\documentclass{article} \usepackage{amssymb} \begin{document} \noindent{\LARGE Math 131BH, MS$^2$, Winter 01} \\ \\ \noindent{\Large Workshop \#1} \\ \\ \\ \\ 1. Let $f:\mathbb{Q} \rightarrow \mathbb{R}$ be defined by $f(x)=0$ if $x<\sqrt{2}$ and $f(x)=1$ if $x>\sqrt{2}$. Show that $f$ is continuous on all of $\mathbb{Q}$. \\ \\ 2. Define functions $f_n:\mathbb{R} \rightarrow \mathbb{R}$ by $$f_n(x)=\frac{nx}{1+|nx|}.$$ Show that $f_n$ is continuous for every $n\in \mathbb{N}$. For which $x\in \mathbb{R}$ is the function $$f(x)=\lim_{n\rightarrow \infty}f_n(x)$$ defined and continuous? \\ \\ 3. Show that $f:\mathbb{R}_+ \rightarrow \mathbb{R}$ defined by $f(x)=\sqrt{x}$ is uniformly continuous, but the function $g:\mathbb{R} \rightarrow \mathbb{R}$ defined by $g(x)=x^2$ is not. \\ \\ 4. For any metric space $X$, is the identity function on $X$ continuos? Uniformly continuous? Prove your answers. \\ \\ 5. Let $[a,b]$ be an interval in $\mathbb{R}$ and $f$ a continuous, real valued, one to one function on $[a,b]$. Prove that $f([a,b])=[f(a),f(b)]$ or $[f(b),f(a)]$ (whichever one makes sense). \\ \\ 6. Let $f_1,f_2,...$ be real valued continuous functions on a metric space $X$ and assume for each $x\in X$, the sequence $(f_1(x),f_2(x),...)$ is bounded. Define $f(x)=sup(f_1(x),f_2(x),...)$ for each $x\in X$. Prove or find a counterexample: $f$ is continuous. \end{document}