Math 132 - Week 8
Textbook sections: 6.1-6.3
Topics covered:

e Residues; the residue theorem
e Trig and indefinite integrals

e Indefinite integrals

Integration around a singularity

e Let f(z) be a function with an isolated singularity at zo, and let v be a
simple closed anti-clockwise contour around z, which contains no other
singularities. In the past we have used the Cauchy integral formula and
its variants to compute 397 f(2) dz; however this formula is not always
applicable. For instance, we cannot work out

j{ e/%dz
|z|=1

using the Cauchy theorems, because the singularity at 0 does not seem
to be of the form ~£2

(z—20)k "

However, we can work out the integral using Laurent series. We expand

e g 1 1 1
e = +;+ﬁ+3!?+...

integrating this term by term, we get

]{ et?dz = % dz —|—]§ %
|z]=1 |z]=1 |z|=1 %

+7{ dz +?{ dz n
|z|=1 2'22 |z]=1 3‘23 o

Despite looking complicated, most of these integrals are zero. Recall
that whenever f has an anti-derivative on a closed contour -y, then



fy f(2) dz = 0. With the exception of %, all the integrands have anti-
derivatives (e.g. 57 has an anti-derivative of —5-), so they all vanish.

Thus we have p
% el/rdy = j{ 9 _ 271
|z]=1 |z|=1 %

by Cauchy’s integral formula.

More generally, if f(z) has a Laurent expansion of

oo

f(z) = Z an(z — 2)"

n=—oo

and v is a simple closed anti-clockwise contour which contains z, and
no other singularities of f, then

/f(z) dzz/ 4-1 dz = 2mia_q
v v # T %0

because all the other terms in the Laurent expansion have anti-derivatives.

Because the a_; co-efficient is the only thing left after integration, we
call it the residue of f at zp, and denote it Res(f;zp). We can thus
rephrase the above result as

/f(z) dz = 2miRes(f; zo)-

For instance, we have Res(e'/?,0) = 1.
Integration around multiple singularities

e Now suppose that « is a simple closed anti-clockwise contour which en-
closes more than one singularity of f; let’s say it encloses n singularities
21,722, --.,2p. Then we have

/f(z) dz = 2miRes(f; z1) + 2miRes(f; 23)
v

+ ...+ 2miRes(f; zn)-



e The proof is by decomposing the contour appropriately (see picture).

Non-simple or clockwise contours

e Now suppose that v is a more complicated closed contour, which en-
closes one or more singularities 21, 29, . . ., 2.



e In the above situation, we have

/f(z) dz = 2mi(—2Res(f; 2z1) — Res(f; z2) + Res(f;23))

by decomposing the contour into pieces.

e More generally, we need to define the notion of a winding number.
Informally, the winding number of a contour v around a point 2 is the
number of times v winds anti-clockwise around zy (this number can be
negative if y goes clockwise). A more precise definition is as follows.
Take any path starting at z; and heading out toward infinity. As one
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follows this path, take the number of times v hits this path from the
right, minus the number of times v hits this path from the left. This is
the winding number of vy around zp; it turns out that no matter what
path you choose, the winding number is always the same.

e The winding number of v around zj is sometimes denoted Wind(v; zo)-
The most general result about integration on closed contours is

e Residue Theorem. Let D be a simply connected domain, and let f
be a function on D which is analytic on D except at a finite number of
isolated singularities z1, 29, . . ., 2,. Then we have

/f(z) dz = 2mi i Res(f; zj)Wind(vy; ;)
v j=1

for all closed contours v in D.

e The proof of this theorem is beyond the scope of this course, requiring
a certain amount of topology, but by trying examples such as the one
above one can be convinced of its validity.

e With this theorem, one can compute the integral of f on closed contours
extremely quickly, provided that one knows all the residues of f.

Computation of residues

e In light of the residue theorem, it is clearly of interest to find a way to
compute residues quickly. The method to compute residues depends
on the nature of the singularity.

e Let’s first suppose that f has a removable singularity at z;. Then the
Laurent expansion of f around z; has no negative powers of (z — zp).
In particular, there is no Tla) term, and so the residue at a removable
singularity is zero.

e Now suppose f has a simple pole at 2y, so the Laurent expansion looks
like

a_
f(z) = L tag+ai(z—2)+...
zZ— 2




The residue is a_;. To find it, we multiply the above expansion by
zZ — 29

f(2)(z—2)=a1+a(z — 2) +a(z— 2)*+...
taking the limit as z — 2y, we get

zhi? f(2)(z — 2) = a_1.

Thus we can compute the residue at simple poles by

Res(f;20) = lim f(2)(z — 20)-

Z—r20

For instance, we can compute the residue of $ at the simple pole 0
by
1 1
Res(———0) =lim —— = lim ——— =1
sin(z) z—08in(z) 20 cos(z)
Now, suppose f has a double pole at zg, so the Laurent expansion looks
like

a_o _
f(z) = +
(z—20)2  (2—20)
Now the previous trick to extract the residue a_; won’t work, because

f(2)(z—2y) does not converge as z — zy. However, one can still recover
the residue with a bit more work. We multiply f(z) by (z — 2¢)*

+CI,0+...

f(2)z—2)=as+a_i(z — 2) +ag(z —20)* +...
To get rid of a_o, we differentiate both sides with respect to z:

d

T(FE) e = 20)) = asi + 2ag(z = 20) + ..

now one can take limits to obtain a_i:

Res(f(2); %) = lim - (/(2) (= — 20)?)

zZ—20 A2



e One can do the same type of trick for higher order poles; if f has a pole
of order k at zy then

Res(F(2)20) = lim s e (/2) 2 = 20))

Z—r20

However, this formula is quite cumbersome to use. Usually it is better
to seek a different way to compute a_; (e.g. by computing the entire
Laurent series).

e When f has an essential singularity, there is no quick formula to com-
pute the residue. Often the only way is to first compute the entire
Laurent series and then extract the 1/(z — z) co-efficient.

e Now, we’ll show how residue calculus can also be used to compute real
definite integrals as well as complex contour integrals. For instance,
we’ll be able to compute such integrals as

/7r do
o 2+ cos(f)
/°° dz
o zt+1
/oo cos(z) dx
o xt+1
o it g
p.v./_oo e

’ / o dz
P Ve
exactly; all of these integrals are extremely difficult to solve by con-
ventional techniques! Thus contour integration is a powerful new tool

to evaluate real integrals, although it is not a magic wand and cannot
handle every single integral in existence.

e [ should warn you in advance that this is a rather difficult section, but
also one of the most important in the course. You should go through
the notes carefully after the lecture.
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Definite trigonometric integrals

e The first type of integral we will consider is a trigonometric integral on
an interval of length 27; that is, an integral of the form

a+2m
/ f(cos@,sinf) do

where f(cosf,sinf) is some combination of cos(f) and sin(6).

e To illustrate the method, we take as an example

27 d0
/0 2 + cos(0) 0.

e To compute this integral using residue calculus techniques, the first step
is to replace the sines and cosines with complex exponentials using the
formulae (see Week 3)

¢if 4 g=if ol _ o—if

cos(f) = 5 sin(f) = 5;

The above integral then becomes

/27r de
0 2+ %ew + %e‘ia'

e Now we make the complex substitution z = €?, so dz = ie?df. Since
f ranges from 0 to 27, the variable z clearly traverses the curve z =
e 0 < § < 2w, which is the unit circle |z| = 1 traversed once anti-
clockwise. The integral then becomes

j{ dz/(ie®)
g=1 2+ 367 + e

which we can write in terms of z = e as

b= 2+ 32+ 57

8




This simplifies to

% 2dz
|z|=1 412 + '1:22 + ’i’

27{ dz
1 |z|=1 Z2+4Z+1

To summarize so far, we have converted a definite integral of a real
trigonometric expression into a contour integral of a rational expression
on a closed contour. Now we use residue calculus to compute this
integral.

or

The first step is to factorize the denominator

P24dz+1=(242-V3)(z+2+V3)

§]|§z|:1 f(z) dz

1
(z+2-V3)(z+2+3)

At this point we could use partial fractions if desired, but we’ll use
residue calculus instead. The function f(z) has singularities at —2 +
v/3 and —2 — /3, but the contour |z| = 1 only goes around the first
singularity. Since our contour is simple and anti-clockwise, we can
compute the integral using the residue theorem as

so our integral becomes

where

f(z) =

2
;QWiRCS(f; —2+/3).

To compute the residue we have to see what kind of singularity f has at
—2 + /3. The denominator of f clearly has a simple zero at —2 + /3
(one can only divide out one power of z + 2 — v/3 before becoming
discontinuous), so f itself has a simple pole. Thus we can use the
formula

Res(f;20) = lim f(2)(z — 20)
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so that our integral is equal to

2
Zomi lim  f(2)(z+2—V3)
? 2——2+3

1
=47 lim ——
2132+ 2+3

_ 2
\/§'

Thus we have computed

/2“ o 2n

o 2+cosf /3

e Note that even though complex numbers made an appearance during
the middle of our computation, they disappeared at the end. This has
to happen, of course, since if one integrates a real function on a real
interval one can only get a real number! If our computation of this

integral ended up with an ¢ somewhere then we know that we’ve made
a mistake.

e This technique only works when you integrate on an interval of length
27, or of some multiple of 27. For instance, it cannot directly handle

the integral
/ T df
o 2+cosf

because when one makes the change of variables z = €' one only
ends up with a semi-circle instead of a circle - not a closed contour!
(One can try the change of variables z = ¢’ instead, but that has its
own problems because one starts encountering expressions like p.v.z'/2,

which have non-isolated singularities).

16

e However, sometimes one can handle these expressions by a symmetry
argument. For instance, the function cos# is symmetric around 6 = 7,
so the above integral is equal to half of the integral from 0 to 2. Thus

/7r o m
o 2+cosf /3
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e Challenge: see if you can compute these integrals without using com-
plex methods (and without using Maple).

Integrating rational functions on the real line

o Now we consider a quite different type of integral, namely the integral
of a rational function P(z)/Q(z) on the entire real line:

.o

*®  dx
/—0073’34‘*'1 dzx.

(Note that this integral converges: for z > 1 or £ < 1 one can use
the comparison test using 1/3:4, and for —1 < z < 1 one can use the
comparison test using 1).

An example is

e To handle the indefinite integral, we write it as a limit of definite inte-
grals:
) B dg
lim —_—
R—oo J_p 4 +1

lim / f(z) dz
R—o0
R
where 7y is the straight line from —R to R and f(z) =

We can write this as

1

21

e The function f is somewhat large near the origin (for instance, f(0) =
1) but decreases quite quickly as one moves away from the origin. (For

instance, f(10), f(—10), f(10i), and f(—10i) are all roughly equal to
0.0001.).

e We now use a very versatile technique known as shifting the contour,
the idea is to try to push the integral away from the origin, where it is
large, out toward infinity, where the integral is small. In our particular
case we shall shift the contour onto a large semi-circle; this is known
as the method of expanding semi-circular contours.
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e Let C}; denote the semi-circle z = Re!™%) : 0 <t <« from —R to R;
this contour has the same endpoints as yg.

e If f had no singularities, then we could use Cauchy-Goursat to shift
the contour and conclude that

/7 Q= [ g6 a

However, there are some singularities, and so there are some correction
terms coming from residues.

12



e Let’s first work out where the singularities of f(z). They occur when
Z+1=0

2 =—1

24 — €7rz+2k7rz

y = e(7rz—|—2lc7rz)/4

5 = em/4’ 637”/4, e57rz/4’ e7m/4'

This are the four crosses on the above diagram (we can assume that
R is so large that the semi-circle contains the upper two singularities,
since we're eventually going to let R — o0).

e Now we use residue calculus to compute the integral

/ f(z)dz.
’YR—I-—C}'E

This contour winds around the singularities e and e once anti-
clockwise, but does not wind around the other two singularities at all.
Thus

wi/4 3ni/4

/ f(2) dz = 2miRes(f; em/4) + 2miRes(f; e37ri/4)
YrR+—C%

e To compute these residues, we need to first find out the nature of the
singularities at e™/* and e®7/4.

e The function z* + 1 is zero at e™/* and 3™/, but its derivative 42% is

non-zero at both of these places. Thus z* +1 has a simple zero at these
points, so f(z) = 1/(2* + 1) has a simple pole. We can thus use the
simple pole formula for residues:

) ”— e'zri/4

Res(f;e™*) = _.
(f ) zoemi/d 24+ 1

Both the numerator and denominator tend to zero, so we may use

L’hopital’s rule:
, 1
Res(f;e™/*) = lim —

Z—semi/t 423

13



— 16—37”}/4 — 1 i

4 42 42

A similar computation gives

, 1
R . mi/d = i
es(fie™") = lim

16—971'1'/4 _ 1 . i
4 42 42

Combining all these calculations, we get

) i

/ ot f(z) dz = 27r2'(—2\—@ = 7

We can thus compare the g integral and C}; integral as

g (2) dz = % + o f(z) dz.

Taking limits, we get

/°° dm—ﬂﬁ—lim/ dz
c BT V2 R Jor 24+ 1

To summarize so far, we've managed to shift the contour from the real
line to a big semicircle C, while picking up some residues totaling -
The next step is to show the integral on this semi-circle actually goes
to zero as R — oco. That’s because z is very large on C}, and ﬁ is
very small.

More precisely, when z is on C}, |2| = R, and so |2*| = R*, so
R —1<]2'+1|<R'+1
SO

Lo
Rf4+1— '2441"7 RA -1
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The contour C}; has length 7R, so we have

dz < TR
C+Z4+1 _R4_1
R

The right-hand side goes to zero as R — oo, and so by the squeeze
theorem the left-hand side must also go to zero. Thus we have

/ * dr 07
e VO
Again, note that the final answer is a real number, as it ought to be.

By symmetry, we can also integrate this function on half-lines:

/°° de o«
o i+l 22

This basic strategy works whenever one is integrating a rational func-
tion P(z)/Q(x), where P and @ are polynomials, from —oc to oo -
provided that () has a somewhat larger degree than P. By repeating
the above argument one can show

Lemma. If P and @ are polynomials such that deg(Q) > deg(P) + 2,
thenfc+ ;dz—>0asR—>oo.
R

z
z

B(
Q(

This lemma is also valid for the lower semi-circle Cp,.

If deg(Q) < deg(P) + 2, then 28 is not integrable on the real line
z%dz

(it decays too slowly). For instance, ffooo o
infinity, it’s like integrating the function 1).

does not converge (at

Integrating trigonometric-rational functions

e Now let’s try the same technique to integrate
00 e—z'a:
Ce T2 +1
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We can write this, as before, as

—iz

dz

lim 21
R—oo wg ? -+

We can compute

e—iz
Yr+—CH % +

using residue calculus; in this case, it turns out to equal me. So to follow
the previous pattern, we now just have to show that the C}; integral
goes to zero.

Unfortunately, there is now a snag, because

/ e % dz
C?{_ 22 + 1
does not go to zero as R — oo. The problem is that e % can get

extremely large on C};. For instance, if z = iR, which is on C};, then
e~% = ef!, which becomes very large as R — oo.

To get around this problem we need to use the lower semi-circle Cyp
from —R to R rather than the upper semi-circle. To make sure that
this will work, let us first check that

fizd
/ € Z—)OasR—)oo.
c

- 2241
R

If z is on Cf, then |z| = R, so |2%| = R?, so
R —-1<|22+1| < R*+1.

What about e %#? We use Cartesian co-ordinates z = x + iy, and
compute
|efiz‘ — |efi(w+iy)‘ — ‘efiwey| — eY.
However, since we are on the lower semi-circle, y < 0, and so e¥ < 1.
Thus the numerator has magnitude at most 1, and the denominator
has magnitude at least B2 — 1, so
e~ 1
< .
|z2 + 1‘ “R?-1

16



Since C';, has length 7R, we thus have

|/ e‘izdz‘< TR
CI; 22+1 _R2—1

Thus the integral on the left-hand side goes to zero as R — oo.

e We now compute the closed contour integral

% e dz
yat—cy A1

The function f has singularities at z = =£4, but only

Let f(z) = &
the singularity at — is relevant. Since vz + —Cz winds once clockwise

17



around —i, we have

—iz d
7{ 6272 = —2miRes(f; —1).
’YR"'_C}; Z + 1

The function z? 4+ 1 has a simple zero at —i, and e™*

so f(z) has a simple pole, so

is non-zero at —t,

: . e (2 +1)
Res(f;=i) = lim —5==—
e~ et -1
=iz —1 —27 2er

Thus we have

7{ e *dz
2.1 o
YR—Cg Z +1 e

Now we take limits as R — oo. We've already observed that the Cg
integral goes to zero, so we're left with

/ e dr w
o T2H+1 e
In general, when integrating an expression such as

[eS) eimw Pl(x

/ GO

o Q)
where P and ) are polynomials and m is a non-zero constant, then one
should use the upper semi-circular contour when m > 0 and the lower

semi-circular contour when m < 0. (Basically, the idea is to push the
contour to wherever the integrand is small). There is a general lemma:

Jordan’s lemma: Let P and @ be polynomials such that deg(Q) >
deg(P) + 1, and let m be a non-zero number. If m > 0, then

/ 6713('2)dz—>0ausR—>oo;
ct Q(2)

and if m < 0, then

ez'mz Z)
————~dz—0as R — oc;
/c Q(z)

18



The proof of this fact is a bit tedious, and will be omitted. (One has
to divide the contour into two pieces, one when I'm(z) is small, say
[Im(z)| < V/R, and the other when Im(z) is large). Note that @ only
needs to have a degree one higher than P, as opposed to two higher for
the previous lemma. That’s because the e™* factor helps to make the
integrand smaller. (If @ has a degree equal to or less than P, then the
integral is not convergent).

One can also handle trigonometric-rational expressions such as

© cos(x)
/oo 2 +1 de

in this manner. One way to do this is to use the formula

eim + e—im
cos(z) = —

to split this integral into two pieces,

1 [ e= 1 [ e®
— / —— dx + = / —— dx
2 ) 2?2 +1 2 ) 2?2 +1
and work on each piece separately (the first one using the upper semi-

circle, the second one using the lower semi-circle). But this takes quite
a while. A quicker way, in this case, is just to observe that cos(z) is

the real part of e~ (or €?), so Cﬁiﬁ) is the real part of 4. Thus

241"
[o'e] oo —ix
/ C(;S(x) dr = Re/ 2 dr = I
oo T+ 1 Ceo T2 H1 e

Similarly we have

* sin(x) o iz
de = —1 dz = 0:
/oomQ—i-l . m/oox2+1 T ’

sin(x)
z2+1

is an odd

although this is more easily proven by observing that
function. By symmetry we also have

o
[ g
o T°+1 2e
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e However, one has to be a bit careful when dealing with complex ex-

pressions such as
o
cos(x
/ ( ) dz.
—oo Xt

Even though cos(z) is the real part of e, the integrand

cos(z)
T+i
, because z + 7 itself has real and imaginary parts.

1S not

e:l:iz
T+i i
(The real part of £= is something much messier, namely %ﬁm(w))
In this case the best thing to do is use the alternate approach above,
namely splitting cos(z) = 1€ 4+ 2~ and working on both the upper
and lower semi-circles.

the real part of

1
2

Principal value integrals

e Now we turn to integrals which are not, strictly speaking, convergent,
but which can still be evaluated in what’s called a “principal value”

sense. These integrals crop up every now and then, for instance in the
boundary behaviour of PDE.

e As an example, consider the real integral
/2 dzx
1 X ’

e Naively, one would expect this integral to equal

In |z]|*, = In(2) — In(1) = In(2).

e However, strictly speaking, % is not integrable on the interval [—1, 2]
because of the singularity at 0. (The fundamental theorem of calculus
does not apply on [—1,2] for the same reason). There is an infinite
amount of area in the first and fourth quadrants, and the expression
oo — oo is indefinite. Because of the singularity, this type of integral is
sometimes called a singular integral.

e Despite singular integrals being non-convergent, there is still a certain
sense in which the integral of  from —1 to 2 equals In(2). We define
the principal value of a singular integral to equal the limit, as ¢ — 0,

20



of the integral where an interval of radius ¢ around the singularity has
been removed. In this case, we have

/2 dr . ~cdx % dx
.. — = lim —+ —.

1z e=0) 1 T e T

e Since we have cut out the singularity, the right-hand side is computable
as
: - 2
timIn [z + In |z

=limlne—Inl1+1In2—-1Ine=1In2.
e—0
Thus the principal value of ffl & —n2.

e This principal value definition is more subtle than it may first appear.
It is important that the interval one removes around the singularity is
symmetric. Suppose we removed the interval (—e,2¢) from the origin
instead of (—¢,¢), and then let ¢ — 0. We would then get

. - 2
liyln 5 +In o],
=limlne—-Inl14+1n2—1n2=0!

£—0

e If there are multiple singularities, we remove an epsilon interval around
all of them simultaneously, and then let epsilon go to zero.

Computing principal value integrals using residues

e We now show how to compute principal value integrals using residue
calculus, using what’s known as the method of indented contours. As
an example, we demonstrate the computation of

© el dx
p-v. / .
N A S
Note that this is a singular integral because the integrand has a singu-
larity at x = 0.
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e If we didn’t have the singularity, we’d just replace the domain of in-
tegration from (—oo,00) to (—R, R) and then let R — oo as before.
We can still do that, but now we must also remove an ¢ around the
singularity and let ¢ — 0. In other words, we can rewrite the above
integral as

lim lim
R—o0e—0 J_p 3 +x

—€ eim dr /R eiz dr
3 .
e TPHT

We can rewrite this as

R—o0e—0
Y-R €

lim lim f(2) dz +/ f(z) dz
,—€ Ye,R

where f(z) = %, Y_R,— is the straight line from —R to —¢, and 7. g
is the straight line from ¢ to R.
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To use the residue theorem we need to find a closed contour somewhere.
By adding the big semi-circle C}; one can partially close the contour,
but to make a genuinely closed contour one also needs the small semi-
circle C. (One could also use the lower semi-circle C_ instead of Cf,
but one has to use C}; and not C because otherwise e** will become
far too large.

We can compute the closed contour integral

f(z) dz

i_R,_E+C?+%,R+—C$

23



using residue calculus. Factoring f as
eiz
(z+1i)(z — 1)

1) = -

we see that f has simple poles at 0, —i, and 7. Of these, only the
singularity at 7 is inside the contour. Since the contour is anti-clockwise,
we see that the above integral is equal to

2miRes(f; i) = 2m lzllg z(z +1)(z — 1)
-1

i) e

—T1

Thus

/ f(z) dz+ f(z) dz +/ f(z) dz —
T-R,—e cd Ye,R

-
f(z) dz = —.
ch €
Now we take limits as R — oo and ¢ — 0. The first and third terms
are what we want. The fourth term goes to zero by Jordan’s lemma.
Thus we have

00 imd "
p.v./ ° % | lim f(z) dz = -

o T3 +1T 20 for e

To finish our computation we need to figure out what [ f(z2) dz.

If we were integrating over the entire clockwise circle C, of radius &,
instead of just a clockwise semi-circle C, then this integral would equal
2miRes(f;0) by the residue theorem. Since we only have half of the
contour, one might guess that the integral on the semi-circle should be
approximately miRes(f;0). This is indeed the case:

Lemma. Let f(z) be a function with a simple pole at zp, and let 6; < 6,
be angles. For each ¢, let 7, denote the anti-clockwise z(t) = 2 + g€,
01 S 0 S 02. Then

e—0

lim/ f(2) dz = (02 — 61)iRes(f; zo)-
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e Proof Since f(z) has a simple pole at zy, we can write f(z) = g(2)/(z—
2g), where g is a function which is non-zero and analytic at zy. From
Taylor’s formula

9(2) = 9(20) + 9'(20)(z — 20) + . ..

we have the Laurent expansion

fz) = zgfzio = Zg(_z"z)o +4'(z20) + ...

and so Res(f;z0) = g(20). So we have to show that

lim / 9C) 4 — (0, — 0))iglz0).

To do this, we make the change of variables z = 2 +¢ce?, dz = cie?df,
to turn the left-hand side into

02 g(z0 + g€'?)

lim - cied
e=0 [ ge'
which simplifies to
05 '
ilim g(z0 +€) db.
e—0 0,

Since g is analytic at zg, it is continuous, and so g(zy + c€?) — g(2)
as € — 0. Taking limits (cf. the proof of Cauchy-Goursat in Week 5)
the left-hand side becomes
02
i / 9(2) df

01
which equals the right-hand side.
e In our case, we have a clockwise semi-circle from angles 7 to 0, but

we can just flip the sign and consider the reversed anti-clockwise circle
—CZ, which goes from angles 0 to 7. By the lemma,

lim

f(z) dz = miRes(f;0)
e—0 —ct
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= i lim 2z
20 23 4 2
= 1.
Putting this back into our previous calculations, we get

© e dg - )
p.v. — M= —,
3
o Xt e

® e d 1
p.v./ 637.1‘ =7m(l—-)i.
o TP+ T e

e As always, one can take real and imaginary parts to conclude

p-v-/ cos(z) dz _

thus

o T3+
< si d 1
p.v./ 7&”3(36) T _ (1l —-);
oo It e

since the latter integral is even, we have

p-v. /000 sinlz) dv = 17T(1 — 1)

3+ 2 e
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