

Uβ
N,x0

might 
lead to a smaller error bound.

3.1. Posterior error estimate

We derive the posterior error estimates that depend on the numerical solution Uβ
N,x0

∈ Pβ
N,x0

and on how β, x0, and N
are changed. Combining the error estimate of the adaptive techniques with Theorem 2, the error estimate for numerically 
solving Eqs. (7) and (8), our ultimate goal is to prove Theorem 1, the error estimate for adaptive spectral methods. To start, 
we analyze the errors from the three adaptive techniques.

3.1.1. Scaling technique error
First, we derive the error bound associated with changing the scaling factor β , which corresponds to the scaling technique 

error eS in Eq. (5) of Theorem 1. Suppose at time t , we change β to β̃ and replace the numerical solution Uβ
N,x0

with 

π
β̃
N,x0

Uβ
N,x0

∈ P β̃
N,x0

, the error is

‖u(·, t) − π
β̃
N,x0

Uβ
N,x0

(·, t)‖ ≤ ‖u(·, t) − Uβ
N,x0

(·, t)‖ + ‖(I − π
β̃
N,x0

)Uβ
N,x0

(·, t)‖ (39)

where the first term on the RHS is the error before scaling and the second term on the RHS is the additional error bound 
from changing the scaling factor (“scaling error”). Denoting β ′ = β̃/β , we can further bound the scaling error by

‖(I − π
β̃
N,x0

)Uβ
N,x0

(·, t)‖ ≤ ‖Uβ
N,x0

(x, t) − Uβ
N,x0

(β ′x, t)‖

=
⎡
⎢⎣∫
R

⎛
⎜⎝

x∫
β ′x

∂y Uβ
N,x0

(y, t)dy

⎞
⎟⎠

2

dx

⎤
⎥⎦

1
2

≤
⎡
⎢⎣∫
R

|1 − β ′|x
⎛
⎜⎝

x∫
β ′x

(
∂y Uβ

N,x0
(y, t)

)2
dy

⎞
⎟⎠dx

⎤
⎥⎦

1
2

= |1 − β ′|√1 + β ′
√

2β ′ ‖x∂xUβ
N,x0

(x, t)‖.

(40)

Therefore, the error after changing the scaling factor from β to β̃ is bounded by

‖u(·, t) − π
β̃
N,x0

Uβ
N,x0

(·, t)‖ ≤ ‖u(·, t) − Uβ
N,x0

(·, t)‖ + |1 − β ′|√1 + β ′
√

2β ′ ‖x∂xUβ
N,x0

(x, t)‖. (41)

From Eq. (41), the second term in the last equality is the additional error bound resulting from scaling. The factor |1−β ′ |√1+β ′√
2β ′

is directly related to how much the scaling factor is changed while ‖x∂xUβ
N,x0

(x, t)‖ depends on the spatial derivative of the 
pre-scaled solution.
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3.1.2. Moving technique error
Next, we derive the error bound associated with changing the displacement x0, which corresponds to the moving tech-

nique error eM in Eq. (5) of Theorem 1. Given the numerical solution Uβ
N,x0

, if we change the displacement of the basis 
functions from x0 to x̃0 and set πβ

N,x̃0
Uβ

N,x̃0
∈ Pβ

N,x̃0
as the new numerical solution, the error is

‖u(·, t) − π
β

N,x̃0
Uβ

N,x̃0
(·, t)‖ ≤ ‖u(·, t) − Uβ

N,x0
(·, t)‖ + ‖(I − π

β

N,x̃0
)Uβ

N,x0
(·, t)‖, (42)

where the second term on the RHS is the additional error bound from changing x0 (“moving error”). Furthermore, it is 
bounded by

‖(πβ

N,x̃0
− I)Uβ

N,x0
(·, t)‖ ≤ ‖Uβ

N,x0
(x, t) − Uβ

N,x0
(x − x̃0 + x0, t)‖

≤
⎡
⎢⎣∫
R

|x0 − x̃0|
⎛
⎜⎝

x∫
x−x̃0+x0

(
∂yUβ

N,x0
(y, t)

)2
dy

⎞
⎟⎠dx

⎤
⎥⎦

1
2

= d‖∂xUβ
N,x0

(·, t)‖,

(43)

where d := |x0 − x̃0|. Thus, the error after changing the displacement from x0 to x̃0 is bounded by

‖u(·, t) − π
β
N,x0

Uβ

N,x̃0
(·, t)‖ ≤ ‖u(·, t) − Uβ

N,x0
(·, t)‖ + d‖∂xUβ

N,x0
(·, t)‖. (44)

We see that the additional error bound associated with moving depends on the change in the displacement x0 and the 
spatial derivative ∂xUβ

N,x0
(x, t) of the pre-translated numerical solution.

3.1.3. p-adaptive technique error
Finally, we analyze the error associated with the p-adaptive technique, which corresponds to the p-adaptive technique 

error eC in Eq. (5) of Theorem 1. When projecting the numerical solution Uβ
N,x0

onto the new space Pβ

Ñ,x0
, no extra error will 

be introduced when Ñ > N (refinement) because the basis functions {Ĥβ

i,x0
}Ñ

i=0 form an orthogonal set of basis functions 
and πβ

Ñ,x0
Uβ

N,x0
= Uβ

N,x0
, i.e.,

‖u(·, t) − π
β

Ñ,x0
Uβ

N,x0
(·, t)‖ = ‖u(·, t) − Uβ

N,x0
(·, t)‖, Ñ > N. (45)

When we reduce the number of basis functions from N to Ñ < N (coarsening), we use πβ

Ñ,x0
Uβ

N,x0
= Uβ

Ñ,x0
as the new 

numerical solution. πβ

Ñ,x0
Uβ

N,x0
leaves out the last N − Ñ terms in the spectral expansion of Uβ

N,x0
. Therefore, the error after 

coarsening can be bounded by

‖u(·, t) − π
β

Ñ,x0
Uβ

N,x0
(·, t)‖ ≤ ‖u(·, t) − Uβ

N,x0
(·, t)‖ + ‖(I − π

β

Ñ,x0
)Uβ

N,x0
(·, t)‖, Ñ < N. (46)

In Eq. (46), the second term in the last inequality is the additional error bound that results from truncating the spectral 
expansion and leaving out the last N − Ñ terms.

Next, we generalize Theorem 2 to forward time from t0 to t1 given Uβ
N,x0

(x, t0). We assume that no adaptive technique 
is activated within t ∈ (t0, t1) and denote e(x, t) = u(x, t) − Uβ

N,x0
(x, t), t ∈ [t0, t1], where u is the solution to Eqs. (7) and 

(8). The error at t1, e(x, t1) = u(x, t1) − Uβ
N,x0

(x, t1), can be decomposed as e(x, t1) = e1(x, t1) + e2(x, t1) where e1(x, t1) is 
the error u(x, t1) − Ũβ

N,x0
(x, t1) with Ũβ

N,x0
solving Eq. (12) with initial condition u(x, t0). The second error term e2(x, t1) ∈

L2(t0, t1; Pβ
N,x0

) satisfies

t1∫
t0

(∂se2, v) + a (e2, v; t)ds + (e2(·, t0), ṽ(·, t0)
)

= (e(·, t0), ṽ(·, t0)
)
, ∀ v ∈ L2(t0, t1; Pβ

N,x0
), ṽ ∈ Pβ

N,x0
.

(47)

From Theorem 2,

‖e1(·, t1)‖ ≤ bN,β + B0

b
‖(I − π

β
N,x0

)u‖X(t0,t1). (48)

N,β
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Additionally, since the bilinear form a(·, ·) is positive definite, substituting v(x, t) = e2(x, t) and ṽ = e2(x, ti) into Eq. (47), 
we conclude that ‖e2(·, t1)‖ ≤ ‖e(·, t0)‖ = e(t0). Therefore,

e(t1) ≤ e(t0) + bN,β + B0

bN,β

‖(I − π
β
N,x0

)u‖X(ti ,ti+1). (49)

Specifically, this error bound does not depend on the step size 	t = ti+1 − ti if we use

uβ
N,x0

(t + 	t) = e−Aβ
N 	t uβ

N,x0
(t) + e−Aβ

N 	t

t+	t∫
t

e Aβ
N (s−t) F N,x0(s)ds, (50)

with uβ
N,x0

, F β
N,x0

defined by Eq. (16) and Aβ
N defined by Eq. (17).

Now, we are ready to prove Theorem 1, the overall error bound using the adaptive spectral methods. We define the 
times of the 
th scaling, the 
th moving, and the 
th changing of the expansion order to be ts


, t
m

 , and tc


 , respectively. We 
denote the scaling factors right before the 
th scaling, moving, and changing the expansion order to be βs


, β
m

 , and βc


 , 
the displacements right before the 
th scaling, moving, and changing the expansion order to be x0

s

, x0

m

 , and x0

c

 , and the 

expansion orders right before the 
th scaling, moving, and changing the expansion order to be Ns

, N

m

 , and Nc


 , respectively. 
After the 
th scaling, we denote the new scaling factor to be β̃s


 and the ratio β ′s

 := β̃s


/β
s

; after the 
th moving, we denote 

the new displacement to be x̃0
m

 and dm


 := |x̃0
m

 − x0

m

 |; after the 
th change of the expansion order, we denote the new 

expansion order as Ñc

 .

The times at which the scaling factor or the displacement of the basis functions is changed, or the expansion order is 
reduced, are indicated by ti in chronological order 0 = t0 ≤ t1... ≤ ti ≤ tK s+K m+K c+1 = T , where K s , K m , and K c are the total 
number of scalings, movings, and changing the expansion order within t ∈ [0, T ]. Specifically, if ti = ti+1, then more than 
one adaptation is triggered simultaneously. The corresponding constant that satisfies the inequality Eq. (18) during [ti, ti+1]
is denoted as (bNi ,βi + B0)/bNi ,βi . From the error estimates of the scaling, moving, and p-adaptive techniques in Eqs. (41), 
(43), (46), and Eq. (49), we conclude

e(T ) ≤
K s+K m+K c∑

i=0

bNi ,βi + B0

bNi ,βi

‖(I − π
βi
Ni ,x0 i

)u‖X(ti ,ti+1)

+
K s∑


=1

|1 − β ′s

|
√

1 + β ′s

√

2β ′s



‖x∂xU
βs




Ns

,x0

s


(x, ts


)‖

+
K m∑

=1

dm

 ‖∂xU

βm



Nm

 ,x0

m


(·, tm


 )‖

+
K c∑


=1

‖(I − π
βc




Ñc

,x0

c



)U
βc




Nc

,x0

c


(·, tc


)‖

≤
K s+K m+K c∑

i=0

bNi ,βi + B0

bNi ,βi

‖(I − π
βi
Ni ,x0 i

)u‖X(ti ,ti+1)

+
K s∑


=1

|1 − β ′s

|
√

1 + β ′s

√

2β ′s



(2Ns

 + 1)‖U

βs



Ns

,x0

s


(·, ts


)‖

+
K m∑

=1

√
(2Nm


 + 1)βm

 dm


 ‖U
βm




Nm

 ,x0

m


(·, tm


 )‖

+
K c∑


=1

‖(I − π
βc




Ñc

,x0

c



)U
βc




Nc

,x0

c


(·, tc


)‖

(51)

where we have used the three-term recurrence relation for generalized Hermite functions and the inverse inequality Eq. (24)

to bound ‖x∂xU
βs




Ns

,x0

s


(x, ts


)‖ and ‖∂xU
βm




Nm

 ,x0

m


(·, tm


 )‖ in the second inequality. Note that in the first term of Eq. (51), if 

ti = ti+1 then we define ‖(I − π
βi
Ni ,x0 i

)u‖X(ti ,ti+1) := 0. The first term on the RHS of the last inequality corresponds to e0 in 
Theorem 1, and the second, third, and last terms on the RHS of last inequality correspond to eS, eM, and eC, respectively. 
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Note that in Eq. (51), the first, second, third, and fourth terms on the RHS give the exact forms of e0, eS, eM, and eC in 
Eq. (5) of Theorem 1.

From Eq. (51), the errors caused by scaling and moving (the second and third terms of the equation) suggest that the 
smaller the adjustment in β or x0, the smaller the factors |1 − β ′s


| and dm

 in the scaling or moving errors. Therefore, we 

should set the triggering parameters q � 1 (� means smaller but close to) and 0 � δ in Table 1 so that the scaling factor β
and the displacement x0 can be tuned more accurately without over-adjustment that may lead to larger errors.

When coarsening, decreasing the expansion order N too much will increase the coarsening error through the last term in 
Eq. (51). Increasing the coarsening threshold η0 to make it harder to decrease N can preserve accuracy but possibly at the 
expense of keeping a higher computational burden. Note that although the effect of refinement does not explicitly reveal 
itself in the error bound Eq. (51), both a smaller initial refinement threshold η and a smaller γ (the ratio of increasing the 
refinement threshold) could lead to larger N and thus smaller errors (the first term of the second equation in Eq. (51)). 
However, if N increases, so will the computational cost. Using the numerical example presented in the next section, we 
will discuss how to set γ and η so that high accuracy can be achieved without significant degradation of computational 
efficiency. Since the adaptive techniques do not require prior information on the solution, the last three terms in Eq. (51), 
i.e., errors from adaptive techniques, depend only on the latest numerical solution itself.

Note that the numerical error in solving Eqs. (7) and (8) is no less than the projection error

e(T ) = ‖u(·, t) − Uβ
N,x0

(·, t)‖ ≥ ‖(I − π
β
N,x0

)u(·, t)‖, (52)

and it has also been shown that improper scaling of generalized Hermite functions can lead to large projection errors [22]. 
Furthermore, in Examples 2, 3, 5 in [29] and Example 2 in [28], improper displacement x0 or a too-small expansion order 
N will also lead to projection errors, implying a large e(T ). Therefore, timely and accurate implementation of the adaptive 
techniques is important for controlling the lower error bound (the projection error) Eq. (52). Consequently, to adjust them 
properly, we need to set 1 � ν and 1 � μ in the scaling and moving technique algorithms, respectively.

A D-dimensional generalization of Eq. (51) for spatial variables x = (x1, ..., xD) ∈ RD can be similarly derived using 
Uβ

N,x0
(x, t) :=∑N1

i1=0 ... 
∑N D

iD=0 uβ

i1,...,iD ,x0
(t)�D

h=1Ĥ
βh

ih,xh
0
(x):

e(T ) =‖u(·, t) − Uβ
N,x0

(·, t)‖

≤
K s+K m+K c∑

i=0

bN i ,β i
+ B0

bN i ,β i

‖(I − π
β i
N i ,x0 i

)u‖X(ti ,ti+1)

+
D∑

h=1

K h,s∑

=1

|1 − β ′h,s

 |
√

1 + β ′h,s

√

2β ′h,s



(2Nh,s

 + 1)‖U

β
h,s



Nh,s

 ,x0

h,s



(·, th,s

 )‖

+
D∑

h=1

K h,m∑

=1

√
2Nh,m


 + 1β
h,m

 dh,m


 ‖U
β

h,m



Nh,m

 ,x0

h,m



(·, th,m

 )‖

+
D∑

h=1

K h,c∑

=1

‖(I − π
β

h,c
r

Ñ
h,c
r ,x0

h,c



)Uβ
h,c
r

Nr
h,c ,x0

h,c



(·, th,c

 )‖

(53)

where β, x0 , and N are the corresponding D-dimensional scaling factor, displacement, and expansion order defined in 
Eq. (29). K s =∑D

h=1 K h,s, K m =∑D
h=1 K h,m, K c =∑D

h=1 K h,c are the total number of times of performing scaling, moving, 
and changing the expansion orders, across all dimensions (K h,s, K h,m, K h,c are the numbers of using the scaling, moving, 
or p-adaptive technique in the hth dimension, respectively), the constant (bN i ,β i

+ B0)/bN i ,β i
is the RHS constant in the 

inequality (31) during [ti, ti+1], and th,s

 , th,m


 , th,c

 are the times of the 
th scaling, moving, or changing the expansion order in 

the hth dimension, respectively. The second, third and last terms in Eq. (53) describe scaling error bounds in all dimensions, 
moving error bounds in all dimensions, and coarsening error bounds in all dimensions.

In Eq. (53), βh,s

 := (β

1,s

 , ..., βD,s


 ), βh,m

 , and βh,c


 are the D-dimensional scaling factors right before the 
th scaling, 
moving, or changing the expansion order in the hth dimension. Similarly, x0

h,s

 := (x0

1,s

 , ..., x0

D,s

 ), x0

h,m

 , and x0

h,c

 are the 

D-dimensional displacements right before the 
th scaling, moving, or change of expansion order in the hth dimension, and 
Nh,s


 := (N1,s

 , ..., N D,s


 ), Nh,m

 , and Nh,c


 are the D-dimensional expansion orders right before the 
th scaling, moving, or 
change of expansion order in the hth dimension. β ′h,s


 is the ratio β̃h,s

 /β

h,s

 where β̃h,s


 is the scaling factor after the 
th

scaling in the hth dimension, dh,m

 := |x̃0

h,m

 − x0

h,m

 | (x̃0

h,m

 is the new displacement) is the absolute value of the change 

in displacement in the 
th moving step in the hth dimension, and Ñh,c

 is the expansion order after the 
th changing the 

expansion order in the hth dimension. ti is the time for carrying out the ith scaling, moving, or p-adaptive technique in any 
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dimension and if within the same time step more than one of those techniques in any dimension is used, those ti may be 
the same but are listed in the order of carrying out those techniques.

Equation (53) can be proved in a dimension-by-dimension manner to evaluate the error caused by scaling Eq. (41), 
moving Eq. (43), and coarsening Eq. (46). As with Eq. (51), we also conclude that in the multi-dimension case the optimal 
strategy for choosing parameters is to set qh � 1 and 0 � δh in each dimension so that the change in the scaling factor or 
the displacement results in numerical accuracy but does not result in over-scaling or over-shifting. From the error lower 
bound in Eq. (52), 1 � νh and 1 � μh are required so that βh and xh

0 are adjusted in each dimension h without incurring 
too large a projection error.

As for coarsening across higher dimensions, a larger ηh
0 could lead to a larger minimal expansion order in each dimen-

sion and improve accuracy, but larger expansion orders lead to higher computational cost, especially for high-dimensional 
problems (as the total number of coefficients are �D

h=1 Nh). Similarly, decreasing the initial refinement threshold ηh or γ h , 
or the adjustment ratio ηh in the hth direction, will lead to smaller errors and higher computational costs.

3.2. Prior error estimate

In addition to the posterior upper error bound of Eq. (51), we can also derive a prior error upper bound of using the 
adaptive spectral method to solve Eq. (12) in which the error estimate only depends on the solution itself. First, for the 
scaling technique, when we change the scaling factor from β to β̃ and use πβ̃

N,x0
Uβ

N,x0
as the new numerical solution, the 

error ‖u(·, t) − π
β̃
N,x0

Uβ
N,x0

(·, t)‖ can be bounded by

‖u(·, t) − π
β̃
N,x0

Uβ
N,x0

(·, t)‖ ≤ ‖(I − π
β̃
N,x0

)u(·, t)‖ + ‖πβ̃
N,x0

(u − Uβ
N,x0

)(·, t)‖,
≤ ‖(I − π

β̃
N,x0

)u(·, t)‖ + ‖u(·, t) − Uβ
N,x0

(·, t)‖.
(54)

In Eq. (54), the term ‖(I − π
β̃
N,x0

)u(·, t)‖ in the last equation is the increment in the error bound resulting from scaling 
(scaling error). Similarly, if we carry out the moving technique and change the displacement of the basis function from x0

to x̃0 and use πβ

N,x̃0
Uβ

N,x0
as the new numerical solution, the error ‖u − π

β

N,x̃0
Uβ

N,x0
‖ can be bounded by

‖u(·, t) − π
β

N,x̃0
Uβ

N,x0
(·, t)‖ ≤ ‖(I − π

β

N,x̃0
)u(·, t)‖ + ‖πβ

N,x̃0
(u − Uβ

N,x0
)(·, t)‖

≤ ‖(I − π
β

N,x̃0
)u(·, t)‖ + ‖u − Uβ

N,x0
(·, t)‖.

(55)

As for the p-adaptive technique, refinement will not bring any additional error since πβ

Ñ,x0
Uβ

N,x0
= Uβ

N,x0
, Ñ > N . However, 

the error after coarsening and using πβ

Ñ,x0
Uβ

N,x0
, Ñ < N to replace the original numerical solution Uβ

N,x0
can be bounded by

‖u(·, t) − π
β

Ñ,x0
Uβ

N,x0
(·, t)‖ ≤ ‖u(·, t) − Ûβ

N,x0
(·, t)‖ + ‖(πβ

N,x0
− π

β

Ñ,x0
)u(·, t)‖

≤ ‖u(·, t) − Uβ
N,x0

(·, t)‖ + ‖(πβ
N,x0

− π
β

Ñ,x0
)u(·, t)‖

(56)

where

Ûβ
N,x0

= π
β

Ñ,x0
Uβ

N,x0
+

N∑
i=Ñ+1

ûβ

i,x0
Ĥβ

i,x0
(x), ûβ

i,x0
= (u(·, t), Ĥβ

i,x0
(·)). (57)

Finally, as with the derivation of Eq. (51), we can obtain an error bound which only depends on the solution u

e(T ) ≤
K s+K m+K c∑

i=0

bNi ,βi + B0

bNi ,βi

‖(I − π
βi
Ni ,x0 i

)u‖X(ti ,ti+1)

+
K s∑


=1

‖(I − π
β̃s




Ns

,xLs




)u(·, ts

)‖

+
K m∑

=1

‖(I − π
βm




Nm
q ,x̃0

m



)u(·, tm

 )‖

+
K c∑

‖(πβc



Nc

,x0

c


− π

βc



Ñc

,x0

c



)u(·, tc

)‖.

(58)

=1

213



T. Chou, S. Shao and M. Xia Applied Numerical Mathematics 183 (2023) 201–220
Therefore, the posterior error estimate Eq. (51) gives us more information on how we should choose the parameters in the 
adaptive techniques to determine β, x0, N . Prior error bounds for adaptive spectral methods for (D + 1)-dimensional model 
problems (x ∈RD ) can be straightforwardly derived and takes a similar form to that of Eq. (58), but is excluded for brevity.

3.3. Frequency indicator and lower error bound

As proposed in [28,29], the major goal of implementing our adaptive techniques is to maintain a small frequency indi-
cator as defined in Eq. (4). Here, we explicitly show that the frequency indicator is closely related to the error and why 
controlling it leads to the accurate implementation of our adaptive techniques. From Eq. (4) we have

F(Uβ
N,x0

)(‖u(·, t)‖ − e(t)) ≤ ‖(I − π
β
N−M,x0

)u(·, t)‖ + e(t), (59)

which implies

e(t) ≥ F(Uβ
N,x0

(x, t))‖u(·, t)‖ − ‖(I − π
β
N−M,x0

)u(·, t)‖
1 +F(Uβ

N,x0
)

≈ F(Uβ
N,x0

)‖u(·, t)‖ − ‖(I − π
β
N−M,x0

)u(·, t)‖
(60)

when the frequency indicator F(Uβ
N,x0

) = o(1) for any t . Therefore, the relationship between the lower error bound and the 
frequency indicator is nearly linear, and thus monitoring and controlling it leads to a small lower error bound.

Since a function that decays more slowly or is more oscillatory as time increases tends to have a larger frequency 
indicator, as shown in [28,29], one should dynamically switch to basis functions that decay more slowly, or incorporate 
more oscillatory basis functions. Therefore, in the adaptive spectral method shown in Fig. 1, controlling the frequency 
indicator is achieved by either decreasing the scaling factor (“Scale”) or increasing the expansion order (“Refine”).

In the scaling and p-adaptive techniques, the scaling threshold ν for the scaling technique, the initial threshold η0 for 
refining, as well as the ratio of the post-refinement adjustment factor γ defined in Table 1 determine the tolerable rate of 
increase in the frequency indicator between two consecutive timesteps. Thus, we again justify that setting ν � 1, η � 1, and 
γ � 1 can suppress increases in the frequency indicator, thus effectively suppressing the lower error bound if ‖u(·, t)‖ is 
uniformly bounded for t ∈ [0, T ]. Because Eq. (60) does not depend on the underlying model or the numerical discretization, 
controlling the frequency indicator works well within adaptive spectral methods applied in a variety of different models.

On the other hand, as the error tends to accumulate over time, it is usually the case that

e(T ) � max
0≤t≤T

F(Uβ
N,x0

(x, t))‖u(·, t)‖ − ‖(I − π
β
N−M,x0

)u(·, t)‖. (61)

Therefore if the frequency indicator decreases, one can consider increasing the scaling factor or reducing the number of 
basis functions allowing for modest increases in the frequency indicator. As long as the frequency indicator does not surpass 
the frequency indicator in previous timesteps, the error bound remains unchanged under the assumption that ‖u(·, t)‖ does 
not change significantly over time. By increasing the scaling factor, allocation points are more densely distributed making it 
possible to reduce their number via coarsening and to improve computational efficiency by using fewer basis functions.

4. Numerical results

In our numerical examples, we numerically solve Eq. (12) by discretizing time according to t j = j	t and using the 
scheme Eq. (50) to forward time from t j to t j+1. Adaptive techniques will be used to adjust the basis functions at different 
timesteps t j . The matrix-vector product e−Aβ

N (t j+1−t j)uβ
N,x0

(t j) in Eq. (50) is calculated using a “scaling and squaring” method 
in [13], i.e., we rewrite

e−Aβ
N (t j+1−t j)uβ

N,x0
(t j) = (e− Aβ

N (t j+1−t j)

3
)3

uβ
N,x0

(t j) (62)

and evaluate e− Aβ
N (t j+1−t j)

3 uβ
N,x0

(t j) by Taylor expansion. The integral 
∫ t j+1

t j
e−Aβ

N (t j+1−t j) F β
N,x0

(t)dt on the RHS of Eq. (50) is 
evaluated by the Gauss-Legendre formula described in [29].

In all examples, the error denotes the relative L2-error

‖u(·, t) − Uβ
N,x0

(·, t)‖
‖u(·, t)‖ . (63)

First, we numerically investigate how the parameters of the scaling and moving techniques affect the performance of the 
adaptive spectral method and numerically verify the conclusions drawn from Eq. (51), namely, to set q � 1, 1 � ν for scaling, 
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and 0 � δ, 1 � μ for moving in order to accurately adjust the scaling factor and translation of the basis functions. We also 
wish to explore how to appropriately set the parameters in the p-adaptive technique, the refinement threshold η, the 
coarsening threshold η0, and the η adjustment ratio to achieve higher accuracy while reducing the computational cost. In 
this work, all computations were performed using Matlab R2017a on a laptop with a 4-core Intel(R) Core(TM) i7-8550U CPU 
@ 1.80 GHz.

Example 1. We consider solving the following parabolic equation in the weak form

(ut(x, t), v) + (ux(x, t), vx(x, t)
)= ( f (x, t), v(x, t)

)
, ∀v(x) ∈ H1(R), u(x,0) = eixe−x2/4,

f (x, t) = (x − 2t) + (t + 1)3 + 2i(x − t)(1 + t)

(t + 1)
3/2

exp

[
i(t + 1)x − (x − 2t)2

4(t + 1)

] (64)

which admits an analytic solution

u(x, t) = 1√
t + 1

exp

[
i(t + 1)x − (x − 2t)2

4(t + 1)

]
. (65)

Not only is the center of the solution translating rightward at speed 2t , its magnitude |u(x, t)| = 1√
t+1

exp
(
− (x−2t)2

4(1+t)

)
de-

cays more slowly for larger |x|. The solution also incurs higher frequency spatial variations as time increases due to the 
exp (i(t + 1)x) factor. Therefore, all three adaptive techniques are expected to be required. Upon setting 	t = 2 × 10−4 and 
solving Eq. (64) up to t = 2, we investigate how the parameters in the three adaptive techniques affect performance. The 
initial scaling factor, displacement, and expansion order are set to β = 1, x0 = 0, and N = 40. First, we test how the scaling 
threshold ν , the scaling factor adjustment ratio q, the moving μ, and the minimum displacement step δ affect the per-
formance of the scaling and moving techniques. We keep the expansion order fixed since it has been illustrated that the 
effects of improper scaling or moving can be offset by increasing the expansion order N but at the expense of increased 
computational cost [28]. Initially, we set the parameters q = 0.99, ν = 1.02, δ = 10−4, and μ = 1.00005, and then change 
each of them one at a time. Imposing the maximal allowable displacement within each timestep dmax = 0.01, the upper 
scaling factor limit β = 0.2, and lower scaling factor limit β = 5, we plot the relative L2-error e(t = 2) along with the scaling 
factor when we change q and ν , and we plot e(t = 2) along with x0 when we change δ and μ.

Fig. 2(a) shows that q � 1 is required for the scaling technique to properly adjust the scaling factor. When q � 1 and we 
vary ν from 1 to 2, the error, as well as the scaling factor β , do not change much, indicating that the scaling technique is 
more sensitive to q than to ν . Therefore, keeping q � 1 is more important than keeping 1 � ν . Fig. 2(c) shows that the error 
is highly correlated with x0, suggesting that it is critical to properly move the basis functions to capture the displacement 
of the solution. Having 0 � δ is important so that the displacement x0 is not over-adjusted. Finally, as shown in Fig. 2(d), 
increasing μ will make the moving technique less sensitive to the translation of the basis functions and lead to a larger error. 
Thus, 1 � μ is recommended for the moving technique. Next, we investigate how the initial refinement threshold η, the 
refinement threshold adjustment ratio γ , and the coarsening threshold η0 affect the p-adaptive technique’s performance 
when q = 0.99, ν = 1.02, δ = 10−4, and μ = 1.00005 are fixed, and the initial variables are set to β = 1, x0 = 0, N = 40. 
Fixing the maximum increment in each timestep to Nmax = 6, we start with the initial parameter values γ = 1.02, η = 1.05, 
and η0 = 1.02, and vary each of them one by one and plot the relative L2-error and N . Fig. 3(a) shows that apart from 
translating rightward and decaying more slowly, the analytic solution is increasingly oscillatory which requires adjusting 
the expansion order N of the numerical solution. Fig. 3(b) shows that if γ is large, then the threshold for increasing 
the expansion order η will increase more quickly. This renders the p-adaptive technique unable to sufficiently adjust the 
expansion order, leading to smaller expansion orders N and larger errors. Fig. 3(c) shows that the larger the initial threshold 
η for increasing the expansion order, the smaller the expansion order. In the depicted regime, larger initial values of η do 
not degrade accuracy since N � 65 is sufficient to maintain high accuracy. Therefore, to maintain accuracy while reducing 
the computational burden, it is crucial to set 1 � γ so that the p-adaptive technique can capture oscillatory behavior over 
long periods of time. Using a smaller initial η may lead to more computational costs but does not lead to improvement in 
accuracy. Overall, since the function exhibits higher frequency spatial oscillations as time increases, coarsening is typically 
not activated. However, a large coarsening threshold η0 can still impede coarsening, resulting in a slightly larger N than a 
smaller η0 (Fig. 3(d)).

Finally, as shown in Figs. 2 and 3, we numerically verify that the appropriate strategy for the adaptive spectral parameters 
is to set q � 1, 1 � ν, 0 � δ, and 1 � μ. In fact, for good performance, the scaling procedure strongly requires q � 1 and the 
moving procedure requires both 0 � δ and 1 � μ. For an effective refinement, it is more important to set 1 � γ rather than 
to set the initial 1 � η (i.e., setting 1 � γ rather than setting the initial 1 � η leads to more accurate results with smaller 
computational costs).

When using the generalized Hermite functions defined in R, the desired solution might move leftward or rightward, 
requiring both leftward and rightward displacement of the basis functions. Since only rightward basis function shifts have 
been previously considered [28,29], here, we generalize the moving technique to allow for bidirectional adjustment of the 
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Fig. 2. Plots of the error at t = 2 and the scaling factor β or the displacement x0 when tuning the scaling factor adjustment ratio q and the scaling threshold 
ν or the minimum displacement δ and the moving threshold μ. (a) The error tends to be smaller as q decreases to 1, indicating that q � 1 is crucial for 
proper adjustment of the scaling factor. (b) As ν is increased, the scaling technique could be impeded, but the error is not very sensitive to ν if q is small. 
(c) The error is strongly correlated with x0 and a large δ can lead to over-adjustment of the displacement x0, resulting in a larger error. (d) A large μ will 
make it harder to activate the moving technique, leading to a smaller x0 and a larger error.

displacement x0. It has been proposed that controlling an exterior-error indicator leads to small errors in the exterior 
domain, relative to the total error, resulting in a better approximation of the solution in the exterior region. Therefore, 
bidirectional moving might maintain relatively small errors in both left- and right-exterior regions of R. We first propose a 
left exterior-error indicator

EL(Uβ
N,x0

) = ‖∂xUβ
N,x0

· I(−∞,xL)‖
‖∂xUβ

N,x0
· I(−∞,+∞)‖

, (66)

where we use xL = xβ

[ N
3 ] following the often-used 2

3 -rule [6,14]. The left exterior-error indicator (66) can be seen as the 

upper bound for the ratio of the error in (−∞, xL) to the error across the whole space R, in analogy to the (right) exterior-
error indicator E(Uβ

N,x0
) defined in Eq. (3), which we shall denote below by ER (Uβ

N,x0
) for clarity. The number of nodes in 

the left-exterior region (−∞, xL) and in the right-exterior region (xR , ∞) are both roughly N
3 . It was shown in [29] that if 

the right exterior-error indicator (3) increases, then the ratio of the error in the right exterior region (xR, +∞) to the total 
error may also increase, suggesting that one should move the basis functions rightward (increase x0). In Fig. 4, we show the 
positions of collocation nodes of generalized Hermite functions {Hβ

i,x0
}N

i=0 with β = 1, x0 = 0, and N = 24. The endpoints 
xL and xR are shown in red, showing that the right and left exterior regions, (xR , ∞) and (−∞, xL), are near-symmetric. 
The left exterior-error indicator (66) also measures the ratio of the error in the left exterior region (−∞, xL) to the total 
error, and, if it increases, one can consider shifting the basis functions leftward (decrease x0). With both left and right 
exterior-error indicators, we propose the following bidirectional moving scheme.

In Algorithm 1, the left_exterior_error_indicator subroutine calculates the left exterior-error indicator by Eq. (66) and 
the right_exterior_error_indicator calculates the right exterior-error indicator by Eq. (3). If the right or left exterior-
error indicator is larger than their corresponding thresholds, i.e, ER > μẼR or EL > μẼL , the moving technique is activated, 
calculating the rightward displacement d0 or the leftward displacement d1 of the basis functions. In [29], the rightward 
displacement dR = min{nRδ, dmax} is determined by the move_right subroutine in Line 12, where n is the smallest inte-
ger satisfying ER(U (α,β)

N,x0
(x − nRδ, t)) < μẼR . Similarly, the leftward displacement dL = min{nLδ, dmax} is determined by the 

move_left subroutine in Line 13, where nL is the smallest integer satisfying EL(U (α,β)
(x + nLδ, t)) < μẼL . Notice that the 
N,x0
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Fig. 3. Plots of the real part of the analytic solution Re(u)(x, t) at different times, the error and the expansion order N at t = 2 when we vary the refinement 
threshold adjustment ratio γ , the initial refinement threshold η, and the coarsening threshold η0. (a) The real part of the analytic solution, which translates 
rightward, becomes more diffusive, and is increasingly oscillatory over time. (b) The error increases with γ while the expansion order decreases with γ . A 
larger γ implies a faster-increasing refinement threshold η. (c) A larger initial refinement threshold η results in a smaller expansion order at t = 2, yet the 
error is not reduced as η decreases and N increases with the initial γ . This indicates that as long as γ is small enough, a larger initial η can be tolerated to 
lead to a smaller computational cost without compromising accuracy. (d) The expansion order N tends to increase as the coarsening threshold η0 increases.

Fig. 4. Distribution of the collocation points of generalized Hermite functions {Ĥβ

i,x0
}N

i=0 with β = 1, x0 = 0, and N = 24. xL := xβ

[ N
3 ] and xR := xβ

[ 2N+2
3 ] are 

filled circles with red. The number of collocation points that are in the right-exterior region (xR , ∞) for calculating ER and in the left-exterior region 
(−∞, xL) for calculating EL are both approximately N/3.

error estimate of the adaptive spectral method in Theorem 1 does not depend on the direction of displacements. Therefore 
it applies to both the bidirectional moving technique Algorithm 1 and the one-sided moving technique proposed in [28].

Example 2. Consider numerically solving the following parabolic equation in the weak form in R × [0, 6]

(ut(x, t), v) + (ux(x, t), vx(x, t)
)= ( f (x, t), v(x, t)

)
, ∀v(x) ∈ H1(R), u(x,0) = e−x2

sin x, (67)

where

f (x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(
3 − 2(x + vt)

(
v + 2(x + vt)

))
sin(x + vt)

+
(

v + 4(x + vt)
)

cos(x + vt)

]
e−(x+vt)2

t ≤ 2,

[(
3 − 4

(
x + v(4 − t)

)2 + 2v
(
x + v(4 − t)

))
sin(x − v(t − 4))

+
(

4x + v(15 − 4t)
)

cos(x − v(t − 4))

]
e−(x−v(t−4))2

t ≥ 2.

(68)

This PDE is solved by
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Algorithm 1 Pseudo-code of the bidirectional exterior-error-dependent moving technique.

1: Initialize N , 	t , T , β , x0, Uβ
N,x0

(x, 0), μ > 1, dmax > δ > 0
2: t ← 0
3: xR ← xβ

[ 2N+2
3 ]

4: xL ← xβ

[ N
3 ]

5: ẼR ← right_exterior_error_indicator(Uβ
N,x0

(x, 0))

6: ẼL ← left_exterior_error_indicator(Uβ
N,x0

(x, 0))

7: while t < T do
8: Uβ

N,x0
(x, t + 	t) ← evolve(Uβ

N,x0
(x, t), 	t)

9: ER ← right_exterior_error_indicator(Uβ
N,x0

(x, t + 	t))

10: EL ← left_exterior_error_indicator(Uβ
N,x0

(x, t + 	t))

11: if ER > μẼR || EL > μẼL then
12: dR ← move_right(Uβ

N,x0
(t + 	t), δ, dmax, μe0)

13: dL ← move_left(Uβ
N,x0

(t + 	t), δ, dmax, μe1)

14: Uβ
N,x0

(x, t) ← π
β

N,x0+dR −dL
Uβ

N,x0
(x, t + 	t)

15: x0 ← x0 + dR − dL

16: xL ← xL + dR − dL

17: xR ← xR + dR − dL

18: ẼR ← right_exterior_error_indicator(Uβ
N,x0

(x, t + 	t))

19: ẼL ← left_exterior_error_indicator(Uβ
N,x0

(x, t + 	t))
20: end if
21: t ← t + 	t
22: end while

u(x, t) =

⎧⎪⎨
⎪⎩

e−(x+vt)2
sin (x + vt) t ≤ 2,

e−(x−vt+4v)2
sin (x − vt + 4v) t ≥ 2.

(69)

We set v = 2 in Eq. (68) so that the center of the solution moves with velocity −2 from x = 0 to x = −4 when t ∈ [0, 2], 
and when t ∈ [2, 6] the center of the solution moves from x = −4 to x = 4 with velocity +2. Since the solution displays 
only convective behavior, we deactivate the scaling and p-adaptive procedures and apply only the moving technique. Since 
the translation switches from leftward to rightward at t = 2, the moving technique needs to allow for both leftward and 
rightward displacement of the basis functions. The parameters in the moving technique are set to be μ = 1.0005, δ = 0.0005, 
and the maximal displacement within a timestep dmax = 0.2. We take the scaling factor, the expansion order, and the initial 
displacement of the basis function to be β0 = 1.2, N0 = 24, x0 = 0, respectively, and plot the results obtained with no 
moving technique, the leftward-only moving technique, the rightward-only moving technique, and the bidirectional moving 
technique.

Fig. 5(a) shows that the spectral method equipped with the bidirectional moving technique (red) can maintain the 
smallest error because the displacement x0 can be decreased when t ∈ [0, 2] and increased when t > 2 (see Fig. 5(b)). The 
spectral method with the leftward-only moving technique (blue) can maintain a small error in [0, 2] when the center of the 
function moves leftward but fails to keep the error small when t > 2 due to its inability to increase x0. When t < 2, the 
rightward-only moving technique (green) cannot decrease the displacement x0 and therefore the error for the rightward-
only moving technique is large at t = 2. Furthermore, large error accumulation before t = 4 of the rightward-only moving 
technique makes it unable to properly increase x0 for t > 4 when the center of the solution moves to the right of the origin 
x = 0. The right and left exterior-error indicators for the bidirectional moving technique Algorithm 1 can be well controlled 
as shown in Fig. 5(c,d), while for the leftward-only moving technique the right exterior-error indicator grows dramatically 
when t > 2 and for the rightward-only moving technique, the left exterior-error indicator grows when t < 2. Therefore, the 
leftward- and rightward-only moving techniques both fail to maintain a small error in at least one exterior region (xR , ∞)

or (−∞, xL). The left exterior-error indicator grows when t < 2 (the center moves to the left of the origin) and the right 
exterior-error indicator grows when t > 4 (the center moves to the right of the origin) for the spectral method without the 
moving technique (black), suggesting that it cannot maintain a small error in both exterior regions.

5. Discussion and conclusions

In this paper, we carried out a numerical analysis of recently proposed adaptive spectral methods in unbounded do-
mains using generalized Hermite functions. Specifically, our analysis helps guide parameter choice across three adaptive 
spectral techniques, i.e., the scaling procedure, the moving procedure, and the p-adaptive technique to properly adjust the 
three key variables associated with these techniques, the scaling factor, the displacement, and the spectral expansion order. 
Based on our analyses, rules for properly choosing parameters in the scaling, moving, and p-adaptive techniques to most 
efficiently and accurately solve PDEs are derived. We also explicitly explain why controlling the frequency indicator by using 
adaptive spectral methods effectively controls the error. Numerical experiments were carried out to verify our theoretical 
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Fig. 5. Plots of the error, x0, the left exterior-error indicator Eq. (66), and the right exterior-error indicator Eq. (3). (a) The bidirectional moving technique 
Algorithm 1 can main the smallest error while failure to accommodate either leftward or rightward displacement leads to much larger errors. (b,c,d) The 
displacement x0, the left exterior-error indicator, and the right exterior-error indicator of spectral methods with the bidirectional, the leftward-only, the 
rightward-only moving technique, and the spectral method without any moving.

results. Furthermore, we developed a new bidirectional moving technique to accommodate both leftward and rightward 
displacements.

Even though our analysis focused on a simple parabolic model, it nonetheless represents a first step towards understand-
ing how adaptive spectral methods work in solving unbounded-domain problems. In fact, for our parabolic model, the total 
upper error bound is simply the sum of the errors from numerical discretization and from implementation of the adaptive 
schemes, providing a clear overall picture of errors under our adaptive spectral algorithm. Additionally, the lower error es-
timate Eq. (60) holds regardless of the underlying model and numerical discretization, suggesting that controlling a small 
frequency indicator always leads to a small lower error bound when applying adaptive spectral methods to any model.

Since adaptive spectral methods have been successfully applied to nonlinear PDEs or models containing nonlocal terms 
[28,29], further analysis to explain why adaptive spectral methods work well in these more complicated models, particularly 
in unbounded domains, will be the subject of future investigation. Understanding how adaptive spectral methods work in 
complex unbounded-domain problems that arise across many disciplines and that are computationally challenging will pave 
the way for their accurate solution.

Finally, one should also perform analyses of adaptive spectral techniques using other classes of basis functions of recent 
interest [23]. These include generalized Laguerre functions in R+ and the modified mapped Gegenbauer functions in R. 
Another potentially useful extension is to explore developing methods to automatically determine and adjust the decay 
rate of solutions at infinity by adaptively switching among different classes of basis functions in order to match underlying 
physics or observations.
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