Mathematics 133
Terence Tao
Midterm, Feb 11, 2003

Instructions: Try to do all five problems; they are all of equal value.

working space, and a blank page at the end.
You may enter in a nickname if you want your midterm score posted.

Good luck!
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Problem 1. Let f: R — R be the function defined by setting f(z) =1 when 0 < z < 7,
and f(z) = 0 when —7 < z < 0, and then extending periodically by 27 (thus for instance
f(z) = 1 when 27 < z < 37); such a function is sometimes called a square wave. Compute
the Fourier coefficients f(n) of f (Caution: the case n = 0 may have to be treated separately.
You may find the identity e™® = (—1)" useful.). Using Parseval’s identity, conclude that
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First we compute the zeroth Fourier mode f(0):

f(0) L 7rf(nl:)dnv 1 ﬂldm:%w.

T on - :27r0 us

Next, we compute the non-zero Fourier modes f (n), n #0:
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In particular we see that f(n) = 0 for even n, and f(n) = -L for odd n. In other words
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By Parseval’s identity we thus have
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But we have )
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and hence after a little algebra we obtain

neZ:n odd

as desired.




Problem 2. Let f be a 27-periodic function which is continuous and differentiable on the
interval —m < x < 7, but has jump discontinuities at £ = —m and £ = 7. Suppose also that f
and its derivative remain bounded on the interval —7 < x < 7; more precisely, suppose that
there exists a constant M > 0 such that |f(z)] < M and |f'(z)| < M for all -7 <z < .

(a) Establish the bound

2 2M
|f(n)] < Tl for all n # 0.

(Hint: integrate by parts).

Let f(m—) be the left limit of f at m; observe that |f(7n~)| < M since |f(z)| < M for all
—m < z < 7. Similarly if we let f(—n") be the right limit of f at —7 we have |f(—=1)| < M.
Now we integrate by parts to obtain

. 1 [ »
fol = |5 [ f@en da

1 e—in:::7r ™ , e—inw

= — - d
3 (O = [ 0 e
1 efz'nw ein7r ™ efin.'l:

— - _ _ -t _ !

= S ) o I S [ S e
1 1 1 4 -

< —(M=4+ M= !

< o (Mot M| _ﬂf(m) - dal)
1 2M g 1

< —(== M=d

- 277( n N z)
1 2M 27 M

< (R4
2r° n n

< i47rM

- 2r n

_ 2M

T on

as desired

(b) Explain briefly why the series Y - | f(n)| cannot be absolutely convergent. (Hint:
Do not try to use (a). Instead, you can use the fact that a uniformly convergent series of
continuous functions must be continuous (or, what amounts to much the same thing, you can
use the Weierstrass M-test)).




Suppose for contradiction that Y > | f(n)| is absolutely convergent. Then the Fourier

series Y o0 f(n)ei"® converges absolutely and uniformly to by the Weierstrass M-
D ne—oo g y y y

test). But since each of the terms in this Fourier series are continuous, this means that f is
itself continuous, a contradiction.

Note, by the way, that (a) and (b) together give a (very indirect!) proof that the harmonic
series > > | = must be divergent. One can also use Q1 and Q2(b) to obtain a similar result.



Problem 3. Let f be a Riemann integrable function, let N > 0 be a non-negative integer,
and let on(f) = M be the N** Fejér sum (or Cesdro sum), as defined in page
53 of the textbook. Prove that
ST
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for all z. (For comparison, recall that Sy f(z) = S\ f(n)e™).
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Observe that the only values of n which can appear are when |n| < k < N — 1. Observe
that the term f(n)e?™® appears in all the inner sums for which N — 1 > k > |n|, and does
not appear in any of the others. For each fixed n, the number of k between N — 1 and |n| is
N — |n|, thus we have

onf)@) = X (V- In)fmene.
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Note we can freely add the |[n| = N terms to this sum since they are zero. The claim now
follows by moving the % factor inside.




Problem 4. A function f is called even if one has f(z) = f(—=z) for all z, and is called odd
if one has f(z) = —f(—=z) for all z. Show that if f and g are Riemann-integrable 27-periodic
functions which are both odd, then f g is even. (In other words, the convolution of two odd
functions is an even function).

Proof A (sketch): First observe that a function f is even if and only if f(n) = f(—n) for all
n, and is odd if and only if f(n) = —f(—n) for all n; these facts can be shown by comparing
the Fourier coefficients of f(z) and f(—z). The claim will then follow from the identity

Frgn) = f(n)j(n).

Proof B: For any x, we compute

frot-a) = o [ sat-s=v) dy = - [ f-0)gle+0) dy.
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Making the change of variables z = —y (and remembering to change the limits of integration)
we obtain

fro-a) = o [ 5ol - 2) (o)

Reversing the limits of integration and cancelling all the signs, we obtain

frot-a)=o- [ " f@)gle —2) dz = frg(a)
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and the claim follows.




Problem 5. Let u, v be elements of a complex inner product space V. Show that

[lu + ol” = llu — ol” + il + dv]|* — |lu — iv]”
(u,v) = 1 .

(This identity, sometimes called the complex parallelogram identity, shows that if one is given
the magnitudes of all the vectors in a vector space, one can reconstruct the inner product
also.)

Observe that

[w+v|]? = (u+v,u+v) = (u,u) + (u,v) + (v,u) + (v,v).

Replacing v by —v we obtain

llu = ll* = (u, u) — (u,v) = (v, u) + (v, v).
Subtracting these two equations we obtain

llu+ ol = [lu —vl* = 2(u, v) + 2(v,u).

Replacing v by iv we obtain

lu + iv||? = ||u—iv||* = 2{u,iv) + 2(iv,u);
pulling the factors of ¢ out and then multiplying this by ¢ we obtain

i|lu + iv||2 —ilju — iv]|? = 2{u,v) — 2(v, u).
Adding this to a previous equation we obtain

llu+ol* = [lu = ol* +dl|u+ ]| — [lu - iv]|* = 4(u, v)

and the claim follows.




