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Abstract. Cell division is a process that involves many biochemical steps and complex biophys-
ical mechanisms. To simplify the understanding of what triggers cell division, three basic models
that subsume more microscopic cellular processes associated with cell division have been proposed.
Cells can divide based on the time elapsed since their birth, their size, and/or the volume added
since their birth—the timer, sizer, and adder models, respectively. Here, we propose unified adder-
sizer models and investigate some of the properties of different adder processes arising in cellular
proliferation. Although the adder-sizer model provides a direct way to model cell population struc-
ture, we illustrate how it is mathematically related to the well-known model in which cell division
depends on age and size. Existence and uniqueness of weak solutions to our 2+1-dimensional PDE
model are proved, leading to the convergence of the discretized numerical solutions and allowing
us to numerically compute the dynamics of cell population densities. We then generalize our PDE
model to incorporate recent experimental findings of a system exhibiting mother-daughter correla-
tions in cellular growth rates. Numerical experiments illustrating possible average cell volume blowup
and the dynamical behavior of cell populations with mother-daughter correlated growth rates are
carried out. Finally, motivated by new experimental findings, we extend our adder model cases
where the controlling variable is the added size between DNA replication initiation points in the cell
cycle.
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1. Introduction. How cells regulate and maintain their sizes, as well as sizes
of their appendages, is a longstanding research topic in cell biology. Besides growth
of an individual cell, the size distributions within a population of cells are also a
quantity of interest. When considering proliferating cell populations, individual cell
growth is interrupted by cell division events that generate smaller daughter cells.
The biological mechanisms that control when and how a cell divides are complex and
involve many steps such as metabolism, gene expression, protein production, DNA
replication, chromosomal separation (for eukaryotic cells), and fission or cell wall
formation [27, 13, 4, 3, 6]. These processes are regulated and may involve intricate
biochemical signaling.

Despite the complexity of cell growth and the cell cycle, three simple hypotheses
for the underlying mechanisms of cell division have been proposed. Cell division can
be governed by cell age a, cell volume x [26], or added volume since birth y [29, 28].
The division mechanism employed by a type of cell may be interrogated by tracking
the volumes x, added volumes y, and ages a during division events. Volume growth
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1308 MINGTAO XIA, CHRIS D. GREENMAN, AND TOM CHOU

of an individual cell can be straightforwardly measured and can be modeled by an
effective empirical law such as ẋ = g(a, x, y, t). A commonly used approximation that
is supported by observations is the exponential growth law g(x) = λx [24].

To describe population-level distributions, PDE approaches have been developed.
For example, the timer model, in which the cell division rate depends only on age
of the cell, is described by the classic McKendrick equation for n(a, t), the expected
density of cells at age a and time t [19, 9]. The McKendrick “transport” equation for
the cell density takes the form ∂tn(a, t) + ∂an(a, t) = −(µ(a) + β(a))n(a, t), in which
β(a) and µ(a) are age-dependent birth and death rates, respectively. The associated
boundary condition n(t, 0) = 2

∫ a
0
β(s)n(s, t)ds describes the birth of zero-age cells.

Fully demographically stochastic versions of the timer model have also been recently
developed [12, 5, 11].

The timer (or age-dependent) model does not explicitly track cell sizes, but PDE
models incorporating sizer mechanisms have been developed [22, 8, 23]. In these
studies size-dependent birth rates β(x) are pertinent. Depending on the form of β(x),
cells can diverge in size x in the absence of death [16]. Existence and uniqueness of
weak solutions to timer and sizer models have been proved for certain boundary and
initial conditions. These types of structured population equations can be partially
solved using the method of characteristics but the boundary conditions can only be
reduced to a Volterra-type integral equation [22, 5].

Much like a general growth law g(a, x, y, t) that can depend on age, size, added
size, and time, the three distinct mechanisms of cell division need not be mutually
exclusive. In this paper, we mainly focus, at the cell population level, on the cell
division mechanism that incorporates the added volume, or the so-called adder. This
mechanism, in which the cell seems to use added size as the factor controlling its
division, has been indicated in many recent experimental studies. Specifically, apart
from the sizer and the timer models, the adder mechanism has been recently shown
to be consistent with E. coli division [27, 28, 29] and can be motivated by an ini-
tiator accumulation mechanism distinct from those used to justify sizers or timers
[28, 4].

We will introduce the PDE model that describes cell population structure under
the adder mechanism, which we describe as the “adder-sizer” PDE model, and show
its connection to the classical “timer-sizer” PDE model that involves cell age and
size as controlling parameters. The proof of the existence and uniqueness of a weak
solution to the proposed three-dimensional adder-sizer PDE turns out to be more
complex than the proof for the timer and/or sizer counterparts [22]. Our proof leads
to the convergence of the numerical solutions to the adder-sizer PDE, allowing us
to numerically evaluate the corresponding structured cell populations, facilitating
further analysis, exploration of possible “blowup” behavior, and generalizations of the
model. Stochastic Monte-Carlo simulations of the corresponding stochastic process
are also generated and compared with numerical results for n(x, y, t) and division-
event densities.

Next, we propose an extension to the adder-sizer model that incorporates cellular
growth rates that are correlated across successive generations. Changes in growth
rates at the single-cell level have been explored using stochastic mapping methods
[7, 18]. By numerically solving the PDE, we found out that the population-averaged
growth rates are larger when correlations between mother and daughter cell growth
rates are larger. Finally, we generalized the adder model to include a different two-
phase PDE system which could describe the latest “initiation-adder” mechanism,
which states that the added mechanism takes effect on the cell’s size at initiation in-
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PDE MODELS OF ADDER MECHANISMS 1309

stead of division in [25]. In contrast to the single-PDE division adder model, a model
describing the initiation-adder mechanism requires two coupled PDEs.

To model cell size control, stochastic maps that relate daughter cell sizes to mother
cell sizes have been developed [17, 21]. These models describe how cell sizes evolve with
generation and can interpolate among timer, sizer, and adder mechanisms. Kessler
and Burov [17] assumed stochastic growth which lead to a stochastic map with multi-
plicative noise. They found that an adder mechanism can admit blowup in which the
expected cell sizes can increase without bound with increasing generation observed
experimentally in filamentous bacteria. Modi et al. [21] assume additive noise and do
not find blowup in an adder model. Stochastic maps of generational cell size do not
describe population-level distributions in size or age.

2. Adder-sizer PDE models. Here, we introduce adder-sizer PDE models
and generalize them to describe recently observed characteristics of population-level
bacterial cell division. An adder-sizer model is one that incorporates a cell division rate
β(x, y, t) and a single-cell growth rate g(x, y, t) that, instead of depending on a cell’s
age a, are functions of cell size x and a cell’s volume added since birth y. Such an adder-
sizer PDE model can be developed by defining n(x, y, t)dxdy as the mean number of
cells with size in [x, x+dx] and added volume in [y, y+dy]. As cells have finite size and
their added volume must be less than total size, n(x ≤ 0, y, t) = n(x, y ≥ x, t) = 0. A
derivation similar to that given in [20] for the sizer model yields a transport equation
of the form
(2.1)

∂n(x, y, t)

∂t
+
∂[g(x, y, t)n(x, y, t)]

∂x
+
∂[g(x, y, t)n(x, y, t)]

∂y
= −β(x, y, t)n(x, y, t)

for the adder-sizer PDE. Here, we have neglected the effects of death, which can be
simply added to the right-hand side (RHS) of (2.1).

To explicitly outline our general derivation, consider the total population flux
into and out of the size and added size domain Ω shown in Figure 1(a) and define
β̃(x′, y′, z′, t)dz′ as the rate of fission of cells of size x′ and added size y′ to divide
into two cells, one with size in [z′, z′ + dz′] and the other with size within [x′ −
z′, x′ − (z′ + dz′)]. For binary fission, conservation of daughter cell volumes requires
β̃(x′, y′, z′, t) ≡ β̃(x′, y′, x′ − z′, t). This differential division function allows mother
cells to divide into two daughter cells of differing sizes (asymmetric division), a process
that has been observed in numerous contexts [14, 13, 2]. We also assume that daughter
cells must have positive size so β̃(x′, y′, z′ = 0, t) = β̃(x′, y′, z′ = x′, t) = 0.

The change in the number of cells in Ω due to fission can arise in a number of
ways. First, if a cell in Ω divides, it can only produce two cells with size less than x.
Thus, such fission events lead to a net change of +1 in the number of cells with y = 0
and size in [0, x]. If a cell with size within [0, x] but with added size > y divides, it
creates two cells with added size y = 0 and size within [0, x], leading to a net change
of +2 cells.

For cells with any added size y′ > 0 but with size x′ > x, we have two subcases.
If the dividing cell has size x < x′ < 2x, it will produce one daughter cell in Ω if
a daughter cell has size 0 < z′ < x′ − x or x < z′ < x′ as shown in Figure 1(b).
If x′ − x < z′ < x, both daughter cells have size < x. Finally, if the dividing cell
has size x′ > 2x, at most one daughter will have size x′ < x (see Figure 1(b)).

Upon simplifying the above birth terms by using
∫ x′

0
dz′ =

∫ x
0

dz′ +
∫ x′
x

dz′ for x′ > x

and the symmetry β̃(x′, y′, z′, t) = β̃(x′, y′, x′ − z′, t), we combine terms to balance
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1310 MINGTAO XIA, CHRIS D. GREENMAN, AND TOM CHOU

Fig. 1: The size and added-size state space for cell populations. The expected total number of cells at time t
with added size within [0, y] and volume (or “size”) within [0, x] is defined as N(x, y, t). Over an increment in
time dt, the domain Ω = [0, y]× [0, x] infinitesimally distorts Ω → Ω + dΩ through the growth increment gdt.
The total population within this distorted domain changes only due to birth and death. Cells within Ω that
divide always give rise to two daughters within Ω, leading to a net change of +1 cell. (b) The z′ and x′ domains
of the differential birth rate function β̃(x′, y′, z′, t). Cells outside of Ω can contribute a net +1 or +2 cells in Ω
depending on the division patterns defined in the depicted regions.

∫ x

0

dx′
∫ y

0

dy′
∂n(x′, y′, t)

∂t
+

∫ x

0

dx′ g(x′, y, t)n(x′, y, t) +
∫ y

0

dy′ g(x, y′, t)n(x, y′, t)102

=

∫ ∞

0

dy′
∫ x

0

dx′
∫ x′

0

dz′ β̃(x′, y′z′, t)n(x′, y′t)103

+

∫ ∞

y

dy′
∫ x

0

dx′
∫ x′

0

dz′ β̃(x′, y, z′, t)n(x′, y′, t)104

+ 2

∫ ∞

0

dy′
∫ ∞

x

dx′
∫ x

0

dz′ β̃(x′, y′, z′, t)n(x′, y′, t)(2.2)105
106

Upon taking the derivatives ∂2

∂x∂y , we find the PDE given in Eq. 2.1 where the total division rate is defined by107

β(x, y, t) :=
∫ x

0
β̃(x, y, z, t)dz. For the boundary condition at y = 0, we take the derivative ∂/∂x and set y → 0+108

to find109

(2.3) g(x, y = 0, t)n(x, y = 0, t) = 2

∫ ∞

x

dx′
∫ x′

0

dy′ β̃(x′, y′, z = x, t)n(x′, y′, t).110

The other boundary condition defined by construction is n(x, x, t) = 0.111

In the special restricted case of symmetric cell division, β̃(x, y, z, t) = β(x, y, t)δ(z − x/2), and boundary112

condition of the adder-sizer model reduces to113

(2.4) g(x, y = 0, t)n(x, y = 0, t) = 4

∫ 2x

0

β(2x, y′, t)n(2x, y′, t)dy′,114

The above derivation provides an explicit boundary condition representing newly born cells that may be asym-115

metric in birth size. Quantities such as the total cell population N(t) and the mean total biomass M(t) (the116

total volume over all cells) can be easily constructed from the density n(x, y, t):117

(2.5) N(t) =

∫ ∞

0

dx

∫ x

0

dy n(x, y, t), M(t) =

∫ ∞

0

dx

∫ x

0

dy xn(x, y, t).118

Higher moments of the total volume can also be analogously defined. By applying these operations to Eq. 2.1119

and using the boundary condition (Eq. 2.3), we find the dynamics of the total population and biomass120

3

Fig. 1. The size and added-size state space for cell populations. The expected total number
of cells at time t with added size within [0, y] and volume (or “size”) within [0, x] is defined as
N(x, y, t). Over an increment in time dt, the domain Ω = [0, y] × [0, x] infinitesimally distorts
Ω → Ω + dΩ through the growth increment gdt. The total population within this distorted domain
changes only due to birth and death. Cells within Ω that divide always give rise to two daughters
within Ω, leading to a net change of +1 cell. (b) The z′ and x′ domains of the differential birth
rate function β̃(x′, y′, z′, t). Cells outside of Ω can contribute a net +1 or +2 cells in Ω depending
on the division patterns defined in the depicted regions.

proliferation with transport and find

∫ x

0

dx′
∫ y

0

dy′
∂n(x′, y′, t)

∂t
+

∫ x

0

dx′ g(x′, y, t)n(x′, y, t) +

∫ y

0

dy′ g(x, y′, t)n(x, y′, t)

=

∫ ∞

0

dy′
∫ x

0

dx′
∫ x′

0

dz′ β̃(x′, y′z′, t)n(x′, y′t)

+

∫ ∞

y

dy′
∫ x

0

dx′
∫ x′

0

dz′ β̃(x′, y, z′, t)n(x′, y′, t)

+ 2

∫ ∞

0

dy′
∫ ∞

x

dx′
∫ x

0

dz′ β̃(x′, y′, z′, t)n(x′, y′, t).

(2.2)

Upon taking the derivatives ∂2

∂x∂y , we find the PDE given in (2.1) where the total

division rate is defined by β(x, y, t) :=
∫ x

0
β̃(x, y, z, t)dz. For the boundary condition

at y = 0, we take the derivative ∂/∂x and set y → 0+ to find

(2.3) g(x, y = 0, t)n(x, y = 0, t) = 2

∫ ∞

x

dx′
∫ x′

0

dy′ β̃(x′, y′, z = x, t)n(x′, y′, t).

The other boundary condition defined by construction is n(x, x, t) = 0.
In the special restricted case of symmetric cell division, β̃(x, y, z, t) = β(x, y, t)

δ(z − x/2), and boundary condition of the adder-sizer model reduces to

(2.4) g(x, y = 0, t)n(x, y = 0, t) = 4

∫ 2x

0

β(2x, y′, t)n(2x, y′, t)dy′.

The above derivation provides an explicit boundary condition representing newly born
cells that may be asymmetric in birth size. Quantities such as the total cell population
N(t) and the mean total biomass M(t) (the total volume over all cells) can be easily
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constructed from the density n(x, y, t):

(2.5) N(t) =

∫ ∞

0

dx

∫ x

0

dy n(x, y, t), M(t) =

∫ ∞

0

dx

∫ x

0

dy xn(x, y, t).

Higher moments of the total volume can also be analogously defined. By applying
these operations to (2.1) and using the boundary condition (equation (2.3)), we find
the dynamics of the total population and biomass
(2.6)

dN(t)

dt
=

∫ ∞

0

dx

∫ x

0

dy β(x, y, t)n(x, y, t),
dM(t)

dt
=

∫ ∞

0

dx

∫ x

0

dy g(x, y, t)n(x, y, t).

Finally, we also define the distribution of division events over the size and added
size variables, accumulated over a time T :

(2.7) ρd(x, y, T ) =

∫ T

0

β(x, y, t)n(x, y, t)dt

∫ T

0

dt

∫ ∞

0

dx′
∫ x

0

dy′ β(x′, y′, t)n(x′, y′, t)

.

2.1. Division probability and connection to timer-sizer model. In gen-
eral, the birth rate functions β̃(x, y, z, t) and β(x, y, t) associated with adder-sizer
models can take many forms that make biological sense. However, some classes of
β(x, y, t) may allow the adder-sizer model to be transformed into the well-known
“sizer-timer” structured population model [26]. To illustrate the relationship, we con-
sider a division rate function β which depends explicitly only on age a and see how it
could be converted to a function of size and added size.

For a cell born at time t0, the probability that the cell splits within time [a, a+
da] is defined by γ(a; ā)da. In the absence of death, to ensure that any single cell
will eventually split,

∫∞
0
γ(a; ā)da = 1. Reasonable choices for γ(a; ā) are gamma,

lognormal, or normal distributions. Without loss of generality, we propose a simple
gamma distribution for γ(a; ā):

(2.8) γ(a; ā) =
1

aΓ((ā/σa)2)
exp

[
−aā
σ2
a

+

(
ā

σa

)2

ln

(
aā

σ2
a

)]
,

where ā is the mean division age and σ2
a is the variance. This type of distribution can

be derived from the sum of independent, exponentially distributed ages.
For determinisitic exponential growth g = λx, age a and the parameter ā can be

explicitly expressed in terms of x, y and possibly other fixed parameters,

(2.9) a(x, y) =
1

λ
ln

(
x

x− y

)
, ā(x, y) =

1

λ
ln

(
x− y + ∆

x− y

)
,

in which ∆ is the fixed added size parameter that represents the adder mechanism.
With a(x, y) and ā(x, y) defined in (2.9), the time-homogeneous division rate

function β(x, y) can be expressed in terms of x and y by using the splitting probability
γ(a(x, y); ā(x, y)):

(2.10) β(x, y) =
γ(a(x, y); ā(x, y))

1−
∫ a(x,y)

0
da′γ(a′; ā(x, y))

.
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Fig. 2: The size and added-size dependent rate β(x, y) constructed using a gamma distribution for the splitting
probability γ (Eq. 2.8) and Eq. 2.10. We show projections at fixed values of x. In (a) the parameters are
σa = 0.2, while in (b) σa = 1. Note the difference in scale and that γ(a) with a higher standard deviation
leads to a lower overall cell division rate β. When x is large, ā defined in 2.9 is small, a nonzero division rate
β(x, y → 0) > 0 arises indicating that large newborn cells divide quickly to control size across the population.
This particular feature arises from our construction of β as a hazard function. Modifying birth rate at small
values of y so that β(x, y = 0) → 0 will not qualitatively change the predicted densities as long as the birth rate
peak persists at small y.

that the differential division probability h(r) is a function of only the ratio r between the size of the daughter153

cell and that of the mother cell, and independent of the cell size just before division. Thus,154

(2.12) β̃(x, y, z, t) = β(x, y, t)h(z/x)/x,155

where r ≡ z/x ∈ [0, 1]. The boundary condition (Eq. 2.3) can thus be written in the form156

(2.13) g(x, 0, t)n(x, 0, t) = 2

∫ ∞

x

dx′

x′

∫ 1

0

ds β(x′, sx′, t)h(x/x′)n(x′, sx′, t).157

A reasonable model for h(r = x/x′) is a lognormal form that is symmetric about r = 1/2:158

(2.14) h(r) =
h0(r) + h0(1 − r)

Z(σr, δ)
, h0(r) = e

− (−δ+ln r)2

2σ2
r e

− ln2(1−r)

2σ2
r ,159

where the parameters δ and σr determine the bias and spread of the daughter cell size distribution, and the160

normalization constant is161

(2.15) Z(σr, δ) =

∫ 1

0

(h0(r) + h0(1− r))dr.162

2.2. Numerical Implementation and Monte-Carlo Simulations. With the differential birth rate163

function β̃ defined, we can now consider the implementation of numerical solutions to Eqs. 2.1 and 2.3 as well164

as event-based simulations of the underlying corresponding stochastic process. Since a typical initial condition165

may not be smooth, a classical solution to Eqs. 2.1 and 2.3 may not exist. Thus, we provide a proof of existence166

and uniqueness of the weak solution to Eqs. 2.1 and 2.3 in Appendix A. We show convergence of a discrete167

approximation to our problem, allowing us to confidently numerically approximate the weak solution.168

The numerical approximation to the weak solution will be based on an upwind finite difference scheme in169

which both x and y are discretized with step size h. We define locally averaged functions by170

5

Fig. 2. The size and added-size dependent rate β(x, y) constructed using a gamma distribution
for the splitting probability γ (equations (2.8) and (2.10)). We show projections at fixed values of
x. In (a) the parameters are σa = 0.2, while in (b) σa = 1. Note the difference in scale and that
γ(a) with a higher standard deviation leads to a lower overall cell division rate β. When x is large,
ā defined in (2.9) is small and a nonzero division rate β(x, y → 0) > 0 arises indicating that large
newborn cells divide quickly to control size across the population. This particular feature arises
from our construction of β as a hazard function. Modifying birth rate at small values of y so that
β(x, y = 0) → 0 will not qualitatively change the predicted densities as long as the birth rate peak
persists at small y.

Assuming this “hazard function” form of a growth law, cells born at small initial
size x(0) = x0 = x − y take a longer time to divide, while cells born with large size
split sooner. Using the gamma distribution, we find a division rate of the form

(2.11) β(x, y) =
Γ
(
ā2(x,y)
σ2
a

)
γ(a(x, y); ā(x, y))

Γ
(
ā2(x,y)
σ2
a

, a(x,y)ā(x,y)
σ2
a

) ,

where Γ(·, ·) is the upper incomplete gamma function. We plot two examples of the
time-independent rate β(x, y) in Figure 2.

With β(x, y, t) defined, we still need to construct the full fission rate β̃, which we
will assume is a product of the overall division rate β(x, y, t) and a differential division
probability. The simplest model is to assume that the differential division probability
h(r) is a function of only the ratio r between the size of the daughter cell and that of
the mother cell, and independent of the cell size just before division. Thus,

(2.12) β̃(x, y, z, t) = β(x, y, t)h(z/x)/x,

where r ≡ z/x ∈ [0, 1]. The boundary condition (equation (2.3)) can thus be written
in the form

(2.13) g(x, 0, t)n(x, 0, t) = 2

∫ ∞

x

dx′
∫ 1

0

ds β(x′, sx′, t)h(x/x′)n(x′, sx′, t).

A reasonable model for h(r = x/x′) is a lognormal form that is symmetric about
r = 1/2:

(2.14) h(r) =
h0(r) + h0(1− r)

Z(σr, δ)
, h0(r) = e

− (−δ+ln r)2

2σ2r e
− ln2(1−r)

2σ2r ,

where the parameters δ and σr determine the bias and spread of the daughter cell size

distribution, and the normalization constant is Z(σr, δ) =
∫ 1

0
(h0(r) + h0(1− r))dr.
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2.2. Numerical implementation and Monte-Carlo simulations. With the
differential birth rate function β̃ defined, we can now consider the implementation
of numerical solutions to (2.1) and (2.3) as well as event-based simulations of the
underlying corresponding stochastic process. Since a typical initial condition may not
be smooth, a classical solution to (2.1) and (2.3) may not exist. Thus, we provide a
proof of existence and uniqueness of the weak solution to (2.1) and (2.3) in Appendix
A. We show convergence of a discrete approximation to our problem, allowing us to
confidently numerically approximate the weak solution.

The numerical approximation to the weak solution will be based on an upwind
finite volume scheme in which both x and y are discretized with step size h. We define
locally averaged functions by

(2.15) fi+ 1
2 ,j+

1
2

:=
1

h2

∫ (i+1)h

ih

dx

∫ (j+1)h

jh

dy f(x, y, t),

where f(x, y, t) can represent n(x, y, t), g(x, y, t), or β(x, y, t). Similarly,

(2.16) β̃i+ 1
2 ,j+

1
2

((
s+

1

2

)
h, t
)

= h−3

∫ (i+1)h

ih

dx

∫ (j+1)h

jh

dy

∫ (k+1)h

kh

dz β̃(x, y, z, t)

in the domain i, j ≥ 0 and j, k < i. The discretization of the transport equation can
be expressed as
(2.17)
n
i+1

2
,j+1

2
(t+∆t)−n

i+1
2
,j+1

2
(t)

∆t +
g
i+1,j+1

2
ñ
i+1,j+1

2
−g

i,j+1
2
ñ
i,j+1

2

h +
g
i+1

2
,j+1

ñ
i+1

2
,j+1
−g

i+1
2
,j
ñ
i+1

2
,j

h

= −βi+ 1
2 ,j+

1
2
ni+ 1

2 ,j+
1
2
(t),

for 1 ≤ i, j ≤ L, where Lh is the maximum size which we take sufficiently large such
that ni,j>K(t = 0) = 0, ni≤j = 0. We also set gi+ 1

2 ,i
= 0 to prevent density flux out

of the y < x domain. In (2.17), gi+1,j+ 1
2
(t) can be taken as g((i + 1)h, (j + 1

2 )h, t)

while ñi+1,j+ 1
2
(t) =

∫ (j+1)h

jh
dy n((i+ 1

2 )h, y, t) is a finite-volume numerical approxima-

tion to
∫ (j+1)h

jh
dy n((i + 1)h, y, t). The discretized version of the boundary condition

(equation (2.3)) can be expressed as

(2.18) gi+ 1
2 ,0
ni+ 1

2 ,0
(t) = 2h2

L∑

k=i+1

k−1∑

j=0

β̃k+ 1
2 ,j+

1
2

((
i+

1

2

)
h, t
)
nk+ 1

2 ,j+
1
2
(t).

The full explicit discretization scheme for the numerical calculation is provided in
Appendix B.

Direct Monte-Carlo simulations of the birth process are also performed and com-
pared with our numerically computed deterministic distributions (see Appendix C).
We construct a list of cells and their associated sizes and their sizes at birth. This
list is updated at every time step ∆t. The cell sizes grow according to g(x, y, t). If
a cell divides, one daughter cell’s initial size z is drawn from the distribution h(z/x)
while the other’s is set to x − z. The daughter cells then replace the mother cell
in the list. Simulations of the underlying stochastic process results in, at any given
time, a collection of cells, each with a specific size and added size. This collection of
cells represents a realization of the population that should be approximated by the
distributions that are solutions to (2.1) and (2.3).
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- - -

- - -

Fi g. 3: N u m e ri c all y c o m p ut e d d e n siti e s n̄ ( x, y, t ) = n (x, y, t )/ N (t) u si n g g (x, y, t ) = λ x a n d β̃ ( x, y, z, t ) d e fi n e d
b y E q s. 2. 1 0 , 2. 8 , a n d 2. 1 4 . F o r all pl o ts, w e u s e σ a = 0 .1 i n γ (a ) ( E q. 2. 8 ) a n d r e s c al e si z e i n u nits of ∆. I n
( a- c), w e u s e t h e s h a r p, si n gl e- p e a k e d di ff e r e nti al di vi si o n f u n cti o n h (r ) s h o w n i n t h e i n s et ( σ r = 0 .1 , δ = 0 )
a n d pl o t n̄ ( x, y, 1 ) , n̄ ( x, y, 4 ), a n d n̄ ( x, y, 1 2 ), r e s p e cti v el y. I n ( d-f ), w e pl o t t h e d e n siti e s u si n g a br o a d (i n f a ct,
d o u bl e- p e a k e d) di ff e r e nti al di vi si o n f u n cti o n h (r ) wit h p a r a m et e r s σ r = 0 .2 , δ = 0 .7. I n all c al c ul a ti o n s, w e
a s s u m e d a n i niti al c o n diti o n c o r r e s p o n di n g t o a si n gl e n e wl y b o r n ( y = 0 ) c ell wit h si z e x = 1. F o r m o r e
a s y m m etri c c ell di vi si o n i n ( d-f ), t h e d e n sit y s pr e a d s f a s t e r. I n t h e s e c a s e s, t h e d e n siti e s cl o s el y a p pr o a c h a
st e a d y- st a t e di stri b uti o n b y a b o ut t = 1 2. Al s o s h o w n i n e a c h pl o t a r e r e ali z a ti o n s of M o nt e- C a rl o si m ul a ti o n s
of t h e di s c r et e pr o c e s s. I n di vi d u al c ell s a r e r e pr e s e nt e d b y bl u e d o ts w hi c h a c c ur a t el y s a m pl e t h e n o r m ali z e d
c o nti n u o u s d e n siti e s n̄ ( x, y, t ).

h o w a p o s si bl e ” bl o w u p ” i n t h e p o p ul a ti o n- a v e r a g e d c ell v ol u m e s. Wit h i n P D E m o d el s t h a t d e s c ri b e p o p ul a ti o n2 0 9

di stri b uti o n s, ti m e r a n d si z e r m e c h a ni s m s h a v e b e e n s h o w n t o e x hi bit bl o w- u p d e p e n di n g o n pr o p e r ti e s of t h e2 1 0

bir t h r a t e β (a, x ) [1 , 7 , 1 5 ]. A n al y si s of t h e c o n diti o n s o n f ull di ff e r e nti al di vi si o n r a t e β̃ ( x, y, z, t ) t h a t w o ul d2 1 1

r e s ult i n bl o w- u p i n t h e “ a d d e r- si z e r ” P D E m o d el i s m o r e i n v ol v e d. H e r e, w e pr o vi d e o nl y a h e uri s ti c a r g u m e nt2 1 2

f o r s u ffi ci e nt c o n diti o n s f o r bl o w- u p.2 1 3

Fir st, w e c h a r a ct e ri z e t h e s h a p e of t h e d e n siti e s i n t h e a d d e r- si z e r m o d el. I n t h e a n al o g o u s M c K e n dri c k2 1 4

e q u a ti o n [ 1 4 ] o n e c a n i n v e s ti g a t e t h e a g e pr o fil e d e fi n e d b y di vi di n g t h e n u m b e r d en sit y b y t h e t o t al p o p ul a ti o n2 1 5

si z e. T h e l o n g t e r m a g e pr o fil e m a y b e s t a bl e e v e n w h e n t h e t o t al p o p ul a ti o n si z e c o nti n u o u sl y i n c r e a s e s. We2 1 6

t a k e a si mil a r a p pr o a c h h e r e b y a n al y zi n g n̄ ( x, y, t ) = n (x, y, t )/ N (t) w h e r e N (t) i s gi v e n b y E q. 2. 5 . Writi n g2 1 7

t h e a d d e r- si z e r P D E i n t e r m s of n̄ , w e fi n d2 1 8

( 3. 1 )
∂ n̄

∂ t
+
n̄

N

d N

d t
+
∂ (g n̄ )

∂ x
+
∂ (g n̄ )

∂ y
= − β n̄.2 1 9

I nt e g r a ti n g t hi s e q u a ti o n o v e r x, y l e a d s t o2 2 0

( 3. 2 )
1

N

d N

d t
=

∞

0

d x
x

0

d y β n̄2 2 1

w hi c h c a n b e s u b stit ut e d i nt o t h e fir st t e r m i n E q. 3. 1 t o yi el d t h e n o nli n e a r P D E2 2 2

7

Fig. 3. Numerically computed densities n̄(x, y, t) = n(x, y, t)/N(t) using g(x, y, t) = λx and
β̃(x, y, z, t) defined by (2.10), (2.8), and (2.14). For all plots, we use σa = 0.1 in γ(a) (equation (2.8))
and rescale size in units of ∆. In (a)–(c), we use the sharp, single-peaked differential division
function h(r) shown in the inset (σr = 0.1, δ = 0) and plot n̄(x, y, 1), n̄(x, y, 4), and n̄(x, y, 12),
respectively. In (d)–(f), we plot the densities using a broad (in fact, double-peaked) differential
division function h(r) with parameters σr = 0.2, δ = 0.7. In all calculations, we assumed an initial
condition corresponding to a single newly born (y = 0) cell with size x = 1. For more asymmetric
cell division in (d)–(f), the density spreads faster. In these cases, the densities closely approach a
steady-state distribution by about t = 12. Also shown in each plot are realizations of Monte-Carlo
simulations of the discrete process. Individual cells are represented by blue dots, which accurately
sample the normalized continuous densities n̄(x, y, t).

3. Analysis and extensions. In this section, we numerically investigate the
adder-sizer model and plot various cell population densities and birth event distribu-
tions under different parameter regimes. We also show the consistency of numerical
solutions of the adder-sizer PDE with results from direct Monte-Carlo simulations
of the corresponding stochastic process, which demonstrates that numerical solutions
of the linear PDE model for cell population are in agreement with single-cell level
stochastic models. After investigating birth rate parameters that can lead to blowup
of population-averaged cell sizes, we extend the basic adder model to include mother-
daughter growth rate correlations and processes that measure added size from different
points in the cell cycle, i.e., an initation-adder model.

3.1. Cell and division event densities. We evaluated our adder-sizer PDE
model by using the division rate given in (2.10) and first assuming the simple and
well-accepted growth function g(x, y, t) = λx. Figure 3 shows the numerical results
for the density n̄(x, y, t) = n(x, y, t)/N(t) at successive times t = 1, 4, 12, respectively.
Stochastic simulations of the underlying process yield cells populations consistent with
the deterministic densities derived from the PDE model. In Figure 4, we compare
the cell densities n̄(x, y, t) to the division event densities ρd(x, y, T ) for two different
differential division functions h(r). As before, the more asymmetric the division the
broader the cell and event densities.
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Fig. 4. Comparison of cell densities n̄(x, y, t) and cell division event densities ρd(x, y, T ) (equa-
tion (2.7)). The standard deviation σa = 0.1 is used in all calculations. In (a) and (b) we plot
n̄(x, y, t = 12) and ρd(x, y, T ) using σr = 0.2, δ = 0 while in (c) an (d) we used a broader differ-
ential division function in which σr = 0.3, δ = 0.7. Realizations from Monte-Carlo simulations are
overlayed. In (b) and (d), divisions are accumulated up to time T = 12.

3.2. Cell volume explosion. At the single-cell level, a stochastic map model
by Kessler and Burov assumed a multiplicative noise and predicted that cell sizes can
eventually grow without bound, in agreement with what was experimentally observed
for filamentous bacteria [17]. However, stochastic maps of generational cell size do
not capture population-level distributions in size or age. Within PDE models that
describe population distributions, timer and sizer mechanisms have been shown to
exhibit blowup depending on properties of the birth rate β(a, x) [1, 7, 16]. Analysis of
the conditions on full differential division rate β̃(x, y, z, t) that result in blowup in the
adder-sizer PDE model is more involved. Here, we provide only a heuristic argument
for sufficient conditions for blowup.

First, we characterize the shape of the densities in the adder-sizer model. In the
analogous McKendrick equation [15] one can investigate the age profile defined by
dividing the number density by the total population size. The long term age profile
may be stable even when the total population size continuously increases. We take
a similar approach here by analyzing n̄(x, y, t) = n(x, y, t)/N(t), where N(t) is given
by (2.5). Writing the adder-sizer PDE in terms of n̄, we find

(3.1)
∂n̄

∂t
+
n̄

N

dN

dt
+
∂(gn̄)

∂x
+
∂(gn̄)

∂y
= −βn̄.

Integrating this equation over x, y leads to Ṅ/N =
∫∞

0
dx
∫ x

0
dy βn̄, which can be
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Fig. 5: (a) Size distributions n̄(x, t) for σa = 0.2 at times t = 1, 2, 4, 10. (b) n̄(x, t = 1, 2, 4, 10) for σa = 1,
σr = 0.1, and δ = 0. (c) The corresponding mean cell sizes 〈x(t)〉. The curve associated with the σa = 0.2
saturates while the one corresponding to σa = 1 exhibits blow-up. However, the blowup is suppressed if a death
term (µ = ln 2) is included.

In Fig. 5(a) and (b) we plot the marginal distribution n̄(x, t) :=
∫∞
x dy n(x, y, t)/

∫∞
0 dx

∫∞
x dy n(x, y, t) for240

different values of the division rate variability σa at different times. The associated division rates correspond to241

those plotted in Fig. 2(a) and (b). In Fig. 5(c) we plot the mean cell sizes 〈x(t)〉 = M(t)/N(t) corresponding to242

the distributions in (a) and (b). For sufficiently broad division probabilities γ(a) (large σa), the division rates243

β are small, 〈x(t)〉 fails to saturate and diverges.244

3.3. Mother-daughter growth rate correlation. Recent experiments indicate that the growth rate of a245

mother cell is “remembered” by its daughter cells. For growth of the form g(x, y, t) = λx, the exponential growth246

parameter λ between successive generations i, i + 1 have been proposed to evolve [17, 7]. In [17], fluctuations247

in λ have been discussed at the single-cell level to explore their effects on the population-averaged growth rate248

while in [7], changes in growth rates across two consecutive generations are modeled as a Markov process in249

order to estimate a division rate function β. In this subsection, we first introduce a generalized adder-sizer250

PDE incorporating variability in λ and then explore the mother-daughter growth rate correlation affects the251

population dynamics.252

A mother-daughter growth rate correlation between two consecutive generations can be described by253

(3.6) λi+1 = (λi − λ̄)R + λ̄+ ξ,254

where ξ is a random variable, 0 ≤ R < 1 is the successive-generation growth rate correlation, and λ̄ is the mean255

long-term, or preferred growth rate. Given a growth rate λi of a mother cell, Eq. 3.6 describes the predicted256

growth rate λi+1 of its daughter cells. We assume that the random variable has mean zero and is distributed257

according to some probability density function p(ξ), which vanishes for ξ ≤ (1−R)λ̄ to ensure that the growth258

rates remain positive.259

To incorporate the memory of growth rates between successive generations in the adder-sizer PDE model,260

we extend the cell density in the growth rate variable λ. Thus, n(x, y, t, λ) is the density of cells with volume x,261

added volume y, and growth rate λ. The growth function g(x, y, t, λ) is now explicitly a function of the growth262

rate λ. We propose the extended PDE model263

(3.7)





∂n(x, y, t, λ)

∂t
+

∂(gn)

∂x
+

∂(gn)

∂y
= −β(x, y, t)n(x, y, t, λ),

g(x, 0, t, λ)n(x, 0, t, λ) =2

∫ ∞

0

dλ′
∫ ∞

x

dx′
∫ x′

0

dy β̃(x′, y, x, t)n(x′, y, t, λ′)P (ξ = λ−Rλ′ − (1−R)λ̄)

β̃(x, y, x′, t) =β̃(x, y, x− x′, t),

n(x, 0, t, λ) =n0(x, y, t, λ),

264

where P is the probability distribution of the noise in the growth rate memory. A possible symmetric mean265

zero distribution that vanishes at −(1−R)λ̄ takes on a log-normal form:266

9

Fig. 5. (a) Size distributions n̄(x, t) for σa = 0.2 at times t = 1, 2, 4, 10. (b) n̄(x, t = 1, 2, 4, 10)
for σa = 1, σr = 0.1, and δ = 0. (c) The corresponding mean cell sizes 〈x(t)〉. The curve associated
with the σa = 0.2 saturates while the one corresponding to σa = 1 exhibits blowup. However, the
blowup is suppressed if a death term (µ = ln 2) is included.

substituted into the first term in (3.1) to yield the nonlinear PDE

(3.2)
∂n̄

∂t
+
∂(gn̄)

∂x
+
∂(gn̄)

∂y
= −

(
β +

∫

Ω

βn̄

)
n̄.

A number of standard approaches may be applied to analyze (3.2). For example,
in [15], solutions are attempted by controlling the analogous nonlinear integral term.
In the adder-sizer problem, we can define 〈β(t)〉 =

∫
Ω
βn̄ in the above expression to

find a self-consistent condition on 〈β(t)〉. One can also assess the steady-state n̄ss by
setting ∂n̄ss

∂t = 0 and establishing convergence.
One indication of blowup is a diverging mean cell size 〈x(t)〉 = M(t)/N(t). By

multiplying the (3.1) by x and integrating (using the boundary condition and sym-
metry of the β̃ distribution) we find

(3.3)
d〈x(t)〉

dt
+ 〈β(t)〉〈x(t)〉 = q(t),

in which q(t) :=
∫

Ω
gn̄. If β, g, and n̄ = n̄ss are time-independent and a steady state

mean cell size exists, we expect it to obey 〈x(∞)〉 = q(∞)/〈β(∞)〉. For the special
case of deterministic exponential growth g(x) = λx, we can write the time evolution
of the mean size as

(3.4)
d〈x(t)〉

dt
= [λ− 〈β(t)〉] 〈x(t)〉, 〈β(t)〉 ≡

∫ ∞

0

dx

∫ x

0

dy β(x, y, t)n̄(x, y, t).

If β(∞) is bounded above by λ, then we expect blowup. For β(∞) that is not
bounded, as in our example (equation (2.10)), one cannot determine if blowup oc-
curs without a more detailed and difficult analysis. Since the precise conditions on
β leading to cell volume explosion are difficult to find, we will explore this possi-
ble phenomena using numerical experiments. We numerically examine the density
n(x, y, t → ∞) and the mean cell size 〈x(t)〉 using the β, β̃ defined in (2.10), (2.8),
and (2.14).

In Figure 5(a) and (b) we plot the marginal distribution n̄(x, t) :=
∫∞
x

dy n(x, y, t)/∫∞
0

dx
∫∞
x

dy n(x, y, t) for different values of the division rate variability σa at different
times. The associated division rates correspond to those plotted in Figure 2(a) and
(b). In Figure 5(c) we plot the mean cell sizes 〈x(t)〉 = M(t)/N(t) corresponding
to the distributions in (a) and (b). For sufficiently broad division probabilities γ(a)
(large σa), the division rates β are small, and 〈x(t)〉 fails to saturate and diverges.
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3.3. Mother-daughter growth rate correlation. Recent experiments indi-
cate that the growth rate of a mother cell is “remembered” by its daughter cells. For
growth rates of the form g(x, y, t) = λx, the exponential growth parameter λ between
successive generations i, i + 1 has been proposed to evolve [18, 7]. In [18], fluctua-
tions in λ have been discussed at the single-cell level to explore their effects on the
population-averaged growth rate while in [7], changes in growth rates across two con-
secutive generations are modeled as a Markov process in order to estimate a division
rate function β. In this subsection, we first introduce a generalized adder-sizer PDE
incorporating variability in λ and then explore how the mother-daughter growth rate
correlation affects the population dynamics.

A mother-daughter growth rate correlation between two consecutive generations
can be described by

(3.5) λi+1 = (λi − λ̄)R+ λ̄+ ξ,

where ξ is a random variable, 0 ≤ R < 1 is the successive-generation growth rate
correlation, and λ̄ is the mean long-term, or preferred growth rate. Given a growth
rate λi of a mother cell, (3.5) describes the predicted growth rate λi+1 of its daughter
cells. We assume that the random variable has mean zero and is distributed according
to some probability density P (ξ), which vanishes for ξ ≤ (1−R)λ̄ to ensure that the
growth rates remain positive.

To incorporate the memory of growth rates between successive generations in the
adder-sizer PDE model, we extend the cell density in the growth rate variable λ.
Thus, n(x, y, t, λ) is the density of cells with volume x, added volume y, and growth
rate λ. The growth function g(x, y, t, λ) is now explicitly a function of the growth
rate λ. We propose the extended PDE model
(3.6)



∂n(x, y, t, λ)

∂t
+
∂(gn)

∂x
+
∂(gn)

∂y

= −β(x, y, t)n(x, y, t, λ),

g(x, 0, t, λ)n(x, 0, t, λ)

= 2

∫ ∞

0

dλ′
∫ ∞

x

dx′
∫ x′

0

dy β̃(x′, y, x, t)n(x′, y, t, λ′)P (ξ = λ−Rλ′ − (1−R)λ̄),

β̃(x, y, x′, t) = β̃(x, y, x− x′, t),
n(x, y, 0, λ) = n0(x, y, λ).

A possible symmetric mean zero distribution that vanishes at −(1 − R)λ̄ takes on a
log-normal form:

(3.7) P (ξ) ∝ exp

[
− ln2(ξ + (1−R)λ̄)

2σ2
ξ

− ln2((1−R)λ̄− ξ)
2σ2

ξ

]
.

If we start with one newly born daughter cell at size x0 and growth rate λ0, the initial
condition in our PDE model would be n0(x, y, λ) = δ(x− x0)δ(y)δ(λ− λ0).

Numerical solutions of (3.6) shown in Figure 6 indicate that although λ̄ is the
same for two different cases, R = 0 and R = 0.4, their corresponding mean growth
rates 〈λ(t)〉 converge to different values. For larger correlation R, the daughter cells’
growth rates do not deviate much from those of their mothers’ growth rates. This
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(3.8) P (ξ) ∝ exp

[
− ln2(ξ + (1−R)λ̄)

2σ2
ξ

− ln2((1 −R)λ̄− ξ)

2σ2
ξ

]
.267

If we start with one newly born daughter cell at size x0 and growth rate λ0, the initial condition in our PDE268

model would be n0(x, y, λ) = δ(x− x0)δ(y)δ(λ− λ0).269
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Fig. 6: Population-level evolution of cellular growth rate. Parameters used are λ̄ = ln 2, σa = 0.2, σr = 0.1, δ = 0.
(a) and (b) The marginalized density n̄(λ, t) as a function of growth rate λ for no correlation (R = 0) and initial
growth rate λ = 0.55. The peak in the distribution broadens as the mean evolves towards the preferred mean
value λ̄ = ln 2. (c) The evolution of the mean 〈λ(t)〉 for different values of correlation R. Note that the
steady-state values 〈λ(∞)〉 depend on the correlation R.

Numerical solutions of Eqs. 3.7 shown in Fig. 6 indicate that although λ̄ is the same for two different cases,270

R = 0 and R = 0.4, their corresponding mean growth rates 〈λ(t)〉 converge to different values. For larger271

correlation R, the daughter cells’ growth rates do not deviate much from those of their mother’s. This means272

that the offspring of faster growing cells tend to grow faster and the offspring of slower growing cells tend to273

grow slower. Because it takes shorter time for faster cells to divide, they will produce more generations of274

faster-growing cells, leading to a larger average growth rate defined as275

(3.9) 〈λ(t)〉 =
∫∞
0 dx

∫ x

0 dy
∫∞
0 dλ λn(t, x, y, λ)∫∞

0 dx
∫ x

0 dy
∫∞
0 dλn(t, x, y, λ)

.276

On the other hand, if R is small, the growth rates of daughter cells have a mean that is closer to λ̄, regardless277

of their mother’s λ. Since cells with growth rates less than λ̄ will live longer before division, these cells persist278

in the population longer than those with larger λ, pushing the average growth rate 〈λ(t)〉 to values smaller than279

λ̄. Fig. 6(c) explicitly shows that when R = 0, the mean growth rate approaches a value smaller than λ̄ = ln 2.280

3.4. Initiation-Adder Model. Recent experiments suggest a new type of adder mechanism for bacterial281

cell size control [23]. Rather than a fixed volume added between birth and division as the primary control282

parameter, new experimental evidence suggests that the control parameter in E. coli is the added volume283

between successive initiations of DNA replication. Initiation occurs when the ori sites in a cell’s genome are284

separated, leading to DNA replication and segregation. The number of ori sites depend on cell type and species,285

typically one in prokaryotic cells and more than one in eukaryotic cells. The initiation-adder model assumes286

that a cell’s volume per initiation site (the ori site in the genome) tends to add a fixed volume between two287

consecutive initiations.288

If the number of ori sites in a cell is q, initiation increases the number to 2q. Immediately after division289

and DNA separation, the number of oris decreases back to q in each daughter cell.290

In this subsection, we generalize the adder PDE model to describe this new initiation-adder mechanism.291

We classify all cells into two subpopulations: cells that have not yet undergone initiation and cells that have292

initiated DNA replication but that have not yet divided. We define n1(x, y, t)dxdy as the expected number of293

10

Fig. 6. Population-level evolution of cellular growth rate. Parameters used are λ̄ = ln 2, σa =
0.2, σr = 0.1, δ = 0. (a)–(b) The marginalized density n̄(λ, t) as a function of growth rate λ for no
correlation (R = 0) and initial growth rate λ = 0.55. The peak in the distribution broadens as the
mean evolves toward the preferred mean value λ̄ = ln 2. (c) The evolution of the mean 〈λ(t)〉 for
different values of correlation R. Note that the steady-state values 〈λ(∞)〉 depend on the correlation
R.

means that the offspring of faster growing cells tend to grow faster and the offspring of
slower growing cells tend to grow slower. Because it takes less time for faster cells to
divide, they will produce more generations of faster-growing cells, leading to a larger
average growth rate defined as

(3.8) 〈λ(t)〉 =

∫∞
0

dx
∫ x

0
dy
∫∞

0
dλ λn(x, y, t, λ)∫∞

0
dx
∫ x

0
dy
∫∞

0
d λn(x, y, t, λ)

.

On the other hand, for a fixed mother growth rate λi, smaller correlations R lead
to mean daughter cell growth rates 〈λi+1〉 that are closer to λ̄. Since cells with growth
rates less than λ̄ will live longer before division, these cells persist in the population
longer than those with larger λ, pushing the average growth rate 〈λ(t)〉 to values
smaller than λ̄. Figure 6(c) explicitly shows that when R = 0, the mean growth rate
approaches a value smaller than λ̄ = ln 2.

3.4. Initiation-Adder model. Recent experiments suggest a new type of adder
mechanism for bacterial cell size control [25]. Rather than a fixed volume added be-
tween birth and division as the primary control parameter, new experimental evidence
suggests that the control parameter in E. coli is the added volume between successive
initiations of DNA replication. Initiation occurs when the ori sites in a cell’s genome
are separated, leading to DNA replication and segregation. The number of ori sites
depend on cell type and species, typically one in prokaryotic cells and more than
one in eukaryotic cells. The initiation-adder model assumes that a cell’s volume per
initiation site (the ori site in the genome) tends to add a fixed volume between two
consecutive initiations. If the number of ori sites in a cell is q, initiation increases the
number to 2q. Immediately after division and DNA separation, the number of oris
decreases back to q in each daughter cell.

In this subsection, we generalize the adder PDE model to describe the initiation-
adder mechanism depicted in Figure 7. We classify all cells into two subpopulations:
cells that have not yet undergone initiation and cells that have initiated DNA replica-
tion but that have not yet divided. We define n1(x, y, t)dxdy as the expected number
of preinitiation cells in with volume in [x, x + dx] and with added volume y < x in
[y, y + dy]. Mean postinitiation cell numbers with volume in [x, x + dx] and added
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+1 2yy
n n1 2

1

y22
y

Fig. 7: Schematic for the initiation adder process. DNA replication is initiated (indicated by the red dot) before
copied DNA is segregated and cell division. In this example, q = 1 and y2 is and added volume per origination
site for two origination sites. The density of cells with q = 1 copy of DNA (before DNA replication initiation) is
denoted n1(x, y, t) while the density of cells post-initiation is denoted n2(x, y, t). The factor that controls y1+y2
in the initiation-adder model is the volume ∆ added between successive initiation events, rather than between
successive cell divisions. Thus, the controlled variable (added volume in this case) spans the pre-initiation and
post-initiation states.

pre-initiation cells in with volume in [x, x+dx] and with added volume y < x in [y, y+dy], Mean post-initiation294

cell numbers with volume in [x, x+dx] and added volume in [y, y+dy] are described by n2(x, y, t)dxdy. In the295

general initiation-adder process, when a pre-initiation cell commences DNA replication (initiates) can depend296

on the volume or added volume. Thus, we describe transitions from a pre-initiation cell transitions into a297

post-initiation cell by the rate ki(x, y, t). After initiation, the number of ori sites doubles and the added volume298

is reset to zero in the newly formed post-initiation cell. In analogy with the differential division rate in 2.1, we299

define β(x, y, t) as the rate of division of post-initiation cells. Under a general asymmetric division event, we300

assume that the added volume is divided proportionally to the volume of the daughter cells, i.e., if the mother301

cell’s volume is x with added volume y since initiation, and if one daughter cell’s volume is z < x and the302

other daughter cell’s volume is x− z, the added volume since division for the first daughter will be set to yz/x303

while the added volume for the second daughter will be y(x− z)/x. The resulting PDE model now involves two304

coupled densities n1 and n2:305

∂n1(x, y, t)

∂t
+

∂[g1n1]

∂x
+

∂[g1n1]

∂y
= −ki(x, y, t)n1 + 2

∫ ∞

x

z

x
n2(z, yz/x, t)β̃(z, x, yz/x, t)dz,306

∂n2(x, y, t)

∂t
+

∂[g2n2]

∂x
+

∂[g2n2]

∂y
= −β(x, y, t)n2,307

n1(x, 0, t) = 0, g2n2(x, 0, t) =

∫ x

0

ki(x, y, t)n1(x, y, t)dy,(3.10)308

β(x, y, t) =

∫ x

0

β̃(x, z, y, t)dz,(3.11)309
310

in which we have allowed for different growth rates in the different cell phases. Both n1 and n2 are defined in the311

domain {R+2 ∩ {y < x}} ×R+. These coupled PDEs are different from the PDE associated with the standard312

“division-adder” described in Eqs. 2.1 and 2.3. Here, the added volume is reset to zero not after division, but313

after initiation.314

In [28], a strong size control acting on initiation initiation was proposed where all cells will have inititated315

DNA replication before reaching some fixed volume xi. This hypothesis can be implemented in our initiation-316

adder model by setting ki(x → xi, y, t) → ∞. The probability that a cell born at time t0 has not yet initiated,317

e
−

∫
t
t0

ki(x(s),y(s),s)ds, always vanishes for all (t0, xt0 , yt0) before some finite time t and x(t) < xi. Thus, n2(x, 0, t)318

is nonzero only in [0, xi] for all t. If there exists a constant τ0 such that lim
τ→τ0

e−
∫ t0+τ
t0

ki(x(s),y(s),s)ds = 0 for all319

t0, then the largest volume that any cell can attain will be eλτ0xi, leading to strict size control and no blowup.320

11

Fig. 7. Schematic for the initiation-adder process. DNA replication is initiated (indicated by
the red dot) before copied DNA is segregated and cells divide. In this example, q = 1 and y2 is an
added volume per origination site for two origination sites. The density of cells with q = 1 copy of
DNA (before DNA replication initiation) is denoted n1(x, y, t) while the density of cells postinitiation
is denoted n2(x, y, t), where y denotes the volume added after initiation. The factor that controls
y1 + y2 in the initiation-adder model is the volume ∆ added between successive initiation events,
rather than between successive cell divisions. Thus, the controlled variable (added volume in this
case) spans the preinitiation and postinitiation states.

volume in [y, y + dy] are described by n2(x, y, t)dxdy. In the general initiation-adder
process, when a preinitiation cell commences DNA replication (initiates) can depend
on the volume or added volume. Thus, we describe transitions from when a preiniti-
ation cell transitions into a postinitiation cell by the rate ki(x, y, t). After initiation,
the number of ori sites doubles and the added volume is reset to zero in the newly
formed postinitiation cell. In analogy with the differential division rate in (2.1), we
define β(x, y, t) as the rate of division of postinitiation cells. Under a general asym-
metric division event, we assume that the added volume is divided proportionally to
the volume of the daughter cells, i.e., if the mother cell’s volume is x with added
volume y since initiation, and if one daughter cell’s volume is z < x and the other
daughter cell’s volume is x− z, the added volume since division for the first daughter
will be set to yz/x while the added volume for the second daughter will be y(x−z)/x.
The resulting PDE model now involves two coupled densities n1 and n2,

(3.9)

∂n1(x, y, t)

∂t
+
∂[g1n1]

∂x
+
∂[g1n1]

∂y
= −ki(x, y, t)n1

+ 2

∫ ∞

x

z

x
n2(z, yz/x, t)β̃(z, x, yz/x, t)dz,

∂n2(x, y, t)

∂t
+
∂[g2n2]

∂x
+
∂[g2n2]

∂y
= −β(x, y, t)n2,

n1(x, 0, t) = 0, g2n2(x, 0, t) =

∫ x

0

ki(x, y, t)n1(x, y, t)dy,

β(x, y, t) =

∫ x

0

β̃(x, z, y, t)dz,

in which we have allowed for different growth rates in the different cell phases. Both
n1 and n2 are defined in the domain {R+2 ∩ {y < x}} × R+. These coupled PDEs
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- - -

- --

Fig. 8: Normalized densities of pre-initiation cell populations n̄1 and post-initiation cell populations n̄2 for at
various fixed times t = 1, 2, 12. Here, we used ki(x) = p(x)/

[
1−

∫ x

0
p(x′)dx′] with p(x) ∼ N (1, 0.1) and the

same β̃(x, y, z, t) as that used in Fig. 3(d-f). (a-c) shows the normalized densities n̄1(x, y, t) ≡ n1(x, y, t)/N(t)
where N(t) =

∫
dy
∫
dx(n1 + n2). (d-f) shows the normalized post-initiation density n̄2(x, y, t). As expected,

post-initiation densities span larger volume and added volumes. The densities are indistinguishable from those
that steady state after about t = 2.

Fig. 8 shows numerical solutions to Eq. 3.11 using the same birth rate function as that used in Fig. 3(d-321

f). Note that due to cell size control affecting the pre-initiation stage, initial daughter cell sizes stay small at322

initiation and n1(x, y, t) is more peaked near y ≈ x.323

If one takes ki sufficiently large, both daughter cells will nearly instantly initiate DNA replication after324

division. We have checked numerically that for constant ki = 103, that the densities n1(x, y, t) are negligible325

while n2(x, y, t) approaches the density of the division adder shown in Fig. 3 (for the same differential division326

functions β̃). Thus, the initiation adder model converges to the standard division adder model when ki → ∞.327

This can be seen from the first of Eqs. 3.11 where n1 can be neglected and is dominated by the two terms328

on the right-hand-side. Substituting ki(x, y, t)n1 ≈ 2
∫∞
x

dz
x n2(z, yz/x, t) into the integral terms in the second329

equation, we find Eq. 2.1 for n2(x, y, t).330

4. Summary and Conclusions. In this paper, we used PDE models to describe population dynamical331

behavior under the adder division mechanism. Under certain conditions, this PDE for the adder mechanism can332

also be converted to the well-known size- and age-structured PDE. In the absence of death, we motivated models333

for the differential birth rate function β̃(x, y, z, t) that are consistent with normalized division probabilities . In334

Appendix A we showed existence and uniqueness of a weak solution to the PDE model within a time interval335

[0, T ] during which the solution’s support can be bounded. One can prove similar results when both time and336

space are unbounded as this problem is related to other first order PDE models that have been studied in more337

detail.338

With a weak solution justified, we explored the “adder-sizer” PDE via numerical experiments and Monte-339

Carlo simulations of the underlying stochastic process. Our results show that event-based Monte-Carlo sim-340

ulations of discrete cells generate realizations of cell configurations that provide accurate samples of the cell341

densities computed from our PDE model.342

12

Fig. 8. Normalized densities of preinitiation cell populations n̄1 and postinitiation cell popu-
lations n̄2 at various fixed times t = 1, 2, 12. Here, we used ki(x) = p(x)/

[
1−

∫ x
0 p(x′)dx′

]
with

p(x) ∼ N (1, 0.1) and the same β̃(x, y, z, t) that used in Figure 3(d)–(f). (a)–(c) shows the normalized
densities n̄1(x, y, t) ≡ n1(x, y, t)/N(t) where N(t) =

∫
dy
∫

dx(n1 + n2). (d)–(f) shows the normal-
ized postinitiation density n̄2(x, y, t). For the ki used in this example, the preinitiation densities
span larger volume and added volumes. The densities are indistinguishable from those at steady
state after about t = 2.

are different from the PDE associated with the standard “division adder” described
in (2.1) and (2.3). Here, the added volume is reset to zero not after division, but after
initiation.

In [30], a strong size control acting on initiation was proposed where all cells will
have inititated DNA replication before reaching some fixed volume xi. This hypothesis
can be implemented in our initiation-adder model by setting ki(x → xi, y, t) → ∞.

The probability that a cell born at time t0 has not yet initiated, e
−

∫ t
t0
ki(x(s),y(s),s)ds

,
always vanishes for all (t0, xt0 , yt0) before some finite time t and x(t) < xi. Thus,
n2(x, 0, t) is nonzero only in [0, xi] for all t. If there exists a constant τ0 such that

limτ→τ0 e
−

∫ t0+τ
t0

ki(x(s),y(s),s)ds = 0 for all t0, then the largest volume that any cell can
attain will be eλτ0xi, leading to strict size control and no blowup.

Figure 8 shows numerical solutions to (3.9) using the same birth rate function
as that used in Figure 3(d)–(f). Note that due to cell size control affecting the
preinitiation stage, initial daughter cell sizes stay small at initiation and n1(x, y, t) is
more peaked near y ≈ x.

If one takes ki sufficiently large, both daughter cells will nearly instantly initiate
DNA replication after division. We have checked numerically that for constant ki =
103, the densities n1(x, y, t) are negligible while n2(x, y, t) approaches the density
of the division adder shown in Figure 3 (for the same differential division functions
β̃). Thus, the initiation-adder model converges to the standard division adder model
when ki → ∞. This can be seen from the first of the equations of (3.9), where
n1 can be neglected and is dominated by the two terms on the RHS. Substituting
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ki(x, y, t)n1 ≈ 2
∫∞
x

dz
x n2(z, yz/x, t) into the integral terms in the second equation,

we find (2.1) for n2(x, y, t).

4. Summary and conclusions. In this paper, we used PDE models to describe
population dynamical behavior under the adder division mechanism. Under certain
conditions, this PDE for the adder mechanism can also be converted to the well-
known size- and age-structured PDE. In the absence of death, we motivated models
for the differential birth rate function β̃(x, y, z, t) that are consistent with normalized
division probabilities. In Appendix A we showed the existence and uniqueness of
a weak solution to the PDE model within a time interval [0, T ] during which the
solution’s support can be bounded. One can prove similar results when both time
and space are unbounded as this problem is related to other first order PDE models
that have been studied in more detail.

With a weak solution justified, we explored the adder-sizer PDE via numerical
experiments and Monte-Carlo simulations of the underlying stochastic process. Our
results show that event-based Monte-Carlo simulations of the discrete process generate
sample configurations. The observed configurations are consistent with samples from
the cell densities numerically computed from our PDE model.

When broader differential division rates are used (when cell division is more asym-
metric), we find, under the same initial conditions, a broader cell density n(x, y, t) and
a broader event density ρD(x, y, T ). We also demonstrate numerically the divergence
of the mean cell size 〈x(t)〉 = M(t)/N(t). We showed that division probabilities that
are broader in age or added size (and smaller in magnitude) are more likely to lead
to mean cell sizes that explode with time.

We then incorporated growth rate correlation between cells of successive gen-
erations [17] into our adder-sizer PDE model. By extending the dimension of the
density function to include growth rates and allowing for variability in growth rate
as new cells are born, we developed a PDE model that incorporates the stochastic
nature of growth rate inheritance and that describes evolution of the growth rate
distribution of cells. We found that the steady-state value of the mean growth rate
depends on the correlation of growth rates between mother and daughter cells. This
dependence arises from a subtle interaction between the shape of the growth rate
distribution and the distribution of variations in the growth rate from one generation
to the next.

Finally, we proposed a coupled partial integro-differential equation (PIDE) to
model two-phase cell population dynamics under a new initiation-adder mechanism
suggested by recent experimental results. In the limit that the initiation rate ki of
DNA replication is significantly faster than all other time scales in the problem, the
numerical solutions of the initiation-adder model (equation (3.9)) converge to those
of the division adder model (equations (2.1) and (2.3)). Under proper assumptions
that come from experimental findings, we found that the initiation adder would also
lead to effective cell size control [30].

There are new cellular processes and size control mechanisms that have been
recently discovered and that can be mathematically modeled. Thus, there are likely
general mathematical topics that remain to be explored within PDE and PIDE models
of structured populations. For example, a recent experimental study indicates that an
adder mechanism may be the result of several consecutive processes in the cell division
cycle, suggesting that a much more complicated coupled system of PDEs/PIDEs
would be required.D
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1322 MINGTAO XIA, CHRIS D. GREENMAN, AND TOM CHOU

Appendix A. Existence and uniqueness of a weak solution for the adder-
sizer model. In this section we show the existence and uniqueness of the solution
to the adder-sizer model PDE. The full problem is defined as

(A.1)





∂n

∂t
+
∂(ng)

∂x
+
∂(ng)

∂y
= −β(x, y, t)n(x, y, t),

g(x, 0, t)n(x, 0, t) = 2

∫ ∞

x

dx′
∫ x′

0

dy β̃(x′, y, x, t)n(x′, y, t),

β(x, y, t) :=

∫ x

0

β̃(x, y, z, t)dz,

β̃(x, y, z′, t) = β̃(x, y, z − z′, t), β̃(x, y, 0, t) = 0, n(x, x, t) = 0,

n(x, y, t = 0) := n0(x, y),

where the independent variables (x, y, t) ∈ R2 ∩ {y < x} × R+.
First, we assume that

(A.2)

0 < gmin ≤ g ∈ C1({(R+)2 ∩ {y ≤ x}} × R+),

n0(x, y) ∈ L1 ∩ L∞ ∩ C1(R+ ∩ {y < x}),
0 ≤ β̃ ∈ L∞ ∩ L1 ∩ C1({(R+)3 ∩ {y < x, z < x}} × R+),

β(x, y, t) ∈ L∞ ∩ L1 ∩ C1({(R+)2 ∩ {y ≤ x}} × R+)

and nondimensionalize the size and added size by ∆, the added size parameter defined
in (2.9). We also impose an additional assumption on g:

(A.3) |g(x, y, t)| < K(t+ x+ 1), K <∞.

We also assume the initial distribution n0(x, y) is compactly supported in (0,Ω) ×
[0,Ω),Ω <∞. From this assumption and (A.3), the closure of n(x, y, T )’s support is
compact for any finite time T since n 6= 0 only when y < x and x(s) ≤ CeKs− (1+T )
from Grönwall’s inequality, where C < 1 + T + Ω is given by the initial condition. At
any finite time T , the support of n(x, y, T ) is bounded and we assume it is contained
in [0,Ω(T ))× [0,Ω(T )). Furthermore, by setting g, β, β̃ = 0 at the given time T when
(x, y) is out of the support of n, we can assume the closure of g, β, β̃’s support to be
compact. One can generalize the definition of the weak solution n to [(R+)2 ∩ {y <
x}]× [0,∞) as in [22].

Definition A.1. Given time T < ∞ and assuming (A.2), for a function n ∈
L1((([0,Ω(T )])2 ∩ {y < x}) × [0, T ]),Ω(T ) < ∞ with n(x, y, t) 6= 0 in [0,Ω(T )) ×
[0,Ω(T )), y < x, t ∈ [0, T ], n is said to satisfy the adder-sizer PDE in the weak sense
in time [0, T ] if
(A.4)

−
∫ T

0

dt

∫ ∞

0

dx

∫ x

0

dy n(x, y, t)

[
∂Ψ

∂t
+ g(x, y, t)

∂Ψ

∂x
+ g(x, y, t)

∂Ψ

∂y
− β(x, y, t)Ψ(x, y, t)

]

=

∫ ∞

0

dx

∫ x

0

dy n0(x, y)Ψ0(x, y) +

∫ T

0

dt

∫ ∞

0

dxΨ(x, 0, t)n(x, 0, t)g(x, 0, t)

holds for all test functions Ψ ∈ C1(([0,Ω(T )])2 ∩ {y ≤ x}) × [0, T ]) satisfying
Ψ(x, y, T ) ≡ 0,Ψ(Ω(T ), y, t) = 0 and Ψ(x, x, t) = 0, where we set g, β̃, β = 0 for
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x ≥ Ω(T ), x ≤ y or x ≤ z. Upon using the boundary condition in (A.1), the right-
hand-side becomes
∫ ∞

0

dx

∫ x

0

dy n0(x, y)Ψ0(x, y) + 2

∫ T

0

dt

∫ ∞

0

dx

∫ x

0

dy

∫ x

0

dzΨ(z, 0, t)β̃(x, y, z, t)n(x, y, t).

Note that if n ∈ C1(((R+)2 ∩ {y < x}) × R+) is a classical solution to the PDE
(equation (A.1)), then it must also satisfy (A.4) in any time interval [0, T ]. We refer
to [22] for a proof of the existence and uniqueness of a weak solution of a related,
simpler renewal equation. However, our adder-sizer PDE is more complicated. The
proof of uniqueness requires very different techniques from the sizer PDE; yet the
proof of existence is similar to the proof in [22].

A.1. Uniqueness. First, we prove the uniqueness of the solution to (A.4). As-
sume there are two weak solutions n(0) and n(1) for the adder-sizer PDE satisfying

(A.4) with the same initial condition n
(0)
0 (x, y) = n

(1)
0 (x, y). Taking the difference

between these purported solutions, we obtain

(A.5)

−
∫ T

0

dt

∫ ∞

0

dx

∫ x

0

dy∆n(x, y, t)

×
[
∂Ψ

∂t
+ g(x, y, t)

∂Ψ

∂x
+ g(x, y, t)

∂Ψ

∂y
− β(x, y, t)Ψ(x, y, t)

]

= 2

∫ T

0

dt

∫ ∞

0

dx

∫ x

0

dy

∫ x

0

dzΨ(z, 0, t)β̃(x, y, z, t)∆n(x, y, t),

where ∆n = n(1) − n(0).

A.1.1. Adjoint problem. We consider the adjoint problem for Ψ in the given
time interval [0, T ] and with a source term S(x, y, t):

(A.6)

∂Ψ

∂t
+ g(x, y, t)

∂Ψ

∂x
+ g(x, y, t)

∂Ψ

∂y
− β(x, y, t)Ψ(x, y, t)

= −2

∫ x

0

Ψ(z, 0, t)β̃(x, y, z, t)dz − S(x, y, t), 0 ≤ y < x

Ψ(x, y, T ) = 0, Ψ(Ω(T ), y, t) = 0, Ψ(x, x, t) = 0.

Theorem A.2. Assume (A.2), and S ∈ C1([0,Ω(T )]2× [0, T ]), S(Ω(T ), y, t) = 0,
and S = 0 when x ≤ y. Then there exists a unique C1 solution to the adjoint problem.

Proof. We can transform the above equation into an ODE along the characteristic
line and use contraction mapping, which is a standard practice in functional analysis
to prove the existence and uniqueness of the solution to a PDE problem. On the LHS
of (A.6), we apply the characteristic line method. Setting X(c, t) = (x(c, t), y(c, t))
on the characteristic lines leads to





∂X(c, s)

∂s
= (g(x, y, s), g(x, y, s)), t ≤ s ≤ T,

X(c, t) = (xt, yt), 0 ≤ yt < xt, xt − yt = c.

Since we have x(s)− y(s) = xt − yt, the above equation can be simplified to

∂X(c, s)

∂s
= g̃(X(c, s), s), x(c, t) = xt, y(c, t) = xt − c,
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1324 MINGTAO XIA, CHRIS D. GREENMAN, AND TOM CHOU

where g̃(X(c, s), s) = (g(x(c, s), x(c, s)− c, s), g(x(c, s), x(c, s)− c, s)). Once c is fixed
and xt is given, the above equation becomes an ODE. Given xt, we define





Ψ̃(c, s) := Ψ(X(c, s), s)e−
∫ s
t
β(X(c,v),v)dv,

U(c, z, s) := 2β̃(X(c, s), z, s)e−
∫ s
t
β(X(c,v),v)dv,

S̃(c, s) := S(X(c, s), s)e−
∫ s
t
β(X(c,v),v)dv.

Thus, along the characteristic line we can write (A.6) as

(A.7)
∂

∂s
Ψ̃(c, s) = −

∫ x(c,s)

0

Ψ(z, 0, s)U(c, z, s)dz − S̃(c, s).

Since Ψ̃(c, T ) = 0 and Ψ̃(c, t) = Ψ(xt, xt − c, t),
(A.8)

Ψ(xt, xt − c, t) =

∫ T

t

S̃(c, s)ds+

∫ T

t

ds

∫ x(c,s)

0

dzΨ(z, 0, s)U(c, z, s), 0 < c ≤ xt.

We can see that if x ≤ y or xt ≥ Ω(T ), Ψ(t, xt, xt − c) = Ψ(t, x, x) = 0 since
U, S̃ = 0 for c ≤ 0 or xt > Ω(T ). Using c = xt, (A.8) becomes

(A.9) Ψ(xt, 0, t) =

∫ T

t

S̃(xt, s)ds+

∫ T

t

ds

∫ x(xt,s)

0

dzΨ(z, 0, s)U(xt, z, s).

From condition (A.3) we obtain x(s) ≤ (xt + 1 + T )eK(s−t) − (1 + T ). From con-
dition (A.3), we define B̃ = 2‖β̃‖∞ < ∞. Next, we choose s = max{T − 1

K ln(1 +
1

2B̃(1+T )
), T − 1

K ln 2, T − 1} such that eK(T−t) ≤ 1 + 1
2B̃(1+T )

, s ≤ t ≤ T , and choose

xs small enough such that xs < min{1, 1
8B̃(T−s)}. We denote a mapping T defined on

the functional space as

T (Ψ)(xt, 0, t)

=

∫ T

t

S̃(xt, s)ds+

∫ T

t

ds

∫ x(s,xt)

0

dzΨ(z, 0, s)U(xt, z, s), t ∈ [s, T ], xt ∈ [0, xs].

It is easy to verify that T is a contraction mapping for Ψ(xt, 0, t) and thus there exists
a unique solution Ψ0 satisfying (A.6) in D0 defined as D0 = {(x, t)|s ≤ t ≤ T, 0 ≤ x ≤
x(xs, t)}. We then let x1

s > xs and define D1 = {(x, t)|s ≤ t ≤ T, 0 ≤ x ≤ x(x1
s, t)}

such that the difference of the area between regions D1 and D0 is less than B̃−1.
Next, define a second mapping T1 by





T1(Ψ)(xt, 0, t) =

∫ T

t

ds

∫ x(xt,s)

x(xs,s)

dzΨ(z, 0, s)U(xt, z, s) + I(xs, t),

t ∈ [s, T ], xt ∈ [x(t, xs), x
1
s],

I(xs, t) =

∫ T

t

ds S̃(xt, s) +

∫ T

t

ds

∫ x(xs,s)

0

dz Ψ0(z, 0, s)U(xt, z, s).
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T1 is also a contraction mapping and we can obtain a Ψ1 on D1 such that T (Ψ1) = Ψ1.
Denote

(A.10) Ψ(x, 0, t) =

{
Ψ0(x, 0, t), (x, t) ∈ D0,

Ψ1(x, 0, t), (x, t) ∈ D1,

and it is easy to verify that Ψ is C1 continuous on D0 ∩ D1 by first proving it is
continuous and then taking the partial derivatives, and Ψ satisfy (A.6) in the region
D0 ∪D1.

Following the same procedure, we can extend Ψ to satisfy (A.6) in the region
t ∈ [s, T ]. Then, for [0, s], we choose an s̃ close enough to s and use the same strategy
by defining T2 as
(A.11)



T2(Ψ)(xt, 0, t)

=

∫ s

t

dr S̃(xt, r) +

∫ s

t

dr

∫ x(xt,r)

0

dzΨ(z, 0, r)U(xt, z, r) + Ĩ(xs, t), t ∈ [s̃, s],

Ĩ(t, xs) =

∫ T

s

dr S̃(xt, r) +

∫ T

s

dr

∫ x(xt,r)

0

dzΨ(z, 0, r)U(xt, z, r).

We finally obtain a unique function Ψ satisfying (A.6) in [0, T ]× [0,∞).
From (A.8), the value of Ψ is determined by S̃,Ψ(x, 0, t), U and we conclude that

there exists a unique C1 solution for (A.6).

A.1.2. Uniqueness of weak solution for the adder-sizer model. From
Section A.1.1 we obtain the existence and uniqueness of Ψ of the adjoint problem.
Given any time T and S(x, y, t) ∈ C1(R+×(R+)2) satisfying the condition in Theorem
A.1, since we can set g, β, β̃’s support to be compact in [0, T ], we can find a unique
C1 continuous Ψ satisfying (A.6). By substituting (A.6) into (A.5), we obtain

(A.12)

∫ T

0

dt

∫ Ω(T )

0

dx

∫ x

0

dy∆n(x, y, t)S(x, y, t) = 0

for any S(x, y, t) ∈ C1(R+ × (R+)2) satisfying S(x ≤ y, t) = S(x ≥ Ω(T ), y, t) = 0,
which implies n ≡ 0 a.e. in y < x ≤ Ω(T ). So at any given time T the weak solution,
if it exists, is unique.

One can also set the condition for β̃, g weaker even when we define the weak
solution in unbounded region [0,∞)× (R+)2 ∩ {y < x}. In [22] such work is done for
the renewal equation. We do not discuss this generalization in detail here.

A.2. Existence of the weak solution. We construct a series of functions {ni}
with a limit n for this series satisfying (A.6) for all test functions Ψ. We use a
semidiscrete approximation to discretize the PDE and obtain piecewise solutions. As
the mesh size becomes smaller, we expect the piecewise solution to converge to a
function n satisfying (A.4). The idea of constructing a series of piecewise constant
solutions and proving their convergence to a weak solution is similar to that in [22].
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A.2.1. Semidiscrete approximation for PDE. We choose a uniform grid
with mesh size h > 0 fixed in both x and y axis. We denote
(A.13)

(xi, yj) = (ih, jh), (xi+ 1
2
, yj+ 1

2
) =

((
i+

1

2

)
h,
(
j +

1

2

)
h
)
, j < i ∈ N,

βi+ 1
2 ,j+

1
2
(t) =

1

h2

∫ (i+1)h

ih

dy

∫ (j+1)h

jh

dxβ(x, y, t), j < i ∈ N,

β̃i+ 1
2 ,j+

1
2

((
s+

1

2

)
h, t
)

=
1

h3

∫ (i+1)h

ih

dz

∫ (j+1)h

jh

dy

∫ (s+1)h

sh

dx β̃(x, y, z, t), s ≤ i,

gi,j(t) = g(ih, jh, t), j < i ∈ 1

2
N.

Here, βi+ 1
2 ,j+

1
2
(t) = h

∑i
s=0 β̃i+ 1

2 ,j+
1
2
((s + 1

2 )h, t). Given a fixed time T , we

wish to find a pointwise solution function nh(t), which takes values on the grid points
(xi+ 1

2
, yj+ 1

2
). According to our assumption there exists Ω such that the initial value n0

is nonzero within the region {(x, y)|y < x, x < Ω}, and from our previous calculation
there exists Ω(T ) < ∞ such that n is nonzero within the region {(x, y)|y < x, x <
Ω(T )}. Eventually, we will set h(k) = Ω(T )/k and let the mesh size h→ 0 by letting
k →∞.

By discretizing (A.1), we expect the pointwise function nh(t) to satisfy the below
equations for t ∈ [0, T ] and 0 < j < i < L (L is the number of discretization grid
points along one direction):
(A.14)

h2
dni+ 1

2 ,j+
1
2
(t)

dt
+ h(gi+1,j+ 1

2
(t)ni+ 1

2 ,j+
1
2
(t)− gi,j+ 1

2
(t)ni− 1

2 ,j+
1
2
(t))

+ h(gi+ 1
2 ,j+1(t)ni+ 1

2 ,j+
1
2
(t)− gi+ 1

2 ,j
(t)ni+ 1

2 ,j− 1
2
(t))

+ h2βi+ 1
2 ,j+

1
2
(t)ni+ 1

2 ,j+
1
2
(t) = 0, 0 ≤ j < i− 1

h2
dni+ 1

2 ,j+
1
2
(t)

dt
+ hgi+1,j+ 1

2
(t)ni+ 1

2 ,j+
1
2
(t)

− hgi+ 1
2 ,j

(t)ni+ 1
2 ,j− 1

2
(t) + h2βi+ 1

2 ,j+
1
2
(t)ni+ 1

2 ,j+
1
2
(t) = 0, 0 ≤ j = i− 1

gi+ 1
2 ,0

(t)ni+ 1
2 ,− 1

2
(t) = 2h2

L−1∑

`=i

`−1∑

j=0

β̃`+ 1
2 ,j+

1
2
((i+

1

2
)h, t)n`+ 1

2 ,j+
1
2
(t),

ni+ 1
2 ,j+

1
2
(0) =

1

h2

∫ xi+1

xi

dy

∫ yj+1

yj

dxn0(x, y), ni+ 1
2 ,i+

1
2
(t) = 0,

where we henceforth omit the h superscript in the proof. In the two-dimensional
upwind scheme, derivatives in one direction are neglected on neighboring sites in the
other direction: ni,j± 1

2
= ni− 1

2 ,j± 1
2
, ni± 1

2 ,j
= ni± 1

2 ,j− 1
2
. The boundary condition

n(x, x, t) = 0 is implemented by ni+ 1
2 ,i+

1
2
(t) = 0 for any t and i.

We will obtain a uniform bound irrelevant of h for n. All coefficients in the above
ODE equations are C1 continuous, which means that there exists a unique solution
in time [0, T ], T <∞.

D
ow

nl
oa

de
d 

06
/1

0/
20

 to
 1

49
.1

42
.1

03
.8

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PDE MODELS OF ADDER MECHANISMS 1327

Theorem A.3. For t ∈ [0, T ] and assuming (A.2) holds, we find the bound

(A.15)

L−1∑

i=1

i∑

j=0

|ni+ 1
2 ,j+

1
2
(t)| ≤ eMt

L−1∑

i=1

i∑

j=0

|ni+ 1
2 ,j+

1
2
(0)|,

where B̃ = 2‖β̃‖∞,M = 2B − b, B = ‖β‖∞, and b = mint mini,j βi+ 1
2 ,j+

1
2
(t). The

L∞ bound is given by ‖nh(t)‖∞ ≤ max{ 1
gmin

B̃eMT ‖n(0)‖1, ‖nh(0)‖∞}e2g̃′t, where g̃′

is the L∞ bound of ∂g/∂x, ∂g/∂y.

Proof. For the summation of n over all grid points, we multiply the first equation
in (A.14) by sign(ni+ 1

2 ,j+
1
2
) for each i, j ≤ i,

(A.16)

h2 d

dt
|ni+ 1

2 ,j+
1
2
(t)|+ hgi+1,j+ 1

2
(t)|ni+ 1

2 ,j+
1
2
(t)|

+ hgi+ 1
2 ,j+1(t)|ni+ 1

2 ,j+
1
2
(t)|+ h2βi+ 1

2 ,j+
1
2
(t)|ni+ 1

2 ,j+
1
2
(t)|

≤ hgi,j+ 1
2
(t)|ni− 1

2 ,j+
1
2
(t)|+ hgi+ 1

2 ,j
(t)|ni+ 1

2 ,j− 1
2
(t)|.

By multiplying the second equation in (A.14) by sign(ni+ 1
2 ,j+

1
2
) for each i, j ≤ i pair

and summing over index
∑L−1
i=1

∑i−1
j=0,

h2
L−1∑

i=1

i−1∑

j=0

|ni+ 1
2 ,j+

1
2
(t)|+ h

i−1∑

j=0

gL,j+ 1
2
(t)|nL−1+ 1

2 ,j+
1
2
(t)|

+ h2
L−1∑

i=1

i−1∑

j=0

βi+ 1
2 ,j+

1
2
(t)|ni+ 1

2 ,j+
1
2
(t)| ≤ h

L−1∑

i=0

gi+ 1
2 ,0

(t)|ni+ 1
2 ,− 1

2
(t)|.

We can simplify the above expression to

h2 d

dt

L−1∑

i=1

i−1∑

j=0

|ni+ 1
2 ,j+

1
2
(t)| + h2

L−1∑

i=1

i−1∑

j=0

βi+ 1
2 ,j+

1
2
|ni+ 1

2 ,j+
1
2
(t)|

≤ 2h3
L−1∑

i=0

∣∣
L−1∑

`=i

`−1∑

j=0

β̃`+ 1
2 ,j+

1
2
((i+ 1/2)h, t)n`+ 1

2 ,j+
1
2
(t)
∣∣

≤ 2h2
L−1∑

`=1

`−1∑

j=0

|β`+ 1
2 ,j+

1
2
(t)||n`+ 1

2 ,j+
1
2
(t)|.

We then have

d

dt

L−1∑

i=1

i−1∑

j=0

|ni+ 1
2 ,j+

1
2
(t)| ≤ (2B − b)

L−1∑

i=1

i−1∑

j=0

|ni+ 1
2 ,j+

1
2
(t)|,

which yields

(A.17)

L−1∑

i=1

i−1∑

j=0

|ni+ 1
2 ,j+

1
2
(t)| ≤ eMt

L−1∑

i=1

i−1∑

j=0

|ni+ 1
2 ,j+

1
2
(0)|.

(A.17) states that the l1 norms of all the values on the grid points are uniformly
bounded and independent of h. Next, we estimate the L∞ bound of nh. First, we
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1328 MINGTAO XIA, CHRIS D. GREENMAN, AND TOM CHOU

consider j = 0 and assume S(t) = max1≤i≤L−1 |ni+ 1
2 ,

1
2
(t)|e−g̃′t for t ∈ [0, T ]. For the

maximum value of S at some index i, we find

h2
d|ni+ 1

2 ,
1
2
(t)|

dt
+ h(gi+1, 12

(t)|ni+ 1
2 ,

1
2
(t)| − gi, 12 (t)|ni− 1

2 ,
1
2
(t)|)

+ h(gi+ 1
2 ,1

(t)|ni+ 1
2 ,

1
2
(t)| − gi+ 1

2 ,0
(t)|ni+ 1

2 ,− 1
2
(t)|) ≤ 0,

h2
d|ni+ 1

2 ,
1
2
(t)|

dt
+ hgi+1, 12

(t)|ni+ 1
2 ,

1
2
(t)| − gi+ 1

2 ,0
(t)|ni+ 1

2 ,− 1
2
(t)| ≤ 0, i = 1,

and

d(|ni+ 1
2 ,

1
2
(t)|e−g̃′t)

dt
+ h−1gi+ 1

2 ,1
(t)|ni+ 1

2 ,
1
2
(t)|e−g̃′t ≤ h−1gi+ 1

2 ,0
(t)|ni+ 1

2 ,− 1
2
(t)|e−g̃′t.

By the assumption that g(x, y, t) ≥ gmin(t) ≥ gmin > 0 and g < K(T + 1 + Ω(T )), we
have

d(|ni+ 1
2 ,

1
2
(t)|e−g̃′t)

dt
+ h−1gmin(t)|ni+ 1

2 ,
1
2
(t)|e−g̃′t(A.18)

≤ h−1

(
gmin(t)

gmin

)
max

1≤i≤L−1
|gi+ 1

2 ,0
(t)ni+ 1

2 ,− 1
2
(t)|.

Finally, defining G(t) = h−1
∫ t

0
gmin(s)ds yields

d(|ni+ 1
2 ,

1
2
(t)|e−g̃′teG(t))

dt
≤ 1

h

(
gmin(t)

gmin

)
max

1≤i≤L−1
|gi+ 1

2 ,0
(t)ni+ 1

2 ,− 1
2
(t)|eG(t).

From the L1 bound, we can deduce

max
t

max
1≤i≤L−1

|gi+ 1
2
(t)ni+ 1

2 ,− 1
2
(t)| ≤ h2B̃eMT ‖nh(0)‖1 ≤ B̃eMT ‖n(0)‖1, t > 0,

and conclude that for the function S(t)eG(t)

(A.19) S(t)eG(t) ≤ S(0) +
1

gmin
B̃eMT ‖n(0)‖1(eG(t) − 1),

and S(t) ≤ max1≤i≤L−1{ni+ 1
2 ,

1
2
(0), 1

gmin
B̃eMT ‖n(0)‖1}, which then gives the L∞

bound for the pointwise solution nh when j = 0.

Now, we estimate |ni+ 1
2 ,j+

1
2
(t)| by first defining

P (t) ≡ max
0≤i≤L−1,0≤j≤i−1

{|ni+ 1
2 ,j+

1
2
(t)|e−2g̃′t}.

At a fixed time t, specific values of i and j define P (t). If the maximum occurs at
j = 0, P (t) = S(t)e−g̃

′t. If the maximum occurs at i− 1 > j > 0, we have

h
d

dt
(|ni+ 1

2 ,j+
1
2
(t)|e−2g̃′t)(A.20)

= −
[
gi,j+ 1

2
(t)|ni+ 1

2 ,j+
1
2
(t)| − gi+1,j+ 1

2
(t)|ni+ 1

2 ,j+
1
2
(t)|+ gi+ 1

2 ,j
(t)|ni+ 1

2 ,j+
1
2
(t)|

− gi+ 1
2 ,j+1(t)|ni+ 1

2 ,j+
1
2
(t)|+ 2hg̃′|ni+ 1

2 ,j+
1
2
(t)|
]
e−2g̃′t ≤ 0,
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while if the maximum occurs at j = i− 1 > 0, we have

d

dt
(|ni+ 1

2 ,j+
1
2
(t)|e−2g̃′t)(A.21)

≤
[
h−1

(
gi+ 1

2 ,j
(t)− gi+1,j+ 1

2
(t)
)
|ni+ 1

2 ,
1
2
(t)| − 2g̃′|ni+ 1

2 ,j+
1
2
(t)|
]
e−2g̃′t ≤ 0.

In (A.21) and (A.22), i, j are the maximizing indices that define P (t).
For any t ∈ (0, T ] we can find a minimum t̃ < t such that P (v) > S(v)e−g̃

′v for v ∈
(t̃, t]. If t̃ = 0, and since P (t) is nonincreasing from (A.22), P (t) ≤ P (0) = ‖nh(0)‖∞.
If t > t̃ > 0, P (t) ≤ P (t̃) ≤ S(t̃) ≤ max0≤t≤T S(t), while if t̃ = t, P (t) = S(t) ≤
max0≤t≤T S(t). Thus, P (t) = ‖nh(t)‖∞e−2g̃′t ≤ max{max0≤t≤T {S(t)}, ‖nh(0)‖∞}
and

(A.22) ‖nh(t)‖∞ ≤ max
{

max
0≤t≤T

{S(t)}, ‖nh(0)‖∞
}
e2g̃′t,

giving the second conclusion in Theorem A.2 that the L∞ bound is uniform and
independent of h.

A.2.2. Existence of the weak solution. For a given time T <∞, we can take
the grid size h(k) = Ω(T )/k → 0 by letting the integer k → ∞. Spatially piecewise
constant functions can then be defined based on the sequence of vector functions
{nh(k)}. By setting nh

i+ 1
2 ,i+

1
2

(t) = 0, we define nh(x, y, t), βh, and β̃h as

nh(x, y, t) =

k−1∑

i=0

i−1∑

j=0

nhi+ 1
2 ,j+

1
2
(t)1(ih ≤ x < (i+ 1)h, jh ≤ y < (j + 1)h),

βh(x, y, t) =

k−1∑

i=0

i∑

j=0

βi+ 1
2 ,j+

1
2
(t)1(ih ≤ x < (i+ 1)h, jh ≤ y < (j + 1)h),

β̃h(x, y, z, t) =

k−1∑

i=0

i−1∑

j=0

i−1∑

`=0

β̃i+ 1
2 ,j+

1
2

((
`+

1

2

)
h, t
)
1(ih ≤ x < (i+ 1)h, jh

≤ y < (j + 1)h, `h ≤ z < (`+ 1)h),

nh(x, 0, t) = nhi+ 1
2 ,− 1

2
(t), ih ≤ x < (i+ 1)h,

where above, h = h(k) and 1 is the indicator function. Since there is an upper bound
for both β and β̃, and both β, β̃ are continuous, we have the following result:

lim
k→∞

βh(k)(x, y, t)→β(x, y, t) a.e. 0 ≤ βh(k) ≤ ‖β‖∞ <∞,

lim
k→∞

β̃h(k)(x, y, z, t)→β(x, y, z, t) a.e. 0 ≤ β̃h(k) ≤ ‖β̃‖∞ <∞,

lim
k→∞

nh(k)(x, y, 0)→n(x, y, 0) a.e.

Then, we can apply Theorem A.2 to the piecewise constant solutions nh(k) of (A.14).

Corollary A.4. Under the conditions of Theorem A.2, for any t ∈ [0, T ] and
any h,

(A.23)

∫ Ω(T )

0

dy

∫ Ω(T )

0

dx |nh(x, y, t)| ≤ eMt

∫ Ω(0)

0

dy

∫ Ω(0)

0

dx |nh(x, y, 0)|
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and

(A.24) ‖nh(t)‖∞ ≤ max{|n(0)|∞, BeMT |n(0)|1}e2g̃′t,

where B,M, g̃′ are defined in Theorem A.2. The proof is the direct consequence of
Theorem A.2.

The sequence of piecewise constant functions {nh(k)} is uniformly bounded and
nh(k) ∈ L1 ∩ L∞([0,Ω(T )]2 ∩ {y < x} × [0, T )), so nh(k) are all L2 functions. There
exists a function n ∈ L2([0,Ω(T )]2∩{y < x}× [0, T )) and a subsequence ki →∞ that
satisfies nh(ki) ⇀ n. Since L2([0,Ω(T )]2 ∩ {y < x} × [0, T )) implies L1 integrability,
we can deduce that n is an L1 function as desired.

To prove nh(ki) ⇀ n, we need only to verify that there exists a subsequence nh(ki)

such that for all test functions

f ∈ L2,

∫ T

0

dt

∫ Ω(T )

0

dx

∫ x

0

dy nh(ki)f →
∫ T

0

dt

∫ Ω(T )

0

dx

∫ x

0

dy nf.

Since L2 space is separable, we have a countable set of basis function {bi(x, y, t)} for
the space L2([0,Ω(T )]2 ∩ {y < x} × [0, T )). Thus, every nh(k) can be decomposed
as nh(k) =

∑∞
i=1 α

k
i bi. The sequence {nh(k)} is uniformly L∞ bounded, so

∑
α2
k

are all uniformly bounded. We can then select a subsequence {nh(ki)} from {nh(k)}
satisfying limi→∞ αkij = αj so that

∑∞
i=1 α

2
j < ∞. If we set n =

∑∞
i=1 αibi, then, by

decomposing any test function Ψ ∈ L2([0,Ω(T )]2∩{y < x}×[0, T )) by Ψ =
∑∞
i=1 γibi,

we have

(A.25) lim
i→∞

∣∣∣∣
∫ T

0

dt

∫ Ω(T )

0

dx

∫ x

0

dy
(
nh(ki) − n

)
Ψ

∣∣∣∣ =

∣∣∣∣
∞∑

s=1

(αkis − αs)γs
∣∣∣∣ = 0,

which gives the result nh(ki) ⇀ n.
We can show that n is a weak solution by multiplying the first two equations

of (A.14) by a test function Ψ ∈ C1([0,Ω(T )]2 × [0, T )), Ψ(x, y, T ) = 0,Ψ(x, y, t) =
0, y ≥ x for which

Ψi+ 1
2 ,j+

1
2
(t) ≡ 1

h2

∫ xi+1

xi

dx

∫ yj+1

yj

dyΨ(x, y, t), j ≤ i.

For a given L ∈ N+ and h = Ω(T )
L ,

∫ T

0

dt

L−1∑

i=1

i−1∑

j=0

(
h2

dnh
i+ 1

2 ,j+
1
2

(t)

dt
Ψi+ 1

2 ,j+
1
2
(t)

+ h
[
gi+1,j+ 1

2
(t)nhi+ 1

2 ,j+
1
2
(t)− gi,j+ 1

2
(t)nhi− 1

2 ,j+
1
2

]
Ψi+ 1

2 ,j+
1
2
(t)

+ h[gi+ 1
2 ,j+1(t)nhi+ 1

2 ,j+
1
2
(t)− gi+ 1

2 ,j
(t)nhi+ 1

2 ,j− 1
2
]Ψi+ 1

2 ,j+
1
2
(t)

+ h2βi+ 1
2 ,j+

1
2
(t)nhi+ 1

2 ,j+
1
2
Ψi+ 1

2 ,j+
1
2
(t)

)

=

∫ T

0

dt

L−1∑

i=1

hgi+ 1
2 ,i

(t)nhi+ 1
2 ,i− 1

2
(t)Ψi+ 1

2 ,i− 1
2
(t), nhi+ 1

2 ,i+
1
2

= 0.
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Integrating the above equation by parts with respect to time, we find
(A.26)
∫ T

0

dt

[ L−1∑

i=1

i−1∑

j=0

h2nhi+ 1
2 ,j+

1
2
(t)

dΨi+ 1
2 ,j+

1
2
(t)

dt

+ h

L−2∑

i=1

i−1∑

j=0

gi+1,j+ 1
2
(t)nhi+ 1

2 ,j+
1
2
(t)(Ψi+ 3

2 ,j+
1
2
(t)−Ψi+ 1

2 ,j+
1
2
(t))

+ h

L−1∑

i=1

i−2∑

j=0

gi+ 1
2 ,j+1(t)nhi+ 1

2 ,j+
1
2
(t)(Ψi+ 1

2 ,j+
3
2
(t)−Ψi+ 1

2 ,j+
1
2
(t))

]

= −h2
L−1∑

i=0

i−1∑

j=0

nhi+ 1
2 ,j+

1
2
(0)Ψi+ 1

2 ,j+
1
2
(0)− h

∫ T

0

dt

L−1∑

i=1

gi+ 1
2 ,0

(t)nhi+ 1
2 ,− 1

2
(t)Ψi+ 1

2 ,
1
2
(t)

−
∫ T

0

dt
L−1∑

i=1

hgi+ 1
2 ,i

(t)nhi+ 1
2 ,i− 1

2
(t)Ψi+ 1

2 ,i− 1
2
(t)

+ h

∫ T

0

dt

[ L−2∑

j=0

gL,j+ 1
2
(t)nhL− 1

2 ,j+
1
2
(t)ΨL− 1

2 ,j+
1
2
(t)

+

L−1∑

i=1

i−1∑

j=0

hβi+ 1
2 ,j+

1
2
(t)nhi+ 1

2 ,j+
1
2
(t)Ψi+ 1

2 ,j+
1
2
(t)

]
.

Since Ψi+ 3
2 ,j+

1
2
(t)−Ψi+ 1

2 ,j+
1
2
(t) =

∫ (i+1)h

ih
dx
∫ (j+1)h

jh
dy
∫ x+h

x
ds ∂Ψ

∂s (s, y, t), |nh| is uni-

formly bounded while g is C1 continuous. From above we can pick a subsequence in
{nh(k)}, denoted by nh(ki) ⇀ n. We use nh = nh(ki) in the above formula. Since
Ψ ∈ C1[0, T ]× [0,Ω(T )]2, given any Ψ we have a positive upper bound R(Ψ) <∞ for
Ψ and any of its first derivatives. Thus,

∣∣∣∣∣

∫ T

0

dt

L−1∑

i=1

i−1∑

j=0

(
h2n

h(ki)

i+ 1
2 ,j+

1
2

(t)
dΨi+ 1

2 ,j+
1
2
(t)

dt

)

−
∫ T

0

dt

∫ Ω(T )

0

dx

∫ x

0

dy nh(ki)(x, y, t)
∂Ψ(x, y, t)

∂t

∣∣∣∣

≤
∫ T

0

dt

L−1∑

i=0

∫ (i+1)h

ih

dx

∫ x

ih

dy

∣∣∣∣nh(ki)(x, y, t)
∂Ψ(x, y, t)

∂t

∣∣∣∣∣.

As h→ 0, |
∫ T

0
dt
∑L−1
i=0

∫ (i+1)h

ih
dx
∫ x
ih

dy nh(ki)(x, y, t)∂Ψ(x,y,t)
∂t | → 0 since ∂Ψ

∂t and nh(ki)

are all bounded. Moreover,
∫ T

0

dt

∫ Ω(T )

0

dx

∫ x

0

dy h2nh(ki)(x, y, t)
∂Ψ(x, y, t)

∂t
(A.27)

→
∫ T

0

dt

∫ Ω(T )

0

dx

∫ x

0

dy h2n(x, y, t)
∂Ψ(x, y, t)

∂t

so that the first term in (A.26) tends to the limit in (A.28). By the same procedure
and using the condition that g is uniformly continuous in [0, T ]× [0,Ω(t)]2(g is C1),
it is easy to verify that the second and third terms on the LHS of (A.26) tend to∫ T

0
dt
∫ Ω(T )

0
dx
∫ x

0
dy (gn)(x, y, t)∂Ψ

∂x and
∫ T

0
dt
∫ Ω(T )

0
dx
∫ x

0
dy (gn)(x, y, t)∂Ψ

∂y , respectively.
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It is also easy to verify that the first and second terms on the RHS of (A.26) tend to

−
∫ T

0
dt
∫ Ω(T )

0
dx
∫ x

0
dy n(x, y, 0)Ψ(x, y, 0) and

−2

∫ T

0

dt

∫ ∞

0

dx

∫ x

0

dy

∫ x

0

dzΨ(z, 0, t)β̃(x, y, z, t)n(x, y, t),

respectively. The third term on the RHS of (A.26)

h

∫ T

0

dt

L−1∑

i=1

gi+ 1
2 ,i

(t)nhi+ 1
2 ,i− 1

2
(t)Ψi+ 1

2 ,i− 1
2
(t)

tends to 0 since Ψ is C1 continuous and is 0 on the boundary x = y. Since Ψ is
continuous and is 0 at x = Ω(T ),

h

∫ T

0

L−2∑

j=0

gL,j+ 1
2
(t)nhL− 1

2 ,j+
1
2
(t)ΨL− 1

2 ,j+
1
2
(t)dt→ 0 as h→ 0.

Finally, the last term on the RHS of (A.26)

∫ T

0

L−1∑

i=1

i−1∑

j=0

h2βi+ 1
2 ,j+

1
2
(t)nhi+ 1

2 ,j+
1
2
(t)Ψi+ 1

2 ,j+
1
2
(t)dt

→
∫ T

0

dt

∫ Ω(T )

0

dx

∫ x

0

dy β(x, y, t)n(x, y, t)Ψ(x, y, t).

By passing to the limit h→ 0, we conclude that n exactly satisfies the condition
of a weak solution in (A.4). Since the numerical solution obtained by the scheme in
Appendix B is a discretization in time for the ODE system (A.14) it is an approx-
imation to the solution of (A.14). Provided h,∆t → 0 satisfies the CFL condition
2‖g‖∞∆t < h, and we conclude that at least a subsequence of the numerical solutions
converge to the unique weak solution of (A.1). Furthermore, recently, the existence to
an eigenpair of the adder-sizer PDE (A.1) under specific smooth conditions satisfied
by the coefficients g, β, β̃ has been proved in [10], allowing for studying asymptotic
behavior of the solution.

Appendix B. Numerical scheme. We denote

u(t) = {n1(t),n2(t), . . . ,nL−1(t)}T,

where nj(t) = {n 1
2 ,j− 1

2
, n1+ 1

2 ,j− 1
2
, . . . , nL− 1

2 ,j− 1
2
} and ni≤j = 0. Equations (2.17) and

(2.18) can then be written in the form u(t+ ∆t) = A(t)u(t), where

(B.1) A(t) =




B1 + C1 C2 C3 C4 · · · CL−2 CL−1

D2 B2 0 0 · · · 0 0
0 D3 B3 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · BL−2 0
0 0 0 0 · · · DL−1 BL−1
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is made up of the following L− 1 L× L matrices:

Bi =




0 (i× i) 0 (i× (L− i))

0 ((L− i)× i) bi



,

Ci =




0 (1× i) 0 (1× (L− i))

0 ((L− 1)× i) ci



,

and Di =




0 (i× i) 0 (i× (L− i))

0 ((L− i)× i) di



,

in which bi is a lower bidiagonal matrix with diagonal
(B.2)

diag(bi) = 1− 1

h
gj+1,i− 1

2
(t)dt− 1

h
gj+ 1

2 ,i
(t)dt−βj+ 1

2 ,i− 1
2
(t)dt, j = i, i+1, . . . , L−1,

and lower off diagonal (bi)−1 = gj,i− 1
2
(t)dt

h , j = i+ 1, . . . , L− 1,

(B.3) (ci)sj =

{
β̃i− 1

2 +j,i− 1
2
((s+ 1

2 )h, t)dt, i+ j − s− 1 > 0, i+ j ≤ L,
0 otherwise,

and di is a diagonal matrix diag(di) = gj+ 1
2 ,i−1(t)dt

h , j = i, i+ 1, . . . , L− 1.

Appendix C. Monte-Carlo simulations. In this section we describe the im-
plementation of our Monte-Carlo simulations of the process underlying the adder-
sizer mechanism. Suppose we have a list of cells at time t denoted by S(t) =
{c1(xi, yi, t, b1), . . . , ci(xi, yi, t, bi)}, where xi is cell ci’s volume and yi is its added
volume. The cell’s division factor bi is determined at birth, which is drawn from a
uniform distribution U(0, 1).

Suppose we have a β of the form 2.10 and β̃ of the form 2.12. We set the maximum
allowable time step to ∆t = 0.01 and determine the next state of the system at time
t′ by the following

• Step 1: For each cell i, calculate its age ai at time t by the exponential growth
law dx

dt = λx. We require that Gi =
∫ ai

0
γ(a′)da′ < bi at the beginning of

each step for every i.

• Step 2: For each cell, calculate Gi =
∫ ai+∆t

0
γ(a′)da′. If Gi ≥ bi, then we

numerical calculate a ∆ti such that
∫ ai+∆ti

0
γ(a′)da′ ≈ bi.

• Step 3: Choose the smallest ∆ti among all possible ∆ti’s as the new time
step, set time t′ = t + ∆ti, and let all cells gain an extra volume λxi∆ti. If
there is no such ∆ti, which means Gi < bi for every i, go to step 5.
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• Step 4: Remove cell i from S(t′), record its volume x at t′, and generate
the random numbers r from the distribution h(r) and bm, bm+1 from U(0, 1).
Then, add two new cells in S(t′) labeled by cm(rx, 0, t, bm) and cm+1(x −
rx, 0, t, bm+1).

• Step 5: If Gi < bi for all i, set t = t′ and let all cells gain an extra volume
λxi∆ti.

• Step 6: Return to step 1 until t′ > tmax, the maximum time of the simulation.
Here, we set the initial added volume of all cells to zero so the condition in step

1 above is automatically satisfied at t = 0. For our runs, we used 10 cells of initial
volume 0.5 and tmax = T is the same as the maximum time for the numerical PDE
experiments. We can also generalize the algorithm to incorporate the mother-daughter
growth rate correlation by including a new label λi to each cell.
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