Math 131AH - Week 6
Textbook pages: 51-52,83-89.
Topics covered:

Subsequences

The Bolzano-Weierstrass theorem
Functions on the real line
Limiting values of functions

Continuous functions
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Subsequences

In last week’s notes, we discussed all kinds of sequences (a,)5°; of real
numbers. Some sequences were convergent, but others were not. For
instance, the sequence

1.1,0.1,1.01,0.01,1.001, 0.001, 1.0001, . ..

has two limit points at 0 and 1 (which are incidentally also the lim inf
and lim sup respectively), but is not actually convergent (since the lim
sup and lim inf are not equal). However, while this sequence is not
convergent, it does appear to contain convergent components; it seems
to be a mixture of two convergent subsequences, namely

1.1,1.01,1.001, . ..
and
0.1,0.01,0.001, . . ..

To make this notion more precise, we need a notion of subsequence.

Definition. Let (a,,)%, and (b,)%, be sequences of real numbers. We
say that (b,)5%, is a subsequence of (a,)22, iff there exists a function
f : N — N which is strictly increasing (i.e. f(n ++) > f(n) for all
n € N) such that

bn, = ay(n) for all n € N.



For instance, the sequence (ag,)%, is a subsequence of (a,)$,, since
the function f : N — N defined by f(n) := 2n is a strictly increasing
function from N to N. (Note that we do not assume this function to be
bijective, although it is necessarily injective (why?)). More informally,
the sequence

Qgp, A9, 04, g, - - .

is a subsequence of
o, G1, A2,03,04, . - ..

Thus, for instance, the two sequences
1.1,1.01,1.001,...
and
0.1,0.01,0.001, ...

mentioned earlier are both subsequences of

1.1,0.1,1.01,0.01, 1.001, 1.0001, . ..

The property of being a subsequence is reflexive and transitive, though
not symmetric:

Lemma 1. Let (a,)2,, (b,)5%, and (c,)22, be sequences of real
numbers. Then (a,)%, is a subsequence of (a,)%,. Furthermore, if
(bn)o2, is a subsequence of (a,)5,, and (c,)2, is a subsequence of
(bn)22y, then (c,)22, is a subsequence of (a,)$,.

Proof. See Week 6 homework. O
Subsequences are also related to limits in the following way:

Proposition 2. Let (a,), be a sequence of real numbers, and let L
be a real number.

a) If the sequence (a,)22, converges to L, then every subsequence of
an)>, also converges to L.

b) Conversely, if every subsequence of (a,)$°, converges to L, then
a,)3 , itself converges to L.
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Proof. See Week 6 homework. O

Remember the concept of limit points from last week’s notes? They
correspond exactly to limits of subsequences (which explains why these
points were called limit points in the first place):

Proposition 3. Let (a,), be a sequence of real numbers, and let L
be a real number.

(a) Suppose L is a limit point of (a,)2,. Then there exists a subse-
quence of (a,)32, which converges to L.

(b) Conversely, suppose that there exists a subsequence of (a,)3,
which converges to L. Then L is a limit point of (a,)2,.

Proof. See Week 6 homework. O

Note the contrast between the notion of a limit, and that of a limit
point, evidenced by Propositions 2 and 3. When a sequence has a limit
L, then all subsequences also converge to L. But when a sequence only
has L as a limit point, then only some subsequences converge to L.

The above propositions, combined with some propositions from pre-
vious notes, have an important consequence: every bounded sequence
has a convergent subsequence.

Bolzano-Weierstrass theorem. Let (a,)3, be a bounded sequence
(i.e. there exists a real number M > 0 such that |a,| < M for all
n € N). Then there is at least one subsequence of (a,)>2, which
converges.

Proof. Let L be the limit superior of the sequence (a,)22,. Since we
have —M < a,, < M for all natural numbers n, it follows from the com-
parison principle (Lemma 28 from Week 3/4 notes) that —M < L < M.
In particular, L is a real number (not +o0o or —oo). By Proposition
27(e) from Week 3/4 notes, L is thus a limit point of (a,)2,. By Propo-
sition 3(a), there thus exists a subsequence of (a,)3% , which converges

(in fact, it converges to L). O



e Note that we could as well have used the limit inferior instead of the
limit superior in the above argument.

e The Bolzano-Weierstrass theorem says that if a sequence is bounded,
then eventually it has no choice but to converge in some places; it has
“no room” to spread out and stop itself from acquiring limit points. It is
not true for unbounded sequences; for instance, the sequence 1,2, 3, ...
has no convergent subsequences whatsoever (why?). In the language
of topology (which you will learn in Math 121), this means that the
interval {x € R: —M < z < M} is compact, whereas an unbounded
set such as the real line R is not compact. The distinction between
compact sets and non-compact sets will be very important in more
advanced analysis courses - of similar importance to the distinction
between finite sets and infinite sets. However, we will not cover this
concept in depth here in this course.

* %k ok >k ok

Functions on the real line

e In the last few weeks we have been focusing quite heavily on sequences.
A sequence (a,)32, is something which assigns a real number a, to
each natural number n. In other words, it is a function from N to R.
We then did various things with these functions from N to R, such
as take their limit at infinity (if the function was convergent), or form
suprema, infima, etc., or computed the sum of all the elements in the
sequence (again, assuming the series was convergent).

e Now we will look at functions not on the natural numbers N, which
are “discrete”, but instead look at functions on continua such as R, or
perhaps intervals such as {x € R : a < z < b}. (We will not define
the notion of a discrete set or a continuum in this course, but roughly
speaking a set is discrete if each element is separated from the rest
of the set by some non-zero distance; at the other extreme, a set is
a continuum if no element is separated from the rest of the set by a
non-zero distance, and also every Cauchy sequence in the continuum
converges in that continuum (this basically ensures that the continuum
contains no “holes”; thus for instance the rationals are not considered
a continuum).)



e You are familiar with many functions f : R — R from the real line
to the real line. Some examples are: f(z) := 22 + 3z + 5; f(z) =
2% /(z? +1); f(x) := sin(z) exp(z) (though of course we have not yet
defined the functions sin and exp in this course). These are functions
from R to R since to every real number = they assign a single real
number f(x). (Note that these functions are not necessarily injective
or surjective). We can also consider more exotic functions, e.g.

1 ifzeqQ

/(@) '_{ 0 ifz¢gQ.
This function is not algebraic (i.e. it cannot be expressed in terms of
x purely by using the standard algebraic operations of 4+, —, X, /, V)

etc.; we will not need this notion in this course), but it is still a function
from R to R, because it still assigns a real number f(z) to each z € R.

e In the above cases, the domain of the function was all of the real line R.
However, we can work on smaller domains, such as the positive half-line
RY:={z € R:z > 0}, the negative half-line R™ := {z € R : 2 < 0},
or on various (bounded) intervals. (Bounded) intervals come in four
types: the closed intervals

[a,b] :={z € R:a <z < b},
the two types of half-open intervals
[a,b) :={r€eR:a<z<b}; (a,b]:={z€R:a<z<b},
and the open intervals
(a,b0) :={zx € R:a <z < b}.

Here a and b are real numbers such that ¢ < b. These are of course not
the only subsets of R (consider, for instance, the natural numbers N,
or the rationals Q), but they do appear very frequently in analysis.

e There are also the half-infinite intervals, which can be either closed
half-intervals such as

[a,00) :={r € R:2z>a} and (—o0,a] :={z € R: 2 <a}
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and the open half-intervals such as
(a,00):={r € R:2z>a} and (—00,a) :={x e R:x <a}

To complete the set, we sometimes refer to the entire real-line as the
doubly-infinite interval (—o0, 00).

We can take any one of the previous functions f : R — R defined on all
of R, and restrict the domain to a smaller set X C R, creating a new
function, sometimes called f|x, from X to R. This is the same function
as the original function f, but is only defined on a smaller domain.
(Thus f|x(z) := f(z) when z € X, and f|x(x) is undefined when
r ¢ X). For instance, we can restrict the function f(z) := z?, which is
initially defined from R to R, to the interval [1, 2], thus creating a new
function flj19 : [1,2] — R, which is defined as f|;;9(z) = 2> when
x € [1,2] but is undefined elsewhere.

One could also restrict the range from R to some smaller subset Y
of R, provided of course that all the values of f(z) lie inside R. For
instance, the function f : R — R defined by f(z) := z? could also be
thought of as a function from R to [0, 00), instead of a function from
R to R. Strictly speaking, these two functions are different functions,
but the distinction between them is so minor that we shall often be
careless about the range of a function in this week’s discussion.

Strictly speaking, there is a distinction to make between a function f,
and its value f(x) at a point z. f is a function; but f(z) is a number
(which depends on some free variable z). This distinction is rather
subtle and we will not stress it too much, but there are times when one
has to distinguish between the two. For instance, if f : R — R is the
function f(x) := 22, and g := f|;1,9 is the restriction of f to the interval
[1,2], then f and g both perform the operation of squaring, i.e. f(z) =
z? and g(x) = x?, but the two functions f and g are not considered the
same function, f # g, because they have different domains. Despite
this distinction, we shall often be careless, and say things like “consider
the function 22 4+ 2z + 3” when really we should be saying “consider
the function f : R — R defined by f(z) := 22 + 2z + 3”. (This
distinction makes more of a difference when we start doing things like



differentiation. For instance, if f : R — R is the function f(x) = z?,
then of course f(3) = 9, but the derivative of f at 3 is 6, whereas the
derivative of 9 is of course 0, so we cannot simply “differentiate both
sides” of f(3) =9 and conclude that 6 = 0).

We can represent functions from R to R (or from any subset of R to
R) by means of a graph in R?, as you all know; this is of course a very
useful visual tool, though it is possible to work with functions without
the aid of graphs.

Given two functions f : X — Y and g : Y — Z, we can form the
composition go f : X — Z defined by go f(z) := g(f(z)) forall z € X.
Note that while g appears to the left of f in g o f, in fact f is applied
to x first. This is an unfortunate blemish in modern mathematical
notation (the problem is that the function f is always written before
the variable x, when a more logical approach would have been to put
the function after the variable (i.e. (z)f instead of f(x))), but it is too
late to do anything about it now. Thus, for instance, if f : R -+ R
and ¢ : R — R are the functions f(z) := z? and g(z) := 2z, then
fog(x):= (22)* = 422, while g o f(x) = 2(z?) = 22°.

Given two functions f : X — R and ¢ : X — R, we can define their
sum f + g : X — R by the formula

(f +9)(z) = f(z) + g(z).

Thus, for instance, if f : R — R is the function f(z) := z?, and
g : R — R is the function g(x) := 2z, then f+¢g : R — R is
the function (f + ¢)(z) := z? + 2z. In a similar vein, we can define
f—9g: X —=>Rby

(f = 9)(@) := f(z) — g(=),
the product fg: X — R by

(f9)(z) := f(z)g(=),
and (provided that g(x) # 0 for all z € X)) the quotient f/g: X - R

by
(f/9)(z) == f(z)/g().
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Finally, if ¢ € R is a real number, we can define ¢f : X — R by

(cf)(x) := cf(x).

For instance, in the preceding example, 6f : R — R is the function

(6f)(x) := 62

* % k % %

Adherent points of sets

We now pause to define a technical concept - that of a adherent point
of a set. This is similar to, but slightly different from, the notion of a
limit point of a sequence, which we discussed earlier.

Definition Let X be a subset of R, let ¢ > 0, and let + € R. We say
that z is e-adherent to X iff there exists a y € X which is e-close to =
(ie. |z —y| <e).

Example. The point 1.1 is 0.5-adherent to the open interval (0, 1), but
is not 0.1-adherent to this interval (why?). The point 1.1 is 0.5-adherent
to the finite set {1, 2, 3}. The point 1 is 0.5-adherent to {1, 2,3} (why?).

Definition Let X be a subset of R, and let z € R. We say that z is
an adherent point of X iff it is e-adherent to X for every € > 0.

Example The number 1 is e-adherent to the open interval (0, 1) for
every € > (0 (why?), and is thus an adherent point of (0,1). The point
0.5 is similarly an adherent point of (0,1). However, the number 2 is
not 0.5-adherent (for instance) to (0,1), and is thus not an adherent
point to (0,1).

Example Given any subset X of R, every element of X is an adherent
point of X (why?).

Example Every real number z is an adherent point of R (why?). Every
integer is of course an adherent point of Z, but every non-integer is not
an adherent point of Z.

Example Every real number z is an adherent point of Q (why?).



A remark: there is a slightly different notion of a limit point or cluster
point in the literature, which is a little bit different from adherent point,
but we will not need these notions here. (You can look up limit points
in page 32 of the textbook, though).

Definition Let X be a subset of R. The closure of X, sometimes
denoted X is defined to be the set of all the adherent points of X.

Lemma 4. Let a < b be real numbers, and let I be any one of the four
intervals (a, b), (a,b], [a,b), or [a,b]. Let x be a real number. Then the
closure of I is [a, b]. Similarly, the closure of (a, o) or [a, c0) is [a, 00),
while the closure of (—o0, a) or (=00, al is (—o0, a]. Finally, the closure
of (—o0,00) is (—00, 00).

Proof. We will just show one of these facts, namely that the closure
of (a,b) is [a, b]; the other results are proven similarly.

First let us show that every element of [a, b] is adherent to (a,b). Let
z € [a,b]. If x € (a,b) then it is definitely adherent to (a,b). If x = b
then z is also adherent to (a,b) (why?). Similarly when z = a. Thus
every point in [a, b] is adherent to (a, b).

Now we show that every point = adherent to (a, b) lies in [a, b]. Suppose
for contradiction that  does not lie in [a, b], then either x > bor z < a.
If > b then z is not (z — b)-adherent to (a,b) (why?), and is hence
not an adherent point to (a,b). Similarly if z < a. This contradiction
shows that x is in fact in [a, b] as claimed. O

The following lemma shows that adherent points of a set X can be
obtained as the limit of elements in X:

Lemma 5. Let X be a subset of R, and let x € R. Then z is an
adherent point of X if and only if there exists a sequence (a,)2,,
consisting entirely of elements in X, which converges to x.

Proof. See Week 6 homework. O

* % k % %

Limiting values of functions



In previous notes, we defined what it means for a sequence (a,)$2, to
converge to a limit L. We now define a similar notion for what it means
for a function f defined on the real line, or on some subset of the real
line, to converge to some value at a point.

Just as we used the notions of e-closeness and eventual e-closeness to
deal with limits of sequences, we shall need a notion of e-closeness and
local e-closeness to deal with limits of functions.

Definition. Let X be a subset of R, let f : X — R be a function, let
L be a real number, and let ¢ > 0 be a real number. We say that the
function f is e-close to L iff f(z) is e-close to L for every z € X.

Example. When the function f(z) := 22 is restricted to the interval
[1, 3], then it is 5-close to 4, since when z € [1,3] then 1 < f(z) <9,
and hence |f(z) — 4] < 5. When instead it is restricted to the smaller
interval [1.9, 2.1], then it is 0.41-close to 4, since if x € [1.9,2.1], then
3.61 < f(z) < 4.41, and hence |f(z) — 4| < 0.41.

Definition. Let X be a subset of R, let f : X — R be a function,
let L be a real number, zy be an adherent point of X, and € > 0 be
a real number. We say that f is e-close to L near xy iff there exists

a 0 > 0 such that f becomes e-close to L when restricted to the set
{z € X :|z— x| < d}.

Example. Let f : [1,3] — R be the function f(z) := 2?2, restricted to
the interval [1, 3]. This function is not 0.1-close to 4, since for instance
f(1) is not 0.1-close to 4. However, f is 0.1-close to 4 near 2, since when
restricted the set {z € [1,3] : |z — 2| < 0.01}, the function f is indeed
0.1-close to 4 (since when |z — 2| < 0.01, we have 1.99 < z < 2.01, and
hence 3.9601 < f(z) < 4.0401, and in particular f(z) is 0.1-close to 4).

Example. Continuing with the same function f used in the previous
example, we observe that f is not 0.1-close to 9, since for instance f(1)
is not 0.1-close to 9. However, f is 0.1-close to 9 near 3, since when
restricted to the set {z € [1,3] : |z — 3| < 0.01} - which is the same as
the half-open interval (2.99, 3] (why?), the function f becomes 0.1-close
to 9 (since if 2.99 < z < 3, then 8.9401 < f(z) <9, and hence f(z) is
0.1-close to 9.).

10



Definition. Let X be a subset of R, let f : X — R be a function,
let ' be a subset of X, x5 be an adherent point of E, and let L be
a real number. We say that f converges to L at xy in E, and write
lim,_,30.0er f(z) = L, iff f is e-close to L near zg for every ¢ > 0. If
f does not converge to any number L at xy, we say that f diverges at
zo, and leave limy_,;0.5ep f(z) undefined.

In other words, we have lim, ,;..ecr f(z) = L iff for every ¢ > 0,
there exists a 6 > 0 such that |f(z) — L| < € for all z € E such that
|z—x| < 0. (Why is this definition equivalent to the one given above?).

In many cases we will omit the set E from the above notation (i.e. we
will just say that f converges to L at zg, or that lim, ., f(z) = L),
although this is slightly dangerous. More on this later.

Example. Let f : [1,3] — R be the function f(z) := 2?. We have
seen before that f is 0.1-close to 4 near 2. A similar argument shows
that f is 0.01-close to 4 near 2 (one just has to pick a smaller value of

5).

This definition is rather unwieldy. However, we can rewrite this defini-
tion in terms of a more familiar one, involving limits of sequences.

Proposition 6. Let X be a subset of R, let f : X — R be a function,
let £ be a subset of X, let 2y be an adherent point of E, and let L be
a real number. Then the following two statements are equivalent (i.e.
if one is true then the other is true, and conversely):

(a) f converges to L at xy in E.

(b) For every sequence (a,)>°, which consists entirely of elements of
E, which converges to z, the sequence (f(a,)), converges to f(zo).

Proof. See Week 6 homework. O

One consequence of Proposition 6 can be written somewhat infor-
mally as follows: if lim, ,, ..cp f(x) = L, and lim,_, a, = =g, then
lim, , f(a,) = L. (Why does this follow from Proposition 67 I said
that this statement was somewhat informal, because I didn’t specify
all the assumptions on f, xg, L, E, etc.).
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Because of the above proposition, we will sometimes say “f(z) — L as
x — o in E” or “f has limit L at z¢ in E” instead of “f converges to
L at xy”, or “limg_,, f(x) = L”.

Note that we only consider limits of a function f at z, in the case when
zo is an adherent point of E. When z is not an adherent point then it
is not worth it to define the concept of a limit (can you see why there
will be problems?).

Note that the variable x used to denote limit is a dummy variable;
we could replace it by any other variable and obtain exactly the same
limit. For instance, if lim,_;.zep f(2) = L, then limy_,.per f(y) = L,
and conversely (why?).

Proposition 6 has some immediate corollaries. For instance, we now
know that a function can have at most one limit at each point.

Corollary 7. Let X be a subset of R, let F be a subset of X, let x,
be an adherent point of E, and let f : X — R be a function. Then f
can have at most one limit at zy in E.

Proof. Suppose for contradiction that there are two distinct limits L
and L' such that f has limit L at zo in E, and such that f also has
limit L' at xy in E. Since x is an adherent point of £, we know by
Lemma 5 that there is a sequence (a,)32, consisting of elements in
which converges to . Since f has limit L at xy in E, we thus see by
Proposition 6, that (f(a,))S, converges to L. But since f also has
limit L' at zo in E, we see that (f(a,))3, also converges to L'. But
this contradicts the uniqueness of limits of sequences (Proposition 16

of Week 3/4 notes). O

Using the limit laws for sequences, one can now deduce the limit laws
for functions:

Proposition 8. (Limit laws for functions) Let X be a subset of
R, let E be a subset of X, let zy be an adherent point of E, and let
f: X —Rand g: X — R be functions. Suppose that f has limit L
at xo in E, and g has limit M at zy in E. Then f 4 g has limit L + M
at xg in E, f — g has limit L — M at zy in E, and fg has limit LM at
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xg in F. If ¢ is a real number, then c¢f has limit ¢L at g in E. Finally,
if g is non-zero on E (i.e. g(z) # 0 for all z € F) and M is non-zero,
then f/g has limit L/M at z, in E.

Proof. We just prove the first claim (that f + g has limit L + M);
the others are very similar and are left to the reader. Since z; is an
adherent point of F, we know by Lemma 5 that there is a sequence
(an)$2, consisting of elements in E which converge to xy. Since f
has limit L at z, in E, we thus see by Proposition 6, that (f(a,))22,
converges to L. Similarly (g(a,))s, converges to M. By the limit
laws for sequences (Theorem 21 from Week 3/4 notes) we conclude
that ((f+9¢)(an))2, converges to L+ M. By Proposition 6 again, this
implies that f + ¢ has limit L + M at z, in F as desired (since (a,)2,
was an arbitrary sequence in E converging to xy). The other claims
are proven similarly. U

One can phrase Proposition 8 more informally as saying that

lim (f+g¢)(z)= lim f(z)+ lim g(x)

rz—xo;xeER r—xo;r€E r—To;xEE
li - = I — I
w—):clor,I;EE(f g) (31‘) ;c—):clor,geE f(ﬂf) :c—);cloI,I;EEg(x)
li = 1 li
9@ = i @), lim (@)
_ limy po.zem f()
hm ) = T—T0;TE
Jlim (1/9)(w) = e

but bear in mind that these identities are only true when the right-hand
side makes sense, and furthermore for the third identity we need g to
be non-zero, and also lim,_,;..eg g(z) to be non-zero.

Using these limit laws we can already deduce several limits. First of
all, it is easy to check the basic limits

lim c=c
z—)a:g;zER

and

lim 1z =x
T—T0;TE
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for any real numbers xy and ¢ (why? use Proposition 6). By the limit
laws we can thus conclude that

lim _2° =z
T—To;TE

lim cx = cxy
w—mo;weR

lim x2+cx+d:x§+cajo+d

T—>T0;TE

etc., where ¢, d are arbitrary real numbers.

If f converges to L at x5 in X, and Y is any subset of X such that x,
is still an adherent point of Y, then f will also converge to L at z( in
Y (why?). Thus convergence on a large set implies convergence on a
smaller set. The converse, however, is not true. Consider the signum
function sgn : R — R, defined by

1 ife>0
sgn(z):=¢ 0 ifz=0
-1 ifz<0

Then lim,_,0:2¢(0,00) 580 (7) = 1 (why?), but lim, 0:z¢(—00,0) = —1 (Why?),
while lim__ ;g is undefined (why?). Thus it is sometimes dangerous
to drop the set X from the notation of limit. However, in many cases it
is safe to do so; for instance, since we know that lim g T? = 12,
we know in fact that limge,gcex 2° = 23 for any set X with zo as an

adherent point (why?). Thus it is safe to write lim,_,,, 72 = 3.
Example. Let f(z) be the function

1 ifz=0
f(””)::{ 0 ifz#0.

Then lim_,, R (g f(z) = 0 (why?), but lim g f(z) is unde-
fined (why). (When this happens, we say that f has a “removable
singularity” or “removable discontinuity” at 0. Because of such singu-
larities, it is sometimes the convention when writing lim,_,,, f(z) to
automatically exclude xy from the set; for instance, in the textbook,
lim,_,5, f(x) is used as shorthand for limg_, 4 .0e x (a0} f())-

14



e On the other hand, the limit at xy should only depend on the values
of the function near xy; the values away from xy are not relevant. The
following proposition reflects this intuition:

e Proposition 9. Let X be a subset of R, let E be a subset of X, let
xo be an adherent point of F, let f : X — R be a function, and let L
be a real number. Let 6 > 0. Then we have

w_)}ﬂiorgeEf(m) =L
if and only if
w%wo:zeljﬂlg?éo,g,woﬁ) f(z) = L.
e Proof. See Week 6 homework. -

e Informally, the above proposition asserts that

lim T) = lim x).
w—)wo;meEf( ) w—)zo;zeEﬂ(xo—(S,zco—l—&)f( )
Thus the limit of a function at zy, if it exists, only depends on the
values of f near zy; the values far away do not actually influence the
limit.

e We now give a few more examples of limits.

e Example Consider the functions f : R -+ R and ¢ : R — R defined
by f(z) == = +2 and g(z) := x + 1. Then lim_, R f(zr) = 4
and lim__, Rg(r) = 3. We would like to use the limit laws to

conclude that lim ., g f(z)/g(z) = 4/3, or in other words that
so20cR i—ﬁ = 3. Strictly speaking, we cannot use Proposition 8

to ensure this, because z + 1 is zero at £ = —1, and so f(z)/g(x) is not
defined. However, this is easily solved, by restricting the domain of f

and g from R to a smaller domain, such as R —{1}. Then Proposition

8 does apply, and we have hmw—)?zERf{l} i—ﬁ = %.

lim

e Example Consider the function f : R — {1} — R defined by f(z) :=
(z? — 1)/(z — 1). This function is well-defined for every real number
except 1, so f(1) is undefined. However, 1 is still an adherent point of
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R — {1} (why?), and the limit lim,_ R_q f(z) is still defined. This
is because on the domain R—{1} we have the identity (z?—1)/(z—1) =
(z+1)(z-1)/(z-1)=z+1andlim_,, g jo+1=2

e Example Let f : R — R be the function

1 ifzeqQ
f(”)'_{o ifz ¢ Q.

We will show that f(z) has no limit at 0 in R. Suppose for contra-
diction that f(z) had some limit L at 0 in R. Then we would have
lim,, , f(a,) = L whenever (a,)2, is a sequence of non-zero numbers

converging to 0. Since (1/n)%, is such a sequence, we would have

L= lim f(1/n)= lim 1=1.
n—00 n—00

On the other hand, since (v/2/n)%°, is another sequence of non-zero
numbers converging to 0 - but now these numbers are irrational instead
of rational - we have
L = lim f(v2/n) = lim 0 =0.
n—00 n—r00
Since 1 # 0, we have a contradiction. Thus this function does not have
a limit at 0.

* % k % %

Continuous functions

e We now introduce one of the most fundamental notions in the theory
of functions - that of continuity.

e Definition. Let X be a subset of R, and let f : X — R be a function.
Let zy be an element of X. We say that f is continuous at xq iff we
have

lim  f(x) = f(zo);

T—To;rEX
in other words, the limit of f(z) as = converges to xy in X exists
and is equal to f(zy). We say that f is continuous on X (or simply
continuous) iff f is continuous at z, for every zy € X. We say that f
is discontinuous at xq iff it is not continuous at x,.
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e Example. Let ¢ be a real number, and let f : R — R be the constant
function f(x) := c. Then for every real number z; € R, we have
lim, R f(®)=lim _  gc=c=f(z), thus f is continuous at
every point o € R, and thus f is continuous on R.

e Example. Let f : R — R be the identity function f(z) := 2. Then for
every real number zo € R, we have lim_ LeoweR flz) = lim cracRT =
zo = f(xg), thus f is continuous at every point zy € R, and thus f is
continuous on R.

e Example. Let sgn : R — R be the signum function defined earlier.
Then sgn(z) is continuous at every non-zero value of z; for instance, at
1, we have (using Proposition 9)

li = li = li 1=1= 1).
i sen(e) =l psEr@ = sen(1)

On the other hand, sgn is not continuous at 0, since lim_ ;. g sgn(z)
does not exist.

e Example Let f : R — R be the function

1 ifzeqQ
f@y_{o ifz ¢ Q.

Then by the discussion in the previous section, f is not continuous at
0. In fact, it turns out that f is not continuous at any real number x,
(can you see why?).

e Example Let f : R — R be the function
1 ifz>0
f@y_{o if 7 < 0.

Then f is continuous at every non-zero real number (why?), but is not
continuous at 0. However, if we restrict f to the right-hand line [0, 00),
then the resulting function f|j ) now becomes continuous everywhere
in its domain, including 0. Thus restricting the domain of a function
can make a discontinuous function continuous again.
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There are several ways to phrase the statement that “f is continuous
at xy”:

Proposition 10. Let X be a subset of R, let f : X — R be a function,
and let ¢ be an element of X. Then the following three statements
are equivalent:

(a) f is continuous at x.

(b) For every sequence (a,, ), consisting of elements of X with lim,, o a, =
xo, we have lim,_, f(an) = f(z0).

(c) For every € > 0, there exists a § > 0 such that |f(z) — f(zo)| < &
for all x € X with |z — z¢| < 4.

Proof. See Week 6 homework. O

A particularly useful consequence of Proposition 10 is the following: if
f is continuous at g, and a, — xy as n — oo, then f(a,) — f(zo) as
n — oo (provided that all the elements of the sequence (a,)3, lie in
the domain of f, of course). Thus continuous functions are very useful
in computing limits.

The limit laws in Proposition 8, combined with the definition of conti-
nuity, immediately implies

Proposition 11. Let X be a subset of R, and let f : X — R and
g : X — R be functions. Let o € X. Then if f and ¢g are both
continuous at xg, then the functions f + g and fg are also continuous
at xg. If g is non-zero on X, then f/g is also continuous at z.

In particular, the sum, difference, and product of continuous functions
are continuous; and the quotient of two continuous functions is contin-
uous as long as the denominator does not become zero.

One can use Proposition 11 to show that a lot of functions are continu-
ous. For instance, just by starting from the fact that constant functions
are continuous, and the identity function f(z) = z is continuous, one
can show that the function g(z) := (z® + 422 + z + 5) /(2% — 4), for in-
stance, is continuous at every point of R except the two points z = 42,
r = —2 where the denominator vanishes.

18



Some other examples of continuous functions:

Proposition 12. Let a > 0 be a positive real number. Then the
function f: R — R defined by f(z) := a® is continuous.

Proof. See Week 6 homework. O

Proposition 13. Let p be a real number. Then the function f :
(0,00) — R defined by f(z) := P is continuous.

Proof. See Week 6 homework. O

Proposition 14. The function f : R — R defined by f(z) := |z| is
continuous.

Proof. We have to show that f is continuous at every real number z.
So, let x5 be an arbitrary real number. There are three cases, xq > 0,
zo = 0, and zy < 0. First suppose that zq > 0; we have to show that

lim,_, R |z| = [zo|. By Proposition 9 (with ¢ := z0/2), we have
lim _|z| = lim |z| = lim T = 2o = |0
z—ozoze R z—x0;2€(T0/2,320/2) T—x0;x€(T0/2,310/2)

as desired. Thus f is continuous at xy when z( is positive. A similar
argument gives continuity when z is negative; so it suffices to show
that f is continuous at 0. By Proposition 10, it suffices to show that
whenever (a,)2, is a sequence of real numbers converging to 0, then
(lan|)22, also converges to |0] = 0. But this follows from Q10 of Week
4 homework. U

The class of continuous functions are not only closed under addition,
subtraction, multiplication, and division, but are also closed under com-
position:

Proposition 15. Let X and Y be subsets of R, and let f: X — Y
and g : Y — R be functions. Let x4 be a point in X. If f is continuous
at zo, and g is continuous at f(xg), then the composition gof : X - R
is continuous at xg.

Proof. See Week 6 homework. O.
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e Example Since the function f(z) := 3z 4+ 1 is continuous on all of
R, and the function g(z) := 5% is continuous on all of R, the function
go f(x) = 53*1 is continuous on all of R. By several applications of the
above propositions, one can show that far more complicated functions,
e.g. h(z) == |z — 8z 4 7|V2/(22 + 1), are also continuous (why is this
function continuous?). There are still a few functions though that are
not yet easy to test for continuity, such as k(x) := z%; this function can
be dealt with more easily once we have the machinery of logarithms,
which we will see later in this course.

X %k sk ok ok

Left and right limits

e We now introduce the notion of left and right limits, which can be
thought of as two seperate “halves” of the complete limit lim,_, ;o..ex f(2).

e Definition. Let X be a subset of R, f : X — R be a function, and
let zy be a real number. If zj is an adherent point of X N (zy, 00), then
we define the right limit f(xo+) of f at zo by the formula

= li ;
f(xO‘f‘) m—)mo;zel%(mo,oo) f(ﬂ?),
if this limit does not exist, or z; is not an adherent point of X N(zy, o),
we leave f(zo+) undefined. Similarly, if z, is an adherent point of
X N (—o0, ), then we define the left limit f(zo—) of f at xy by the
formula

flxo—) = lim f(z);

T—x0;€ X N(—00,20)

if this limit does not exist, or xy is not an adherent point of X N
(=00, xp), we leave f(zo—) undefined.

e Sometimes we write lim, ;. f(x) as shorthand for lim,_,;q.2e xn(20,00) f (),
and similarly write lim,_,,,— f(z) as shorthand for lim,_, ;3¢ xn(—o00,20) f ().

e Example Consider the signum function sgn : R — R defined earlier.
We have

sgn(0+) = lim sgn(z) = lim 1=1

z—m:o;a:ER,ﬂ(O,oo) m—)mo;zeRﬂ(O,oo)
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while

sgn(0—) = lim sgn(x) = lim -1 =-1,
( ) w—)wo;wERﬂ(foo,O) ( ) w—)wo;zERﬂ(foo,O)

while sgn(0) = 0 by definition.

Note that f does not necessarily have to be defined at xy in order for
f(zo+) or f(zo—) to be defined. For instance, if f : R — {0} — R is
the function f(z) := z/|z|, then f(0+) =1 and f(0—) = —1 (why?),
even though f(0) is undefined.

From Proposition 10 we see that if f(xo+) exists, and (a,)%%, is a
sequence in X converging to x¢ from the right (i.e. a, > o for all n €
N), then lim,_,o f(an) = f(zo+). Similarly, if (b,)5, is a sequence
converging to zy from the left (i.e. a, < zy for all n € N) then

lim,, o f(a'n) = f(xO_)-

Let xy be an adherent point of both X N (zy, 00) and X N (—o0, x).
If f is continuous at g, it is clear from Proposition 10 that f(z¢+)
and f(zo—) both exist and are equal to f(zg) (can you see why?). A
converse is also true (compare this with Proposition 27(f) of Week 3/4
notes):

Proposition 16. Let X be a subset of R containing a real number
To, and suppose that z, is an adherent point of both X N (z, 00) and
X N (—o0,xp). Let f: X — R be a function. If f(zo+) and f(x¢—)
both exist and are both equal to f(z¢), then f is continuous at x.

Proof. Let us write L := f(x(). Then by hypothesis we have

lim f(z)=1L

z—0;z€XN(x0,00)

and
lim f(z) = L.

T—T0;z€EXN(—00,z0)

Let ¢ > 0. From the first limit and Proposition 10, we know that there
exists a 6, > 0 such that |f(z) — L| < € for all x € X N (x9,00) for
which |z — xy| < 04. From the second limit we similarly know that
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there exists a 6 > 0 such that |f(z) — L| < e for all z € X N (—o0, )
for which |z — 2| < §_. Now let § := min(6_,d,); then § > 0 (why?),
and suppose that z € X is such that |z —x¢| < §. Then there are three
cases: ¥ > Ty, T = Ty, and = < xg, but in all three cases we know that
|f(z) — L| < & (why? the reason is different in each of the three cases).

By Proposition 10 we thus have that f is continuous at xy, as desired.
d

As we saw with the signum function, it is possible for the left and right
limits f(xo—), f(zo+) of a function f at a point xy to both exist, but
not be equal each other; when this happens, we say that f has a jump
discontinuity at xo. Thus, for instance, the signum function has a jump
discontinuity at zero. Also, it is possible for the left and right limits
f(zo—), f(xo+) to exist and be equal each other, but not be equal to
f(zo); when this happens we say that f has a removable discontinuity
(or removable singularity) at zo. For instance, if we take f : R - R

be the function .
1 ifz=0
1) '_{ 0 ifx#0,

then f(0+) and f(0—) both exist and equal 0 (why?), but f(0) equals
1; thus f has a removable discontinuity at 0.

(Optional remark) Jump discontinuities and removable discontinuities
are not the only way a function can be discontinuous. Another way is
for a function to go off to infinity at the discontinuity: for instance, the
function f : R — {0} — R defined by f(z) := 1/x has a discontinuity
at 0 which is neither a jump discontinuity or a removable singularity;
informally, f(z) converges to 400 when x approaches 0 on the right,
and converges to —oo when x approaches 0 on the left. (We have not
defined precisely what it means to converge to +oo or —oo; but see page
55 of the textbook). These types of singularities are sometimes known
as asymptotic discontinuities. There are also oscillatory discontinuities,
where the function remains bounded but still does not have a limit near
xp; for instance, the function f : R — R defined by

1 ifzeqQ
f@f_{o ifr ¢ Q
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has an oscillatory discontinuity at 0 (and in fact at any other real
number also), since the function does not have either left or right limits
at 0, even though the function remains bounded.

e The study of discontinuities (also called singularities) continues further,
but is beyond the scope of this course. The subject is also taken up
(but with a different perspective) in Math 132, Complex Analysis.
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