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Measure and integral

Last week we discussed differentiation in several variable calculus. It
is now only natural to consider the question of integration in several
variable calculus. The general question we wish to answer is this: given
some subset () of R", and some real-valued function f : 2 — R, is it
possible to integrate f on €2 to obtain some number fQ f? (It is possible
to consider other types of functions, such as complex-valued or vector-
valued functions, but this turns out not to be too difficult once one
knows how to integrate real-valued functions, since one can integrate
a complex or vector valued function, by integrating each real-valued
component of that function separately).

In one dimension we already have developed (in Math 131A) the notion
of a Riemann integral f[a,b] f, which answers this question when (2 is
an interval Q = [a,b], and f is Riemann integrable. Exactly what Rie-
mann integrability means is not important here, but let us just remark
that every piecewise continuous function is Riemann integrable, and
in particular every piecewise constant function is Riemann integrable.
However, not all functions are Riemann integrable. It is possible to



extend this notion of a Riemann integral to higher dimensions, but it
requires quite a bit of effort and one can still only integrate “Riemann
integrable” functions, which turn out to be a rather unsatisfactorily
small class of functions. (For instance, the pointwise limit of Riemann
integrable functions need not be Riemann integrable, and the same
goes for an L? limit, although we have already seen that uniform limits
of Riemann integrable functions remain Riemann integrable).

Because of this, we must look beyond the Riemann integral to obtain
a truly satisfactory notion of integration, one that can handle even
very discontinuous functions. This leads to the notion of the Lebesgue
integral, which we shall spend this week and the next constructing. The
Lebesgue integral can handle a very large class of functions, including
all the Riemann integrable functions but also many others as well; in
fact, it is safe to say that it can integrate virtually any function that
one actually needs in mathematics, at least if one works on Euclidean
spaces and everything is absolutely integrable. (If one assumes the
axiom of choice, then there are still some pathological functions one
can construct which cannot be integrated by the Lebesgue integral,
but these functions will not come up in real-life applications).

Before we turn to the details, we begin with an informal discussion.
In order to understand how to compute an integral fQ f, we must
first understand a more basic and fundamental question: how does
one compute the length/area/volume of Q7 To see why this question
is connected to that of integration, observe that if one integrates the
function 1 on the set 2, then one should obtain the length of Q (if
Q2 is one-dimensional), the area of Q (if Q is two-dimensional), or the
volume of Q (if Q is three-dimensional). To avoid splitting into cases
depending on the dimension, we shall refer to the measure of (2 as ei-
ther the length, area, volume, (or hypervolume, etc.) of €2, depending
on what Euclidean space R" we are working in.

Ideally, to every subset €2 of R" we would like to associate a non-
negative number m(€2), which will be the measure of Q (i.e. the
length, area, volume, etc.). We allow the possibility for m(2) to be
zero (e.g. if 2 is just a single point or the empty set) or for m(f2)



to be infinite (e.g. if Q is all of R™). This measure should obey cer-
tain reasonable properties; for instance, the measure of the unit cube
(0, )" := {(x1,...,2,) : 0 < z; < 1} should equal 1, we should have
m(A U B) = m(A) + m(B) if A and B are disjoint, we should have
m(A) < m(B) whenever A C B, and we should have m(z+ A) = m(A)
for any x € R" (i.e. if we shift A by the vector z the measure should
be the same).

e Rather amazingly, it turns out that such a measure is impossible; one
cannot assign a non-negative number to every subset of R" which has
the above properties. This is quite a surprising fact, as it goes against
one’s intuitive concept of volume; we shall prove it later in these notes.
(An even more dramatic example of this failure of intuition is the
Banach-Tarski paradoz, in which a unit ball in R? is decomposed into
five pieces, and then the five pieces are reassembled via translations and
rotations to form two complete and disjoint unit balls, thus violating
any concept of conservation of volume; however we will not discuss this
paradox here).

e What these paradoxes mean is that it is impossible to find a reasonable
way to assign a measure to every single subset of R". However, we can
salvage matters by only measuring a certain class of sets in R" - the
measurable sets. These are the only sets 2 for which we will define the
measure m(£2), and once one restricts one’s attention to measurable
sets, one recovers all the above properties again. Furthermore, almost
all the sets one encounters in real life are measurable (e.g. all open
and closed sets will be measurable), and so this turns out to be good
enough to do analysis.

X %k ok ok ok

The goal: Lebesgue measure

e Let R" be a Euclidean space. Our goal in this week’s notes is to define
a concept of measurable set, which will be a special kind of subset of
R", and for every such measurable set 2 C R", we will define the
Lebesgue measure m(§2) to be a certain number in [0, co]. The concept
of measurable set will obey the following properties:



e (i) (Borel property) Every open set in R" is measurable, as is every
closed set.

e (ii) (Complementarity) If €2 is measurable, then R"\(2 is also measur-
able.

e (iii) (Boolean algebra property) If (€2;);cs is any finite collection of
measurable sets (so J is finite), then the union | J,_, §2; and intersection
;e 2j are also measurable.

jeJ

e (iv) (o-algebra property) If (€2,) e are any countable collection of mea-
surable sets (so J is countable), then the union J,_; €2; and intersection
;s § are also measurable.

JjeJ

e Note that some of these properties are redundant; for instance, (iv) will
imply (iii), and once one knows all open sets are measurable, (ii) will
imply that all closed sets are measurable also. The properties (i-iv) will
ensure that virtually every set one cares about is measurable; though
as indicated in the introduction, there do exist non-measurable sets.

e To every measurable set €2, we associate the Lebesgue measure m(S2) of
), which will obey the following properties:

(v) (Empty set) The empty set () has measure m(()) = 0.
e (vi) (Positivity) We have 0 < m(©2) < +oo for every measurable set €2.
(

vii) (Monotonicity) If A C B, and A and B are both measurable, then
m(A) < m(B).

e (viii) (Finite sub-additivity) If (A;);e; are a finite collection of mea-
surable sets (so J is finite), then m(U,;c; 4;) < D7, m(4;).

o (ix) (Finite additivity) If (A;);es are a finite collection of disjoint mea-
surable sets, then m(U;c; 4;) = >_ e, m(4;).

e (x) (Countable sub-additivity) If (A,);e; are a countable collection of
measurable sets (so J is countable), then m(U,;.; 4;) < 3250, m(4;)).

e (xi) (Countable additivity) If (A4;),ecs are a countable collection of dis-
joint measurable sets, then m(U,c; 4j) = >_,c; m(4;).
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e (xii) (Normalization) The unit cube [0,1]" = {(z1,...,2,) € R": 0 <
z; < nfor all 1 < j < n} has measure m([0,1]") = 1.

e (xiii) (Translation invariance) If © is a measurable set, and z € R",
then z+Q = {z+y : y € 1} is also measurable, and m(z+) = m(2).

e Again, many of these properties are redundant; for instance the count-
able additivity property can be used to deduce the finite additivity
property, which in turn can be used to derive monotonicity (when
combined with the positivity property). One can also obtain the sub-
additivity properties from the additivity ones. Note that m(Q2) can be
400, and so in particular some of the sums in the above properties may
also equal +o00. (Since everything is positive we will never have to deal
with indeterminate forms such as —oo + +00).

e Our goal for this week can then be stated thus:

e Existence of Lebesgue measure. There exists a concept of a mea-
surable set, and a way to assign a number m()) to every measurable
subset 2 C R", which obeys all of the properties (i)-(xiii).

e It turns out that Lebesgue measure is pretty much unique; any other
concept of measurability and measure which obeys axioms (i)-(xiii)
will largely co-incide with the construction we give. However there are
other measures which obey only some of the above axioms. This leads
to measure theory, which is an entire subject in itself and will not be
pursued here; however we do remark that the concept of measures is
very important in modern probability, and in the finer points of analysis
(e.g. in the theory of distributions).

* % ok % %

First attempt: Outer measure

e We begin by using a rather naive approach to finding the measure
of a set - try to cover it by boxes, and then add up the volume of
each box. This approach will almost work, giving us a concept called
outer measure which can be applied to every set and obeys all of the
properties (v)-(xiii) except for the additivity properties (ix), (xi). Later
we will have to modify outer measure slightly to recover the additivity
property.



e We begin by starting with the notion of an open box.

e Definition A (open) boz B in R" is any set of the form

B = H(ai,bi) ={(x1,...,2,) € R" 1 2; € (a;,b;) for all 1 < ¢ < n},

=1

where b; > a; are real numbers. We define the volume vol(B) of this
box to be the number

n

vol(B) := [ [(bi — a;) = (b1 — a1)(bo — a2) ... (b — an).

=1

e For instance, the unit cube (0,1)" is a box, and has volume 1. In one
dimension n = 1, boxes are the same as open intervals. One can easily
check that in general dimension that open boxes are indeed open. Note
that if we have b; = a; for some 7, then the box becomes empty, and has
volume 0, but we still consider this to be a box (albeit a rather silly one).
Sometimes we will use vol,(B) instead of vol(B) to emphasize that we
are dealing with n-dimensional volume, thus for instance vol; (B) would
be the length of a one-dimensional box B, voly(B) would be the area
of a two-dimensional box B, etc.

e We of course expect the measure m(B) of a box to be the same as the
volume vol(B) of that box. This is in fact an inevitable consequence
of the axioms (i)-(xiii) (see Homework).

e Definition Let 2 C R" be a subset of R". We say that a collection
(Bj)jes of boxes cover Q iff Q C (U, ; B;.

e Suppose 2 C R" can be covered by a finite or countable collection of
boxes (B;)jes. If we wish Q to be measurable, and if we wish to have a
measure obeying the monotonicity and sub-additivity properties (vii),
(viii), (x) and if we wish m(B;) = vol(B,) for every box j, then we
must have

m(Q) <m(|J B;j) <) m(B;) =) vol(B;).

jeJ jeJ jeJ



m(2) < inf{z vol(B;j) : (Bj)jes is a finite or countable cover of {2 by boxes}.
j=1

Inspired by this, we define

Definition If ) is a set, we define the outer measure m*(2) of €2 to be
the quantity

m*(Q) := inf{z vol(B;j) : (Bj)jes is a finite or countable cover of Q2 by boxes}.
j=1

Since ) 77| vol(B;) is non-negative, we know that m*(Q2) > 0 for all Q.
However, it is quite possible that m*(Q2) could equal +o0o. Note that
because we are allowing ourselves to use a countable number of boxes,
that every subset of R" has at least one countable cover by boxes; in
fact R" itself can be covered by countably many translates of the unit
cube (0,1)" (how?). We will sometimes write m?(£2) instead of m*(2)
to emphasize the fact that we are using n-dimensional outer measure.

Note that outer measure can be defined for every single set (not just the
measurable ones), because we can take the infimum of any non-empty
set. As we just mentioned, the positivity property (vi) is also obvious.
Several other desirable properties are also easy to verify:

Lemma 1. Outer measure has the following five properties:
(v) (Empty set) The empty set () has outer measure m*(f)) = 0.
(vii) (Monotonicity) If A C B C R", then m*(A4) < m*(B).

(viii) (Finite sub-additivity) If (A;);cs are a finite collection of subsets
of R", then m*(U,c; 45) < X2, m*(4;).

(x) (Countable sub-additivity) If (A;);c; are a countable collection of
subsets of R", then m* (U, 4;) <> e, m*(4;).

(xiii) (Translation invariance) If 2 is a subset of R", and z € R", then
m*(z 4+ Q) = m*(Q).



Proof. See Week 8 homework.
The outer measure of a closed box is also what we expect:
Proposition 2. For any closed box
B = H[ai,bi] = {(z1,...,2,) € R" 1 z; € [a;,b;] for all 1 <7 < n},
i=1
we have .
m*(B) = [ (b — a).

i=1

Proof. Clearly, we can cover the closed box B = [[,[a;, b;] by the

open box [],(a; — &,b; + €) for every € > 0. Thus we have

n n

m*(B) < wol(] [(a;i — &,b; +€)) = [ [ (b — a; + 2¢)

=1 =1

for every ¢ > 0. Taking limits as ¢ — 0, we obtain

=

1

<.
Il

To finish the proof, we need to show that

—=

1
By the definition of m*(B), it suffices to show that

Z’I)OZ(B]') 2 H(bz — CLZ')

jeJ

<.
Il

whenever (Bj;) ey is a finite or countable cover of B.

Since B is closed and bounded, it is compact (by the Heine-Borel theo-
rem, see Week 2 notes), and in particular every open cover has a finite
subcover (Theorem 9 of Week 2 notes). Thus to prove the above in-
equality for countable covers, it suffices to do it for finite covers (since
if (Bj)jer is a finite subcover of (B;);e; then . ;vol(B;) will be
greater than or equal to Y., vol(B;)).
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To summarize, our goal is now to prove that

ZUOZ(B(j)) > H(bz — ag) (*)

jeJ i=1

whenever (BY));.; is a finite cover of [T}—,[ai, bi]; we have changed the

subscript B; to superscript B because we will need the subscripts to
denote components.

To prove the above inequality (*), we shall use induction on the di-
mension n. First we consider the base case n = 1. Here B is just a
closed interval B = [a,b], and each box BY) is just an open interval
BY) = (a;,b;). We have to show that

>0y~ a;) = (b= a).

To do this we use the Riemann integral. For each j € J, let fU) :
R — R be the function such that ¥ (z) = 1 when z € (a;,b;) and
f9(z) = 0 otherwise. Then we have that f%) is Riemann integrable
(because it is piecewise constant, and compactly supported) and

/ f(J) = bj — CLj.

Summing this over all j € J, and interchanging the integral with the
finite sum, we have

/ME:ﬂﬁ:E:@—%.
T jes jeJ

But since the intervals (aj, b;) cover [a, b], we have >, ; f9(z) > 1 for
all z € [a, 0] (why?). For all other values if z, we have Y_.., f¥)(z) > 0.

Thus - -
/ }:ﬂﬁz/'1:b—a

—0 jeg [a;b]

and the claim follows by combining this inequality with the previous
equality. This proves (*) when n = 1.

9



e Now assume inductively that n > 1, and we have already proven the
inequality (*) for dimensions n — 1. We shall use a similar argument
to the preceding one.

e Each box BY is now of the form

We can write this as
BYW = A0 % (ag),bg))

where AU is the n — 1-dimensional box AW := [T"=!(a!”, b). Note
that _ ' _ _
vol(BY) = vol,,_1 (AD)(bY) — a{9))

where we have subscripted vol,, 1 by n — 1 to emphasize that this is
n — 1-dimensional volume being referred to here. We similarly write

B = A x [ay, by]
where A := []7='[as, bi], and again note that
vol(B) = vol,—1(A)(bn, — an)-
For each j € J, let fU) be the function such that Y9 (z,) = vol,_;(AW)

for all z,, € (a,&),b@), and f@(z,) = 0 for all other z,,. Then fU) is
Riemann integrable and

/ F9) = vol, 1 (AD) (B9 — o)) = pol(BD)

and hence
S val(B) = [~ 0.
jed 0 jeJ
Now let z, € [an,by] and (x1,...,2,_1) € A. Then (x1,...,xz,) lies in

B, and hence lies in one of the BY). Clearly we have z,, € (ag), bg)),

10



and (z1,...,2, 1) € AY. In particular, we see that for each z, €
[an, by], the set _ o
{AD :j e J;z, € (a9, b9))}

n ''n

of n—1-dimensional boxes covers A. Applying the inductive hypothesis
(*) we thus see that

Z voln_l(A(j)) > vol,—1(A),
jeJ:wne(a,(f),bﬁf))

or in other words

Zf(j) (xn) > vol,—1(A).
jeJ

Integrating this over [a,, b,], we obtain

/[ . > " F9 > voly_1(A) (b, — an) = vol(B)

jedJ

and in particular

/ ™ 79 > voly_1(A) by — ) = vol(B)
% jeJ
since » jes f () is always non-negative. Combining this with our pre-

vious identity for [ " et fU we obtain (*), and the induction is
complete. O

Once we obtain the measure of a closed box, the corresponding result
for an open box is easy:

Corollary 3. For any open box

B = H(ai,bi) ={(z1,...,2,) € R" 1 2; € [0;,;] for all 1 < i < n},

=1

we have
n

i=1

In particular, outer measure obeys the normalization (xii).

11



Proof. We may assume that b; > a; for all 7, since if b; = a; this follows
from Lemma 1(v). Now observe that

n n n

H[ai +€,bi — 5] C H(G,i, bz) C H[az,bz]

i=1 i=1 i=1
for all ¢ > 0, assuming that ¢ is small enough that b; — e > a; + ¢ for

all i. Applying Proposition 2 and Lemma 1(vii) we obtain

n n

[ — ai = 2¢) <m* (] [(ai,0:)) < [ ] (0 — a2)-

i=1 i=1 i=1
Sending ¢ — 0 and using the squeeze test, one obtains the result. [
We now compute some examples of outer measure on the real line R.

Example. Let us compute the one-dimensional measure of R. Since
(=R, R) C R for all R > 0, we have

m*(R) > m*((-R, R)) = 2R
by Corollary 3. Letting R — +o0o we thus see that m*(R) = +o0.

Example. Now let us compute the one-dimensional measure of Q.
From Proposition 2 we see that for each rational number Q, the point
{¢q} has outer measure m*({¢q}) = 0. Since Q is clearly the union
Q= quQ{q} of all these rational points ¢, and Q is countable, we

have
m(Q) <Y m'(Q) =) 0=0,
acQ cQ

and so m*(@Q) must equal zero. In fact, the same argument shows that
every countable set has measure zero. (This, incidentally, gives another
proof that the real numbers are uncountable).

Incidentally, one consequence of the fact that m*(Q) = 0 is that given
any € > 0, it is possible to cover the rationals Q by a countable number
of intervals whose total length is less than €. This fact is somewhat un-
intuitive; can you see how to cover the rationals in this manner?

12



e Example. Now let us compute the one-dimensional measure of the
irrationals R\Q. From finite sub-additivity we have

m*(R) < m"(R\Q) +m*(Q).

Since Q has outer measure 0, and m*(R) has outer measure 400, we
thus see that the irrationals R\Q have outer measure +oco. A similar
argument shows that [0, 1]\Q, the irrationals in [0, 1], have measure 1
(why?).

e Example. The unit interval [0, 1] in R has one-dimensional outer mea-
sure 1, by Proposition 2. But the interval {(z,0) : 0 < r < 1} in R?
has two-dimensional outer measure 0 (why? Use Proposition 2 again).
Thus one-dimensional outer measure and two-dimensional outer mea-
sure are quite different. Note that the above remarks and countable
additivity imply that the entire z-axis of R? has two-dimensional outer
measure 0, despite the fact that R has infinite one-dimensional mea-
sure.

X %k ok ok ok

QOuter measure is not additive

e It would seem now that all we need to do is verify the additivity prop-
erties (ix), (xi), and we have everything we need to have a usable mea-
sure. Unfortunately, these properties fail for outer measure, even in
one dimension R.

e Proposition 4 (Failure of countable additivity). There exists a
countable collection (4;) e of disjoint subsets of R, such that m* (U, ; A;) #

Zjej m*(Aj)-

e Proof. (Optional) We shall need some notation. Let Q be the ratio-
nals, and R be the reals. We say that a set A C R is a coset of Q
if it is of the form A = x + Q for some real number z. For instance,
V2 + Q is a coset of R, as is Q itself, since Q = 0 + Q. Note that
a coset A can correspond to several values of x; for instance 2 4+ Q is
exactly the same coset as 0+ Q. Also observe that it is not possible for
two cosets to partially overlap; if x 4+ Q intersects y + Q in even just
a single point z, then x — y must be rational (why? use the identity

13



r—y=(xr—2) —(y—2)), and thus z + Q and y + Q must be equal
(why?). So any two cosets are either identical or distinct.

We observe that every coset A of the rationals Q has a non-empty
intersection with [0,1]. Indeed, if A is a coset, then A = z + Q for
some real number z. If we then pick a rational number ¢ in [—z,1 — z]
then we see that x + ¢ € [0, 1], and thus AN [0, 1] contains x + g.

Let R/Q denote the set of all cosets of Q; note that this is a set whose
elements are themselves sets (of real numbers). For each coset A in
R/Q, let us pick an element x4 of AN [0, 1]. (This requires us to make
an infinite number of choices, and thus requires the axiom of choice).
Let E be the set of all such z4, i.e. E:={z4: A € R/Q}. Note that
E C [0,1] by constrution.

Now consider the set

X = U (¢+E).
e Qn[-1,1]

Clearly this set is contained in [—1,2] (since ¢ + x € [—1, 2] whenever
g € [-1,1] and x € E C [0,1]). We claim that this set contains the
interval [0, 1]. Indeed, for any y € [0, 1], we know that y must belong to
some coset A (for instance, it belongs to the coset y + Q). But we also
have z 4 belonging to the same coset, and thus y — x4 is equal to some
rational ¢. Since y and x4 both live in [0, 1], then ¢ lives in [—1,1].
Since y = ¢ + x4, we have y € ¢ + E, and hence y € X as desired.

We claim that
m'(X)# Y, m'(g+E)
¢eQn[-1,1]
which would prove the claim. To see why this is true, observe that since
[0,1] € X C [—1,2], that we have 1 < m*(X) < 3 by monotonicity
and Proposition 2. For the right hand side, observe from translation
invariance that

Y. mg+E)= ) m'(E)

qeQn[-1,1] qeQn[-1,1]

14



The set Q N [—1,1] is countably infinite (why?). Thus the right-hand
side is either 0 (if m*(E) = 0) or +oo (if m*(E) > 0). Either way, it
cannot be between 1 and 3, and the claim follows. [l

e The above proof used the axiom of choice. This turns out to be ab-
solutely necessary; one can prove using some advanced techniques in
mathematical logic that if one does not assume the axiom of choice,
then it is possible to have a mathematical model where outer measure
is countably additive.

e One can refine the above argument, and show in fact that m* is not
finitely additive either:

e Proposition 5 (Failure of finite additivity). There exists a finite
collection (A;);es of disjoint subsets of R, such that m*(U,c; 4;) #

ZjeJ m*(4;).

e Proof. This is accomplished by an indirect argument. Suppose for
contradiction that m* was finitely additive. Let E and X be the
sets introduced in Proposition 4. From countable sub-additivity and
translation invariance we have m*(X) < quQﬂ[—l,l] m*(qg + E) =
quQﬂ[fl,I] m*(E). Since we know that 1 < m*(X) < 3, we thus have
m*(E) # 0, since otherwise we would have m*(X) < 0, contradiction.

e Since m*(F) # 0, there exists a finite integer n > 0 such that m*(E) >
1/n. Now let J be a finite subset of QN [—1, 1] of cardinality 3n. If m*
were finitely additive, then we would have

* X * 1
m' () q+E)=> m'(g+E)=>Y m'(E) > 3n—=3.
qeJ qgedJ qeJ

But we know that > . g+ F is a subset of X, which has outer measure
at most 3. This contradicts monotonicity. Hence m* cannot be finitely
additive. O

X %k sk ok ok

Measurable sets
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In the previous section we saw that certain sets were badly behaved
with respect to outer measure, in particular they could be used to con-
tradict finite or countable additivity. However, those sets were rather
pathological, being constructed using the axiom of choice and looking
rather artificial. One would hope to be able to exclude them and then
somehow recover finite and countable additivity. Fortunately, this can
be done.

Definition Let E be a subset of R". We say that F is Lebesque
measurable, or measurable for short, iff we have the identity

m*(A) =m"(ANE)+m"(A\E)

for every subset A of R". If E' is measurable, we define the Lebesgue
measure of E to be m(E) = m*(FE); if E is not measurable, we leave
m(F) undefined.

In other words, E being measurable means that if we use the set F
to divide up an arbitrary set A into two parts, we keep the additivity
property. Of course, if m* were finitely additive then every set £ would
be measurable; but we know from Proposition 5 that not every set is
finitely additive. One can think of the measurable sets as the sets
for which finite additivity works. We sometimes subscript m(E) as
my,(F) to emphasize the fact that we are using n-dimensional Lebesgue
measure.

We now begin showing that a large number of sets are indeed measur-
able. The empty set £ = () and the whole space E = R" are clearly
measurable. Here is another example of a measurable set:

Lemma 6. The half-plane {(z,...,z,) € R" : x, > 0} is measurable.
Proof. See Week 8 homework. U

A similar argument to Lemma 6 shows that any half-plane of the form
{(z1,...,2,) € R" : z; > 0} or {(z1,...,2,) € R" : z; < 0} is
measurable.

Now for some more properties of measurable sets.
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Lemma 7
(a) If E is measurable, then R™\ F is also measurable.

(b) (Translation invariance) If E' is measurable, and x € R", then z+E
is also measurable, and m(x + E) = m(E).

(c) If Ey and E, are measurable, then E; N Ey and E; U E, are mea-
surable.

(d) (Boolean algebra property) If £, Es, ..., Ey are measurable, then
U=, E; and ﬂ;vzl E; are measurable.

(e) Every open box, and every closed box, is measurable.
Proof. See Week 8 homework. O

From Lemma 7, we have proven properties (ii), (iii), (xiii) on our wish
list of measurable sets, and we are making progress towards (i). We
also have finite additivity (property (ix) on our wish list):

Lemma 8. (Finite additivity) If (E;),c; are a finite collection of
disjoint measurable sets and any set A (not necessarily measurable),

we have
m(An|JEj) =) m"(AnE)).
jes jeT
Furthermore, we have m(U,.; Ej) = >_,c; m(Ej).
Proof. See Week 8 homework. O

Note that Lemma 8 and Proposition 5 imply that there exist non-
measurable sets. (Indeed, one can show that the set E used in Propo-
sitions 4 and 5 are non-measurable).

Corollary 9 If A C B are two measurable sets, then B\A is also
measurable, and
m(B\A) = m(B) — m(A).

Proof. See Week 8 homework. O

Now we show countable additivity.
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e Lemma 10. (Countable additivity) If (E;);c; are a countable
collection of disjoint measurable sets, then [, ;e Ej is measurable, and

m(UjeJ Ej) = ZjeJ m(EJ)

Proof. Let E := [J,., Ej. Our first task will be to show that E is
measurable. Thus, let A be any other measurable set; we need to show
that

m*(A) = m*(ANE) +m*(A\E).

Since J is countable, we may write J = {j1, j2, j3,- . -}. Note that

ANE = U (ANE;,

(why?) and hence by countable sub-additivity

o0

(ANE) Z “(ANE;,
k=1

We rewrite this as

m*(ANE) <supZm (AN E;,).

N>1k 1

Let Fy be the set Fly := U,C 1 Ej,. Since the AN E;, are all disjoint,
and their union is AN Fy, we see from Lemma 8 that

Zm (AN E;) = m* (AN Fy)

and hence

m*(ANE) <supm*(AN Fy).
N>1

Now we look at A\E. Since Fy C E (why?), we have A\E C A\Fx
(why?). By monotonicity, we thus have

m*(A\E) < m’(A\Fy)
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for all N. In particular, we see that

m* (AN E)+m*(A\F) < sup m (AN Fy)+m*(A\E)

<supm (AN Fy)+m*(A\Fn).

N>1

But from Lemma 8 we know that Fy is measurable, and hence
m* (AN Fy) +m*(A\Fy) = m*(A).
Putting this all together we obtain
m*(ANE)+m*(A\E) < m*(A).
But from finite sub-additivity we have
m* (AN E)+m*(A\E) > m*(A)
and the claim follows. This shows that E is measurable.

To finish the lemma, we need to show that m(E) = >, m(E;). We
first observe from countable sub-additivity that

m(E) <Y m(Ey) = m(Ey,).

jeJ

On the other hand, by finite additivity and monotonicity we have

N
m(E) > m(Fy) =) m(E;,).
k=1
Taking limits as N — oo we obtain

m(E) >y m(E;,)

and thus we have

as desired. O
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This proves property (xi) on our wish list. Next, we do countable unions
and intersections.

Lemma 11. (o-algebra property) If (€2;);c; are any countable
collection of measurable sets (so J is countable), then the union [, 2;
and the intersection | ;jes §2; are also measurable.

Proof. See Week 8 homework. O

The final property left to verify on our wish list is (i). We first need a
preliminary lemma.

Lemma 12. Every open set can be written as a countable or finite
union of open boxes.

Proof. We first need some notation. Call a box B = [[_,(a;, b;)
rational if all of its components a;, b; are rational numbers. Observe
that there are only a countable number of rational boxes (this is since
a rational box is described by 2n rational numbers, and so has the same
cardinality as Q?". But Q is countable, and the Cartesian product of
any finite number of countable sets is countable).

We make the following claim: given any open ball B(z, ), there exists
a rational box B which is contained in B(z,r) and which contains z.
To prove this claim, write z = (z1,...,2,). For each 1 < i < n, let a;
and b; be rational numbers such that

T T
Ti—— <o <z <b<zi+—.
n n

Then it is clear that the box []}_,(a;,b;) is rational and contains z.
A simple computation using Pythagoras’s theorem (or the triangle in-
equality) also shows that this box is contained in B(x,r); we leave this
to the reader.

Now let E' be an open set, and let > be the set of all rational boxes
B which are subsets of E, and consider the union |Jgy, B of all those
boxes. Clearly, this union is contained in F, since every box in ¥ is
contained in E by construction. On the other hand, since E is open,
we see that for every x € F there is a ball B(z,r) contained in E, and
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by the previous claim this ball contains a rational box which contains
z. In particular, z is contained in | J, 5. B. Thus we have

E=JB
Bex
as desired; note that X is countable or finite because it is a subset of

the set of all rational boxes, which is countable. O

Lemma 13. (Borel property) Every open set, and every closed set,
is Lebesgue measurable.

Proof. It suffices to do this for open sets, since the claim for closed
sets then follows by Lemma 7(a) (i.e. property (ii)).

Let E be an open set. By Lemma 12, F is the countable union of
boxes. Since we already know that boxes are measurable, and that the
countable union of measurable sets is measurable, the claim follows. [

The construction of Lebesgue measure and its basic properties are now
complete. Now we make the next step in constructing the Lebesgue
integral - describing the class of functions we can integrate.

* % k % %

Measurable functions

In the theory of the Riemann integral, we are only able to integrate
a certain class of functions - the Riemann integrable functions. We
will now be able to integrate a much larger range of functions - the
measurable functions. (OK, to be precise, we can only handle those
measurable functions which are absolutely integrable, but more on that
later).

Definition Let €2 be a measurable subset of R", and let f : ) — R™
be a function. A function f is measurable iff f~1(V') is measurable for
every open set V. C R™.

As discussed earlier, most sets that we deal with in real life are mea-
surable, so it is only natural to learn that most functions we deal with
in real life are also measurable. For instance, continuous functions are
automatically measurable:
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Lemma 14. Let Q) be a measurable subset of R", and let f : Q — R™
be continuous. Then f is also measurable.

Proof. Let V be any open subset of R™. Then since f is continuous,
f71(V) is open relative to 2 (Theorem 13(c) of Week 2 notes), i.e.
F~HV) = WnQ for some open set W C R™ (Proposition 7(a) of Week
1 notes). Since W is open, it is measurable; since 2 is measurable,
W N is also measurable. O

Because of Lemma 12, we have an easy criterion to test whether a
function is measurable or not:

Lemma 15. Let 2 be a measurable subset of R", and let f : @ — R™
be a function. Then f is measurable if and only if f~(B) is measurable
for every open box B.

Proof. See Week 9 homework. O

Corollary 16. Let ) be a measurable subset of R", and let f: Q) —
R™ be a function. Suppose that f = (fi,..., fm), where f; : @ = R is
the j co-ordinate of f. Then f is measurable if and only if all of the
f; are individually measurable.

Proof. See Week 9 homework. O

Unfortunately, it is not true that the composition of two measurable
functions is automatically measurable; however we can do the next
best thing: a continuous function applied to a measurable function is
measurable.

Lemma 17. Let Q be a measurable subset of R", and let W be an
open subset of R™. If f : 2 — W is measurable, and g : W — R? is
continuous, then go f : Q2 — R? is measurable.

Proof. See Week 9 homework. O
This has an immediate corollary:
Corollary 18. Let €2 be a measurable subset of R". If f: Q2 — R is

a measurable function, then so is | f|, max(f,0), and min(f,0).
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Proof. Apply Lemma 17 with g(z) := |z|, g(z) := max(z,0), and
g(z) := min(z, 0). O

A slightly less immediate corollary:

Corollary 19. Let Q be a measurable subset of R". If f: Q@ - R
and g : 0 — R are measurable functions, then sois f + g, f — ¢, fg,
max(f, g), and min(f,g). If g(xz) # 0 for all z € €, then f/g is also

measurable.

Proof. Consider f + g. We can write this as k o h, where h: Q — R?
is the function h(z) = (f(z),¢(x)), and k : R* — R is the function
k(a,b) := a+b. Since f, g are measurable, then A is also measurable by
Corollary 16. Since k is continuous, we thus see from Lemma 17 that
k o h is measurable, as desired. A similar argument deals with all the
other cases; the only thing concerning the f/g case is that the space
R? must be replaced with {(a,b) € R® : b # 0} in order to keep the
map (a,b) — a/b continuous and well-defined. O

Another characterization of measurable functions is given by

Lemma 20. Let Q be a measurable subset of R", and let f: Q2 — R
be a function. Then f is measurable if and only if f *((a,0)) is
measurable for every real number a.

Proof. See Week 9 homework. O

Inspired by this Lemma, we extend the notion of a measurable function
to the extended real number system R* := R U {+00} U {—00}:

Definition Let §2 be a measurable subset of R". A function f : Q —
R is said to be measurable iff we f~'((a,00)) is measurable for every
real number a.

Thus the notion of measurability for functions taking values in the
extended reals R* is compatible with that for functions taking place in
just the reals R.

Now we show that limits of sequences of measurable functions are also
measurable.
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e Lemma 21. Let €2 be a measurable subset of R". For each positive in-
teger n, let f,, : 2 — R* be a measurable function. Then the functions
SUpP,>1 fn, infp>1 fr, limsup,,_, o fr, and liminf,_, f, are also measur-
able. In particular, if the f, converge pointwise to another function
f:Q —= R, then f is also measurable.

e Proof. We first prove the claim about sup, -, f,. Call this function g.
We have to prove that ¢7'((a,00)) is measurable for every a. But by
the definition of supremum, we have

g ' ((a,00)) = |J £ ' ((a,00))

n>1

(why?), and the claim follows since the countable union of measurable
sets is again measurable.

e A similar argument works for inf,>; f,. The claim for lim sup and lim
inf then follow from the identities

lim sup f, = inf sup f,

n—00 N2lp>N
and
i il Ju = up il
(see math 131A). O

e As you can see, just about anything one does to a measurable function
will produce another measurable function. This is basically why almost
every function one deals with in mathematics is measurable. (Indeed,
the only way to construct non-measurable functions is via artificial
means such as invoking the axiom of choice).

X %k ok ok ok

Simple functions

e One way to approach the theory of the Riemann integral is to begin by
integrating a particularly simple class of functions, namely the piecewise
constant functions; see for instance Week 9-10 of my Math 131AH notes.
Among other things, piecewise constant functions only attain a finite

24



number of values (as opposed to most functions in real life, which can
take an infinite number of values). Once one learns how to integrate
piecewise constant functions, one can then integrate other Riemann
integrable functions by a similar procedure.

A similar philosophy is used to construct the Lebesgue integral. We
shall begin by considering a special subclass of measurable functions -
the simple functions. Next week we will show how to integrate simple
functions, and then from there we will integrate all measurable func-
tions (or at least the absolutely integrable ones).

Definition Let €2 be a measurable subset of R", and let f : 2 - R
be a measurable function. We say that f is a simple function if the
image f(2) is finite. In other words, there exists a finite number of real
numbers ¢i, ¢z, . . ., ¢y such that for every z € Q, we have f(z) = ¢, for
some 1 < j < N.

Example. Let 2 be a measurable subset of R", and let E' be a measur-
able subset of ). We define the characteristic function xg : 2 — R by
setting xg(z) :=1if z € E, and xg(z) :=0if 2 € E. (In some texts,
X is also written 1z; Rudin uses Kg but this is rare nowadays). Then
XE is a measurable function (why?), and is a simple function, because
the image xg(f2) is {0,1} (or {0} if E' is empty, or {1} if E' = Q).

We remark on three basic properties of simple functions. First, the
space of simple functions forms a vector space:

Lemma 22. Let  be a measurable subset of R", and let f: Q2 - R
and g : 2 — R be simple functions. Then f + g is also a simple
function. Also, for any scalar ¢ € R, the function cf is also a simple
function.

Proof. See Week 9 homework. O

Secondly, the space of simple functions is generated by the character-
istic functions, i.e. every simple function is a linear combination of
characteristic functions:

Lemma 23. Let 2 be a measurable subset of R", and let f : Q) —
R be a simple function. Then there exists a finite number of real
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numbers ci,...,cy, and a finite number of disjoint measurable sets
FE FE,, ..., Eyxin , such that f = Zf\il CiXE;-

Proof. See Week 9 homework. O

Thirdly, we can approximate general measurable functions by simple
ones.

Lemma 24. Let 2 be a measurable subset of R", and let f: Q2 - R
be a measurable function. Suppose that f is always non-negative, i.e.
f(z) > 0 for all z € Q. Then there exists a sequence fi, fa, fs,... of
simple functions, f, : 2 — R, such that the f,, are non-negative and
increasing,

0< fi(z) < folz) < f3(x) < ... for all z € Q
and converge pointwise to f:

lim f,(z) = f(z) for all z € Q.

n—oo

Proof. See Week 9 homework. O

Next week, we will integrate these simple functions and then construct
the Lebesgue integral.
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