Math 131AH - Weeks 3 and 4

Textbook pages: 24-30, 47-58. (Optional additional reading: 30-32, esp. the

part relating to limit points).

Topics covered:

Countable and uncountable sets
The uncountability of the reals
Sequences of reals

Limits and limit points

X %k ok ok ok

More on cardinality

In the last week’s notes, we introduced some basic notions of cardinality
of sets. Two sets were said to have equal cardinality if there existed a
bijection from one set to the other. A set was said to be cardinality n
for some natural number n, if it had equal cardinality with {i € N :
1 < i < n}. A set is finite if it has cardinality n for some natural
number n; otherwise, it is infinite.

We already have a few results on finite sets; for instance, we know that
a finite set has exactly one cardinality. Now we state a few more basic
results.

Proposition 1. Let n, m be natural numbers.

(a) Let X be a set of cardinality n, and let z ¢ X be another object
which is not an element of X. Then X U {z} has cardinality n + 1.

(b) Let X be a set of cardinality n, and Y be a set of cardinality m.
Then X UY is finite and has cardinality at most n + m. If in addition
X and Y are disjoint (i.e. X NY = (), then X UY has cardinality
exactly n + m.

(c) Let X be a set of cardinality n, and let ¥ be a subset of X. Then
Y is finite, and has cardinality m for some 0 < m < n. If in addition
Y # X (i.e. Y is a proper subset of X), then we have m < n.
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(d) If X is a finite set of cardinality n, and f : X — Y is a function,
then f(X) is a finite set of cardinality less than or equal to n. If in
addition f is one-to-one, then f(X) has cardinality exactly n.

(A remark on notation: it is a convention that functions and objects
are generally represented using lower case letters such as f and z, while
sets and spaces are generally represented using upper case letters such
as X and Y. However, this convention is not universally followed).

Proof. See Week 3 homework. O

As one consequence of Proposition 1, every subset of a finite set is
finite, the union of two finite sets is finite, and the image of any finite
set under any function is still finite.

From Proposition 1(c) we know that if X is a finite set, and Y is a
proper subset of X, then Y does not have equal cardinality with X.
However, this is not the case for infinite sets. For instance, from last
week’s notes we know that the set N of natural numbers is infinite.
The set N — {0} is also infinite (why?), and is a proper subset of N.
However, the set N — {0}, despite being “smaller” than N still has the
same cardinality as N, because the function f: N — N — {0} defined
by f(n) :=n+1, is a bijection from N to N — {0}. (Why?). This is
one characteristic of infinite sets; they are often of the same cardinality
as some of their subsets.

Definition. A set X is said to be countably infinite (or just countable)
iff it has equal cardinality with the natural numbers N. A set X is said
to be at most countable iff it is either countable or finite.

Thus, N is countable, and so is N — {0}. Another example of a count-
able set is the even natural numbers {2n : n € N}, since the function

f(n) := 2n provides a bijection between N and the even natural num-
bers (why?).

Let X be a countable set. Then, by definition, we know that there
exists a bijection f : N — X from N to X. Thus, every element of
X can be written in the form f(n) for exactly one natural number n.



Informally, we thus have

X ={f(0),f(1), £(2), f(3), -}

Thus, a countable set can be arranged in a sequence, so that we have
a zeroth element f(0), followed by a first element f(1), then a sec-
ond element f(2), and so forth, in such a way that all these elements
f(0), f(1), f(2),... are all distinct, and together they fill out all of X.
(This is why these sets are called countable; because we can literally
count them one by one, starting from f(0), then f(1), etc.).

Viewed in this way, it is clear why the natural numbers
N =10,1,2,3,...},
the positive integers
N-{0}=11,2,3,...},
and the even natural numbers
{0,2,4,6,8,...}
are countable. However, it is not as obvious whether the integers
Z={...,-3,-2,—-1,0,1,2,3,...}

or the rationals

Q=1{0,1/4,-2/3,...}
or the reals

R = {0,v2,—7,2.5,...}

are countable or not (can we arrange them in a sequence f(0), f(1), f(2),...7).

We will answer these questions shortly.

From Proposition 29 and Theorem 32 from last week’s notes, we know
that countable sets are infinite; however it is not so clear whether all in-
finite sets are countable. Again, we will answer those questions shortly.

e First, we give some properties of countable sets.
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Proposition 2. Let X be a subset of the natural numbers N. Then X
is at most countable. In particular, every infinite subset of the natural
numbers is countable.

To prove this, we first need the following principle.

Well-ordering principle. Let X be a non-empty subset of the natural
numbers N. Then there exists exactly one element n € X such that
n < m for all m € X. (In other words, every non-empty set of natural
numbers has a minimum element).

Proof of Well-ordering principle. See Week 3 homework. U

We will refer to the element n given by the well-ordering principle as
the minimum of X, and write it as min(X). Thus for instance the
minimum of the set {2,4,6,8,...} is 2.

Proof of Proposition 2. We will give an incomplete sketch of the
proof, with some gaps marked by a question mark (?); these gaps will
be filled in by the homework.

Let X be a subset of N. We need to show that X is at most countable.
If X is finite, then we are done; so let us assume that X is infinite.
Our task is then to show that X is countable, i.e. that X has the same
cardinality as IN.

We now define a sequence ag, a1, @, ... of natural numbers, and a se-
0, 3 ) 3
quence Ay, Ay, Ao, ... of sets of natural numbers, as follows.

First, we initialize Ay to be equal to X, Ay := X, and then set ay to
equal the minimum of Aj, ap := min(Ap). (Thus ag is the smallest
element of X). Now suppose recursively that A, and a, have already
been defined for some natural number n; then we set A, = A,—{a,},
and then set @, = min(A4,,).

(Intuitively speaking, ag is the smallest element of X; a; is the second
smallest element of X, i.e. the smallest element of X once a is removed;
ag is the third smallest element of X; and so forth).



There is a possible problem with this definition: the well-ordering prin-
ciple only works for non-empty sets, and we have not checked that the
sets A, are non-empty. However, it is possible to show(?) that the
sets A, are always well-defined and always non-empty; indeed, one can
show(?) that the A,, are always infinite.

One can show(?) that a, is an increasing sequence, i.e.
< ar<ay<...

and in particular that(?) a, # an, for all n # m. Also, one can show(?)
that each A, is a subset of X, and hence that a,, € X for each natural
number n.

Now define the function f: N — X by f(n) := a,. From the previous
paragraph we know that f is one-to-one. Now we show that f is onto.
In other words, we claim that for every x € X, there exists an n such
that a,, = x.

Let z € X. Suppose for contradiction that a, # z for every natural
number n. Then this implies(?) that z € A,, for every natural number
n. Since a, = min(A4,), this implies that z > a, for every natural
number n. However, since a,, is an increasing sequence, we have a,, > n
(?), and hence x > n for every natural number n. In particular we have
x > x ++4, which is a contradiction. Thus we must have a, = x for
some natural number n, and hence f is onto.

Since f : N — X is both one-to-one and onto, it is a bijection. Thus
X is countable as desired. [l

Corollary 3. If X is a countable set, and Y is a subset of X, then Y
is at most countable.

Proof. Since X is a countable set, there is a bijection f : X — N
between X and N. Since Y is a subset of X, and f is a bijection from
X and N, then when we restrict f to Y, we obtain a bijection between
Y and f(Y) (why is this a bijection?). Thus f(Y') has equal cardinality
with Y. But f(Y) is a subset of N, and hence at most countable by
Proposition 2. Hence Y is also at most countable. O



Proposition 4. Let Y be a set, and let f : N — Y be a function.
Then f(N) is at most countable.

Proof. See Week 3 homework. O

Corollary 5. Let X be a countable set, and let f : X — Y be a
function. Then f(X) is at most countable.

Proof. See Week 3 homework. O

Proposition 6. Let X be a countable set, and let Y be a countable
set. Then X UY is a countable set.

Proof. See Week 3 homework. O
Corollary 7. The integers Z are countable.

Proof. We already know that the natural numbers N = {0,1,2,3,...}
are countable. The set —IN defined by

—N:={-n:neN}={0,-1,-2,-3,...}

is also countable, since the map f(n) := —n is a bijection between N
and this set. Since the integers are the union of N and —IN, the claim
follows from Proposition 6. O

To turn to the rationals, we need a new definition: that of Cartesian
products.

Definition. If X and Y are sets, we define the Cartesian product
X x Y to be the set of pairs (z,y) where z is an element of X and y is
an element of Y:

X xY :={(z,y):z e X,ye Y}

Two elements (z,y) and (2/,y') in X x Y are said to be equal iff one
has both x = 2’ and y = ¥/

Example. If X = {0,1,3}, and Y = {4, 6}, then X x Y is the set X x
Y = {(0,4),(0,6),(1,4),(1,6),(3,4),(3,6)}. All six of these pairs are
distinct; for instance, (0,4) and (0, 6) are distinct because the second
co-ordinates are unequal, even though the first co-ordinates are equal.
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For instance, R x R is the familiar Euclidean plane consisting of points
(z,y) where x and y are both real numbers; we usually abbreviate
R x R as R”.

We will soon show that the set N x N is countable. We first need a
preliminary lemma:

Lemma 8. The set
A:={(n,m) e NxN:0<m<n}
is countable.

Proof. Define the sequence ag, a1, as, . .. recursively by setting ag := 0,
and a,y := a, +n ++ for all natural numbers n. Thus

ag =001 =0+1;a0=0+1+2;a3=0+14+2+43;....

By induction one can show that a, is increasing, i.e. that a, > a,
whenever n > m. (Why?)

Now define the function f : A — N by
f(n,m) = a, +m.

We claim that f is one-to-one. In other words, if (n,m) and (n’, m') are
any two distinct elements of A, then we claim that f(n,m) # f(n',m').

To prove this claim, let (n,m) and (n',m') be two distinct elements

of A. There are three cases: n’ = n, n’ > n, and n’ < n. First

suppose that n’ = n. Then we must have m # m/', otherwise (n,m)

and (n’,m') would not be distinct. Thus a, +m # a, + m’, and hence
f(n,m) # f(n',m'), as desired.

Now suppose that n’ > n. Then n’ > n ++, and hence
f(',my=apy +m' > ay > apyy = a, +n++.
But since (n,m) € A, we have m < n < n ++, and hence
f',m') > an +n++>a,+m= f(n,m),
and thus f(n',m') # f(n,m).



e The case n' < n is similar (just switch the roles of n and n’ in the
previous argument). Thus we have shown that f is one-to-one. Thus
f is a bijection from A to f(A), and thus A has equal cardinality with
f(A). But f(A) is a subset of N, and hence by Proposition 2 f(A)
is at most countable, hence A is at most countable. But, A is clearly
not finite (why? Hint: if A was finite, then every subset of A would
be finite, and in particular {(n,0) : n € N} would be finite, but this is
clearly countably infinite, a contradiction). Thus, A must be countable.
O

e Corollary 9. The set N x N is countable.
e Proof. We already know that the set
A:={(n,m) e NxN:0<m<n}
is countable. This implies that the set
B:={(n,m) e NxN:0<n<m}

is also countable, since the map f : A — B given by f(n,m) := (m,n)
is a bijection from A to B (why?). But since N x N is the union of A
and B (why?), the claim then follows from Proposition 6. 4

e Corollary 10. If X and Y are countable, then X x Y is countable.
e Proof. See Week 3 Homework. O
e Corollary 11. The rationals Q are countable.

e Proof. We already know that the integers Z are countable, which
implies that the non-zero integers Z — {0} are countable (why?). By
Corollary 10, the set

Z x (Z —{0}) = {(a,b) : a,b € Z,b # 0}

is thus countable. If one lets f : Z x (Z — {0}) — Q be the function
f(a,b) := a/b (note that f is well-defined since we prohibit b from
being equal to 0), we thus see from Proposition 4 that f(Z x (Z—{0}))
is at most countable. But we have f(Z x (Z — {0})) = Q (why?
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This is basically the definition of the rationals Q). Thus Q is at most
countable. However, Q cannot be finite, since it contains the infinite
set N. Thus Q is countable. [l

e Because the rationals are countable, we know in principle that it is
possible to arrange the rational numbers as a sequence:

Q = {a07a1: az,0as, . . }

such that every element of the sequence is different from every other
element, and that the elements of the sequence exhaust Q (i.e. every
rational number turns up as one of the elements a, of the sequence).
However, it is quite difficult (though not impossible) to actually try
and come up with an explicit sequence ag, a1, . . . which does this. (Can
you do it?)

* % ok % %

Uncountable sets

e Definition A set X is said to be uncountable iff it is neither countable
nor finite (i.e. it is not at most countable).

e We have just shown that a lot of infinite sets are countable - even such
sets as the rationals, for which it is not obvious how to arrange as
a sequence. After such examples, one may begin to hope that other
infinite sets, such as the real numbers, are also countable - after all, the
real numbers are nothing more than (formal) limits of the rationals, and
we’ve already shown the rationals are countable, so it seems plausible
that the reals are also countable.

e It was thus a great shock when Georg Cantor showed in 1873 that
certain sets - including the real numbers R are in fact uncountable - no
matter how hard you try, you cannot arrange the real numbers R as
a sequence ag, a1, ds, - ... (Of course, the real numbers R can contain
many infinite sequences, e.g. the sequence 0,1,2,3,4,.... However,
what Cantor proved is that no such sequence can ever ezxhaust the
real numbers; no matter what sequence of real numbers you choose,
there will always be some real numbers that are not covered by that
sequence).



Cantor’s proof requires some knowledge of the decimal system (see
supplemental handout). We summarize the portions of the decimal
system we will need here. To avoid possible confusion, we will refrain
in this section from using the convention that ab denotes the product
a x b, because this will conflict with decimal notation (e.g. 34 would
then equal 3 x 4).

Definition A digit is any one of the numbers 0,1,2,3,4,5,6,7,8.9.

Definition Let a1, a9, a3, ... be a sequence of rational numbers. We
define the finite sums ) ., a; recursively for every natural number n
by the formulae

n

0 n++
Zai = 0; Zai = (Z a;) + aniy for every n € N.
=1 i=1

i=1

Thus for instance 23:1 a; = 04 a1 = aq; Z?:l a; = a1 + ag; and so
forth. We will sometimes write a; + as + ... + a,, instead of > ! | a;.
We can define more general sums ) a;, which start at some index
m other than 1, for instance by the recursive definition

n n++ n
E a; :== 0 whenever n < m; E a; == ( E a;)+a, whenever n > m—1.
i=m i=m

i=m

Definition Let ay,as,as,... be a sequence of digits. We then define
the decimal 0.a;aqas ... to be the real number
0.010203 . .. := LIMp 00 ¥ an X 10°™.

i=1

One can show that the sequence )" ; a, x 107" is a Cauchy sequence
of rationals; see the supplemental handout on decimals.

Thus, for instance, the decimal 0.111... is the formal limit of the se-
quence

I1x10751 %107 +1x1072,1x 107" +1x 1072 +1x 1073, ...
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or more succinctly, the sequence
0.1,0.11,0.111, ...

(Of course this latter statement is sort of circular, since I am using the
notation of terminating decimals to describe a non-terminating decimal;
but the first statement at least is rigorous and non-circular).

One annoying feature of the decimal system is that some decimals are
the same. For instance, the decimal 0.19999... turns out to be ex-
actly the same real number as 0.20000 ... (see supplemental handout
on decimals for more on this). However, we can avoid this problem if
we restrict the set digits.

Definition A 0-1 decimal is a decimal of the form 0.aiaqa3 ... where
all of the digits a,, are either 0 or 1.

Thus, for instance 0.0000..., 0.111111..., and 0.10101010... are 0-1
decimals, while 0.3333... is not.

The 0-1 decimals are all distinct:

Proposition 12. Let z := 0.a1a2a3... and y := 0.b1byb3... be 0-1
decimals, and suppose that the sequences (a,); and (b,)S2; are not
identical (i.e. we have a,, # b, for at least one positive integer n). Then
we have x # y.

Proof (Optional). Let X be the set of natural numbers n such that
an # b,. By hypothesis, X is non-empty, thus by the well-ordering
principle the set X has a least element N := min(X). By definition of
N, we thus have ay # by, and also a, = b, for all 1 < n < N. Since
ay # by, we must have either ay < by or by < ay; without loss of
generality we may assume that ay < by. Since both decimals are 0 — 1
decimals, we must therefore have ay = 0 and by = 1.

Now let’s try to estimate y — x. By definition of subtraction, we have

y— 1z = LIM, 00 ib,- x 107% — Zn:ai x 107%,

i=1 =1
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An easy induction shows that

n

Zn:bi x 107" — Zn:ai x 10" = Z(bi —a;) x 10°°,
=1 =1

i=1
When n < N, then we have b; = a; for all 1 < ¢ < n, and hence

Yo (b —a;) x 107" = 0 (why? This is an easy induction). Now

suppose that n > N. Then another induction shows that

n

Z(bz — a,z-) X 10_1 = (bN — G,N) X 10_N + Z (bz — ai) X ].0_Z

i=1 i=N+1

Since ay = 0 and by = 1, we thus have

zn:bz- x 107" — zn:ai x 107" =107 + i (bi — a;) x 107"
=1 =1

i=N+1
Now since b; and a; are both either 0 or 1, we have b, — a; > —1. Thus

an easy induction shows that

n

Z (bZ - CLi) X 107Z > — i 107Z

1=N+1 i=N+1

and hence

n

ibi x 107 — Zai x 107" > 107N — i 107"
=1

i=1 i=N+1

On the other hand, an easy induction shows the geometric series for-
mula

zn: 107" = (107N —107™)/9

i=N+1
and hence that
ibixlo_i—i a;x107* > 107V —=(107V=10"")/9 = $10-v4 210 s S10,
i=1 i=1 B ) ) )
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(Note that we are now using the standard laws of algebra, without
citing exactly where in the Week 1-2 notes this would come from; we
will continue doing so for the rest of the course). Taking formal limits
and using Corollary 22 from last week’s notes (modified slightly to deal
with the fact that the above inequality was only proven for n > N),
we conclude that

n . i .8
y—z=LIMy e » bix 107 =) a; x107" > §10*N >0
=1

i=1
and hence in particular that x # y, as desired. O
Now we can come to Cantor’s (rather non-trivial) argument.

Theorem 13. Let X be the set of all 0 — 1 decimals. Then X is
uncountable.

Proof. Suppose for contradiction that X was countable (it is pretty
easy to show that X cannot be finite, for instance X contains the
sequence 0.1,0.01,0.001, ... which is clearly countable). Then there is
a bijection f : ZT — X from the positive integers Z* to the set X.
Thus for every positive integer n we have a 0-1 decimal f(n), which we
write as

f(n) = 0.a§”)a§")a§") .

for some digits a&"), aé"), ag"), ... which are either 0 or 1. (We enclose

the n in parentheses so that the superscript is not confused with ex-
ponentiation, we don’t want a to be confused with (a;)"). Since f is
assumed to be a bijection, then every 0-1 decimal can be written in the
form f(n) in exactly one way.

Now we perform Cantor’s diagonal trick. For each positive integer n,
let b, be the digit 0 if a7 is equal to 1, and let b, be the digit 1 if a]
is equal to 0. (In other words, b, := 1 — a]}). Thus by, by, b3,... is a
sequence of digits in 0 and 1 such that b,, # a;. for every positive integer
n.

Let x be the decimal
T = 0.b1b2b3 RPN
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Clearly z is an 0-1 decimal, and thus lives in X. Since f is a bijection
from Z* to X, there must therefore exist a positive integer n such that
f(n) =z, ie.

0.b1b2b3 ce. = O.a'fagag e

By Lemma 12, all the digits on both sides must match up, i.e. we must
have b; = a} for all positive integers 7. In particular, we have b, = a;.
But this contradicts the fact that b, # a;. Thus f could not have
been a bijection. Thus X cannot be countable, and must therefore be
uncountable (since it isn’t finite). O

e This diagonal trick is useful in problems concerning logic, set theory,
or computability, and shows up in some important theorems such as
Godel’s incompleteness theorem and Turing’s halting theorem. But
this is far beyond the scope of this course.

e Corollary 14. The real numbers R are uncountable.

e Proof. We know the real numbers are not finite, since they contain
N (for instance). If the real numbers R were countable, then every
subset of R would be at most countable by Corollary 3. But this would
contradict Theorem 13, since the set X in that theorem is a subset of
R. O

e The subject of countable and uncountable sets is a delicate one; there
is much more to be said on this matter, but this is beyond the scope
of this course and you must instead go to Math 112 for more details.

X %k ok ok ok

Sequences of real numbers.

e In the Week 2 notes, we defined the real numbers as formal limits of
rational (Cauchy) sequences, and we then defined various operations
on the real numbers. However, we never really finished the job of con-
structing the real numbers, because we never got around to replacing
formal limits LIM,,,.a, with actual limits lim,_,. a,. In fact, we
haven’t defined limits at all yet. This will now be rectified.

14



In the remainder of these notes, we will assume that a,, denotes a real
number unless otherwise specified. The numbers n, m are also assumed
to denote integers unless otherwise specified.

We begin by repeating much of the machinery of e-close sequences,
etc. again - but this time, we do it for sequences of real numbers, not
rational numbers. Thus this discussion will supercede what we did in
the Week 2 notes.

First, we define absolute value and distance for real numbers:

Definition. Let z be a real number. Then we define the absolute value
|z| to equal z if x is positive, 0 if x is zero, and —z if = is negative.
Given two real numbers x and y, we define their distance d(z,y) to be
d(z,y) .= |z —yl.

Clearly this definition is consistent with the corresponding notions for
rational numbers. Just as clearly, Proposition 1 from Week 2 notes
works just as well for real numbers as it does for rationals (because the
real numbers obey all the rules of algebra that the rationals do).

Definition. Let € > 0 be a real number. We say that two real numbers
x,y are e-close iff we have d(y,z) < e.

Again, it is clear that this definition of e-close is consistent with the
same definition we had for the rationals.

Now let (a,)22,, be a sequence of real numbers; i.e. we assign a real
number a, for every integer n > m. The starting index m is some in-
teger; usually this will be 1, but in some cases we will start from some
index other than 1. (The choice of label used to index this sequence is
unimportant; we could use for instance (a)%2,, and this would repre-
sent exactly the same sequence as (a,)$2,.). We can define the notion
of a Cauchy sequence in the same manner as before:

Definition. Let ¢ > 0 be a real number. A sequence (a,)> 5 of real
numbers starting at some integer index NV is said to be e-steady iff a;
and ay, are e-close for every j,k > N. A sequence (a,)5%,, starting at
some integer index m is said to be eventually -steady iff there exists
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an N > m such that (a,) y is e-steady. We say that (a,),, is a
Cauchy sequence iff it is eventually e-steady for every ¢ > 0.

These definitions are consistent with the rational definitions, although
the one for Cauchy sequences takes a little bit of care:

Proposition 15. Let (a,):°,, be a sequence of rationals starting at
some integer index m. Then (a,)%, is a Cauchy sequence (in the
sense of the Week 2 definition for rationals) if and only if it is a Cauchy

sequence (in the sense of the current definition for reals).

Proof. Suppose first that (a,),, is a Cauchy sequence using the
current definition; then it is eventually e-steady for every real € > 0.
In particular, it is eventually e-steady for every rational € > 0, which

makes it a Cauchy sequence in the sense of the Week 2 notes.

Now suppose that (a,)s,, is a Cauchy sequence using the Week 2

definition; then it is eventually e-steady for every rational ¢ > 0. If
e > 0 is a real number, then there exists a rational ¢ > 0 which is
smaller than ¢, by Proposition 25 of Week 2 notes. Since ¢’ is rational,
we know that (a,)$%, is eventually £'-steady; since £’ < ¢, this implies
that (a,)S2,, is eventually e-steady. Since ¢ is an arbitrary positive
real number, we thus see that (a,)2 . is a Cauchy sequence using the
current definition. O

Because of this proposition, we will no longer care about the distinction
between this definition of a Cauchy sequence and the previous one.

Now we talk about what it means for a sequence of real numbers to
converge to some limit L.

Definition. Let ¢ > 0 be a real number, and let L be a real number.
A sequence (a,)$e 5 of real numbers is said to be e-close to L iff ay,
is e-close to L for every n > N, i.e. we have |a, — L| < ¢ for every
n > N. We say that a sequence (a,)22 . is eventually e-close to L iff
there exists an N > m such that (a,)% y is e-close to L. We say that
a sequence (a,)2,. converges to L iff it is eventually e-close to L for
every real € > 0.
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e Examples. The sequence
0.9,0.99, 0.999, 0.9999, . ..

is 0.1-close to 1, but is not 0.01-close to 1, because of the first element
of the sequence. However, it is eventually 0.01-close to 1. In fact,
for every real € > 0, this sequence is eventually e-close to 1, hence is
convergent to 1.

e One can rewrite the definition of convergence as follows: the sequence
(an)$,, converges to L if, given any real € > 0, one can find an N > m
such that |a, — L| < e for all n > N. (Why is this the same definition
as the one given above?)

e Proposition 16. Let (a,)2,, be a real sequence starting at some
integer index m, and let L # L' be two distinct real numbers. Then
it is not possible for (a,)2,. to converge to L while also converging to
L.

e Proof. Suppose for contradiction that (a,)2,, was converging both

to L and to L'. Let ¢ = |L — L'|/3; note that ¢ is positive since

L # L'. Since (a,)$2,, is converging to L, we know that (a,),. is

eventually e-close to L; thus there is an N > m such that d(a,, L) <e¢

for all n > N. Similarly, there is an M > m such that d(a,,L') < ¢
for all n > M. In particular, if we set n := max(N, M), then we
have d(a,, L) < € and d(a,, L") < ¢, hence by the triangle inequality

d(L,L") <2e =2|L— L'|/3. But then we have |L — L'| < 2|L — L'|/3,

which contradicts the fact that |L — L'| > 0. Thus it is not possible to

converge to both L and L'. O

e Definition If a sequence (a,)$2,, is converging to some real number

L, we say that the sequence (a,)$2,, is convergent and that its limit is
L; we write

L = lim a,
n—0o0

to denote this fact. If a sequence (a,)$2,, is not converging to any real
number L, we say that the sequence (a,)22,, is divergent and we leave
lim,,_, » a,, undefined.
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Note that Proposition 16 ensures that a sequence can have at most one
limit. Thus, if the limit exists, it is a single real number, otherwise it
is undefined.

The notation lim,,_,, a,, does not give any indication about the starting
index m of the sequence, but the starting index is irrelevant: if (a,)3 .
is convergent to some limit ¢, then (a,)°, , is also convergent to the
same limit ¢ for any other m’ (provided of course that all the elements
of the sequence are defined and are real numbers). (Why?) Thus in
the rest of this discussion we shall not be too careful as to where these

sequences start, as we shall be mostly focused on their limits.

In a similar spirit, one can check that if (a,)3,, is convergent to some
limit ¢, then (an1x)52,,_ is also convergent to ¢ for any integer k (can
you prove this rigorously?).

We sometimes use the phrase “a, — = as n — oo0” as an alternate
way of writing the statement “(a,)2,, converges to z”. Bear in mind,
though, that the individual statements a, — = and n — oo do not
have any rigorous meaning; this phrase is just a convention, though of
course a very suggestive one.

Finally, the exact choice of letter used to denote the index (in this case
n) is irrelevant: the phrase lim,_, a, has exactly the same meaning as
limg_,, ag, for instance. Sometimes it will be convenient to change the
label of the index to avoid conflicts of notation (for instance, we might
want to change n to k£ because n is simultaneously being used for some
other purpose, and we want to reduce confusion).

As an example of a limit, we present
Proposition 17. We have lim,, ., 1/n = 0.

Proof. We have to show that the sequence (a,)32; converges to 0,

where a, := 1/n. In other words, for every € > 0, we need to show
that the sequence (a,)3; is eventually e-close to 0. So, let € > 0 be

an arbitrary real number. We have to find an N such that |a, — 0] < ¢
for every n > N. But if n > N, then

la, — 0| =1[1/n—0/=1/n < 1/N.
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Thus, if we pick N > 1/¢ (which we can do by the Archimedean prin-
ciple), then 1/N < ¢, and so (a,)22  is e-close to 0. Thus (a,), is

eventually e-close to 0. Since € was arbitrary, (a,)$2 ; converges to 0.0]

Now we connect the notions of convergent sequences and Cauchy se-
quences.

Proposition 18. Suppose that (a,)%,. is a convergent sequence of

real numbers. Then it is also a Cauchy sequence.
Proof. See Week 4 homework. O

Example. The sequence 1,—1,1,—1,1,—1,... is not a Cauchy se-
quence (because it is not eventually 1-steady), and is hence not a con-
vergent sequence, by Proposition 18.

There is a converse to this Proposition (Theorem 30), but we will wait
a bit before proving it.

Now we show that formal limits can be superceded by actual limits,
just as formal subtraction was superceded by actual subtraction and
formal division superceded by actual division.

Proposition 19. Let (a,)%; be a Cauchy sequence of rational num-
bers. Then (a,)3, converges to LIM,, ,ccay, i.e.

LIM,, 0, = lim a,.
n—,oo

Proof. See Week 4 homework. O

Definition A sequence (a,)3,, of real numbers is bounded by M iff we
have |a,| < M for all n > m. We say that (a,)3,, is bounded iff it is
bounded by M for some real number M > 0.

By arguing as in Proposition 15 we can see that this definition of a
bounded sequence is consistent with the definition in Week 2 notes
(which was just the same, except that everything was assumed to be
rational instead of real).
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Recall from Lemma 9 of Week 2 notes that every Cauchy sequence of
rational numbers is bounded. An inspection of the proof of that Lemma
shows that the same argument works for real numbers; every Cauchy
sequence of real numbers is bounded. In particular, from Proposition
18 we see have

Corollary 20. Every convergent sequence is bounded.

Example. The sequence 1,2,3,4,5,... is not bounded, and hence is
not convergent.

We now can prove the usual limit laws.

Theorem 21 (Limit Laws). Let (a,),, and (b,)52,, be convergent
sequences, and let x,y be the real numbers x := lim,,_,, a, and y :=
lim,, o0 by,

(a) The sequence (a, + b,),, converges to = + y; in other words,

lim a, + b, = lim a, + lim b,.
n—o0 n—oo n—oo

(b) The sequence (a,b,)S2,, converges to zy; in other words,

Ao Bebn = (0, 0 (1 )

(c) For any real number ¢, the sequence (ca,,)2°,  converges to cz, in
other words

lim ca,, = ¢ lim a,.
n—o0 n—00

(d) The sequence (a, — b,)>°,, converges to x — y; in other words,

lim a, — b, = lim a, — lim b,.
n—oo n—oo n—oo

(e) Suppose that y # 0, and that b, # 0 for all n > m. Then the
sequence (b, '), converges to y!; in other words,

lim b, ' = (lim b,)"".
n—oo n—o0
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e (f) Suppose that y # 0, and that b, # 0 for all n > m. Then the
sequence (a,/b,)> . converges to x/y; in other words,

e Proof. See Week 4 Homework. O

e Note that Theorem 21(f) doesn’t work when the limit of the denom-
inator is 0. To address that problem requires L’Hopital’s rule, which
we will obtain later in this course.

X %k ok >k ok

The Extended Real number system

e There are some sequences which do not converge to any real number,
but instead seem to be wanting to converge to 400 or —oo. For in-
stance, it seems intuitive that the sequence

1,2,3,4,5,...
should be converging to +oo, while
—-1,-2,-3,—4,-5, ...
should be converging to —oo. Meanwhile, the sequence
1,-1,1,-1,1,-1,...

does not seem to be converging to much of anything (although we shall
see later that it does have +1 and —1 as “limit points” - see below).
Similarly the sequence

1,-2,3,—4,5,—6,...

does not, converge to any real number, and also does not appear to be
converging to 400 or converging to —oo.

e To make this precise we need to talk about something called the ez-
tended real number system.
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Definition The extended real number system R* is the real line R with
two additional elements attached, called +00 and —oo. These elements
are distinct from each other and also distinct from every real number.
An extended real number z is called finite iff it is a real number, and
infinite iff it is equal to +oo or —oo. (This definition is not directly
related to the notion of finite and infinite sets discussed earlier, though
it is of course similar in spirit).

These new symbols, +00 and —o0, at present do not have much mean-
ing, since we have no operations to manipulate them (other than equal-
ity = and inequality #). Now we place a few operations on the extended
real number system.

Definition The operation of negation z — —z on R, we now extend
to R* by defining —(+00) := —o0 and —(—00) := +o0.

Thus every extended real number x has a negation, and —(—z) is always
equal to z.

Definition Let z and y be extended real numbers. We say that z < y,
i.e. x is less than or equal to y, iff one of the following three statements
is true:

(a) z and y are real numbers, and = < y as real numbers.
(b) y = 4o0.
(¢) x = —00.

We say that x < y if we have x < y and z # y. We sometimes write
r < y instead as y > x, and x < y sometimes as y > x.

Thus for instance, 3 < 5, 3 < 400, and —oo < 400, but 3 £ —oc.

Some basic properties of order and negation on the extended real num-
ber system:

Proposition 22. Let z, y, z be extended real numbers. Then the
following statements are true:

(a) We have z < z.
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(b) If x <y and y < z, then z = y.
(¢) Ifx <yandy<z then x < 2.
(d) If x <y, then —y < —x.

Proof. The number z is either a real number, or +oo, or —oo. Sim-
ilarly for y and z. Thus we can break into a large number of cases,
and check each case by hand (using Proposition 19 from Week 2 notes
as necessary). This is rather tedious and will not be done here (and I
won’t inflict it on you as homework either). O

One could also introduce other operations on the extended real number
system, such as addition, multiplication, etc. However, this is some-
what dangerous as these operations will almost certainly fail to obey
the familiar rules of algebra. For instance, to define addition it seems
reasonable (given one’s intuitive notion of infinity) to set +00+5 = +00
and +oo + 3 = +00, but then this implies that 400 + 5 = +00 + 3,
while 5 # 3. So things like the cancellation law begin to break down
once we try to operate involving infinity. To avoid these issues we shall
simply not define any arithmetic operations on the extended real num-
ber system other than negation and order. (You can read pages 11-12

of the textbook for some ways to define those arithmetic operations on
R").

Remember that we defined the notion of supremum or least upper bound
of a set E of reals; this gave an extended real number sup(F), which
was either finite or infinite. We now extend this notion slightly.

Definition Let F be a subset of R*. Then we define the supremum
sup(E) or least upper bound of E by the following rule.

(a) If E is contained in R (i.e. +00 and —oo are not elements of E),
then we let sup(E) be as defined in Week 2 notes.

(b) If E contains +oo, then we set sup(E) := +oo.

(¢) If E does not contain +o0o but does contain —oo, then we set
sup(E) := sup(F — {—oo}) (which is a subset of R and so falls un-
der case (a)).

23



We also define the infimum inf(E) of E (also known as the greatest
lower bound of E by the formula

inf(F) := —sup(—FE)
where —F is the set —E := {—x: 2 € E}.

(A Latin note: supremum means “highest” and infimum means “low-
est”, and the plurals are suprema and infima. Supremum is to superior,
and infimum to inferior, as maximum is to major, and minimum to mi-
nor. The root words are “super”, which means “above”, and “infer”,
which means “below” (this usage only survives in a few rare English
words such as “infernal”, with the Latin prefix “sub” having mostly
replaced “infer” in English)).

Example Let E be the negative integers, together with —oo:
E={-1,-2,-3,-4,.. .} U{-oc}.

Then sup(E) = sup(E — {—o0}) = —1, while inf(F) = —sup(—F) =
—(400) = —o00.

Example The set {0.9,0.99,0.999,0.9999, ...} has infimum 0.9 and
supremum 1. Note that in this case the supremum does not actually
belong to the set, but it is in some sense “touching it” from the right.

Example The set {1,2,3,4,5...} has infimum 1 and supremum +oo.

Example. Let E be the empty set. Then sup(E) = —oo and inf(E) =
+oo (why?). This is the only case in which the supremum can be less
than the infimum (why?).

One can intuitively think of the supremum of E as follows. Imagine
the real line with +00 somehow on the far right, and —oo on the far
left. Imagine a piston at +oo moving leftward until it is stopped by
the presence of a set E; the location where it stops is the supremum
of E. Similarly if one imagines a piston at —oo moving rightward until
it is stopped by the presence of E, the location where it stops is the
infimum of E. In the case when F is the empty set, the pistons pass
through each other, the supremum landing at —oc and the infimum
landing at +o0.
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e The following theorem justifies the terminology “least upper bound”
and “greatest lower bound”:

e Theorem 23. Let F be a subset of R*. Then the following statements
are true.

e (a) For every z € E we have z < sup(F) and z > inf(E).

e (b) Suppose that M is an upper bound for F,i.e. z < M forallz € E.
Then we have sup(E) < M.

e (c) Suppose that M is a lower bound for E, i.e. x > M for all x € E.
Then we have inf(E) > M.

e Proof. See Week 4 Homework. O

* % k % %

Suprema and Infima of sequences
e We now define the supremum and infimum of a sequence.

e Definition. Let (a,)$%,, be a sequence of real numbers. Then we
define sup(a,)3,, to be the supremum of the set {a, : n > m}, and
inf(a,)2,, to the infimum of the same set {a, : n > m}.

e Example. Let a, := (—1)"; thus (a,)$%, is the sequence —1,1, —1,1,.. ..
Then the set {a,, : n > 1} is just the two-element set {—1, 1}, and hence
sup(a,), is equal to 1. Similarly inf(a,)$2, is equal to —1.

e Example. Let a, := 1/n; thus (a,)5%, is the sequence 1,1/2,1/3,....
Then the set {a, : n > 1} is the countable set {1,1/2,1/3,1/4,...}.
Thus sup(a,), = 1 and inf(a,)$®,; = 0 (can you prove these two
statements rigorously?). Notice here that the infimum of the sequence
is not actually a member of the sequence, though it becomes very close
to the sequence eventually. (So it is a little inaccurate to think of the
supremum and infimum as the “largest element of the sequence” and
“smallest element of the sequence” respectively).

e Example. Let a, := n; thus (a,)$2, is the sequence 1,2, 3,4, .... Then
the set {a, : n > 1} is just the positive integers {1,2,3,4,...}. Then
sup(a,)2; = +oo and inf(a,)>,; = 1.
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As the last example shows, it is possible for the supremum or infimum
of a sequence to be +0o0 or —oco. However, if a sequence (a,)2,. is
bounded, say bounded by M, then all the elements a,, of the sequence
lie between —M and M, so that the set {a, : n > m} has M as an
upper bound and —M as a lower bound. Since this set is clearly non-
empty, we can thus conclude that its supremum and infimum are real

numbers (i.e. not +o0o and —oo, and also lie between —M and M).

Proposition 24. Let (a,),, be a sequence of real numbers, and let
z be the extended real number z := sup(a,)$2,,. Then we have a, < z
for all n > m. Also, whenever M € R” is an upper bound for a, (i.e.
a, < M for all n > m), we have x < M. Finally, for every extended
real number y for which y < x, there exists at least one n > m for
which y < a, < x.

Proof. See Week 4 Homework. O

There is a corresponding Proposition for infima, but with all the ref-
erences to order reversed, e.g. all upper bounds should now be lower
bounds, etc. The proof is exactly the same.

Now we give an application of these concepts of supremum and infi-
mum. In the previous section we saw that all convergent sequences
are bounded. It is natural to ask whether the converse is true: are
all bounded sequences convergent? The answer is no; for instance,
the sequence 1,—1,1,—1,... is bounded, but not Cauchy and hence
not convergent. However, if we make the sequence both bounded and
monotone (i.e. increasing or decreasing), then it is true that it must
converge:

Proposition 25. Let (a,)5%,, be a sequence of real numbers which
has some finite upper bound M € R, and which is also increasing (i.e.
Uniy > ap for all n > m). Then (a,),, is convergent, and in fact

lim a, = sup(a,);>,, < M.
n—o0

Proof. See Week 4 Homework. O
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One can similarly prove that if a sequence (a,)$,. is bounded and

decreasing (i.e. a, . < a,), then it is convergent, and that the limit is
equal to the infimum.

A sequence is said to be monotone if it is either increasing or decreasing.
From Proposition 25 and Corollary 20 we see that a monotone sequence
converges if and only if it is bounded.

Example. The sequence 3,3.1,3.14,3.141, 3.1415, . . . is increasing, and
is bounded above by 4. Hence by Proposition 23 it must have a limit,
which is a real number less than or equal to 4.

We can use Proposition 25 to compute certain limits. Here is an ex-
ample:

Claim. Let 0 < x < 1. Then we have lim,,_,,, 2" = 0.

Proof. Since 0 < z < 1, one can show that the sequence (™) is

decreasing (why?). On the other hand, the sequence (2™)2 ; has a lower
bound of 0. Thus by Proposition 25 (for infima instead of suprema)
the sequence (z")%; converges to some limit L. Since z""! = x X 2",
we thus see from limit laws that (z"™1)%, converges to xL. But the
sequence (z"1)°; is just the sequence (z™)%°, shifted by one, and so
they must have the same limits (why?). So L = L. Since x # 1, we
can solve for L to obtain L = 0. Thus (z")$2, converges to 0. O

Note how this proof does not work when z > 1 (why?). Indeed one can
show that z" is divergent in this case (why? Prove by contradiction
and use the identity (1/z)"z" = 1 and limit laws).

X %k ok ok ok

Limsup, Liminf, and limit points

e Consider the sequence

1.1,—1.01,1.001, —1.0001, 1.00001, .. ..

e If one plots this sequence, then one sees (informally, of course) that
this sequence does not converge; half the time the sequence is getting
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close to 1, and half the time the sequence is getting close to -1, but it is
not converging to either of them (for instance, it never gets eventually
1/2-close to 1, and never gets eventually 1/2-close to -1). However,
even though -1 and +1 are not quite limits of this sequence, it does
seem that in some vague way they “want” to be limits. To make this
notion precise we introduce the notion of a limit point.

e Definition Let (a,)2,, be a sequence of real numbers, let = be a real
number, and let £ > 0 be a real number. We say that z is e-adherent
to (an)s2,, iff there exists an n > m such that a, is e-close to z. We
say that z is continually e-adherent to (a,)se,, iff it is e-adherent to
(@)% y for every N > m. We say that x is a limit point or adherent
point of (a,)2,. iff it is continually e-adherent to (a,)>2,, for every

n=m
e > 0.

e (The verb “to adhere” means much the same as “to stick to”; hence
the term “adhesive”.) Note that limit points are only defined for finite
real numbers; it is possible to make rigorous also the concept of +oo
or —oo being a limit point, but we will not do so here.

e Example. Let (a,)2 ; denote the sequence
0.9,0.99,0.999, 0.9999, 0.99999, . . ..

The number 0.8 is 0.1-adherent to this sequence, since 0.8 is 0.1-close to
0.9, which is a member of this sequence. However, it is not continually
0.1-adherent to this sequence, since once one discards the first element
of this sequence there is no member of the sequence to be 0.1-close to.
In particular, 0.8 is not a limit point of this sequence. On the other
hand, the number 1 is 0.1-adherent to this sequence, and in fact is
continually 0.1-adherent to this sequence, since no matter how many
initial members of the sequence one discards, there is still something
for 1 to be 0.1-close to. In fact, it is continually e-adherent for every &,
and is hence a limit point of this sequence.

e Example. Now consider the sequence

1.1,-1.01,1.001, —1.0001, 1.00001, .. ..
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The number 1 is 0.1-adherent to this sequence; in fact it is continually
0.1-adherent to this sequence, because no matter how many elements
of the sequence one discards, there are some elements of the sequence
that 1 is 0.1-close to. (Note that one does not need all the elements to
be 0.1-close to 1, just some; thus 0.1-adherent is weaker than 0.1-close,
and continually 0.1-adherent is a different notion from eventually 0.1-
close). In fact, for every ¢ > 0, the number 1 is continually e-adherent
to this sequence, and is thus a limit point of this sequence. Similarly
-1 is a limit point of this sequence; however 0 (say) is not a limit point
of this sequence, since it is not continually 0.1-adherent to it.

Unwrapping all the definitions, we see that x is a limit point of (a,)32,,

if, for every € > 0 and every N > m, there exists an n > N such that
la, — x| < e. (Why is this the same definition?).

Limits are of course a special case of limit points:

Proposition 26. Let (a,)5%,. be a sequence which converges to a real
number ¢. Then c¢ is a limit point of (a,)32,,, and in fact it is the only

n=m.?
limit point of (a)$2,,-

Proof. See Week 4 homework. O

Now we will look at two special types of limit points: the limit superior
(lim sup) and limit inferior (lim inf).
Suppose that (a,,)$,, is a sequence. We define a new sequence (a})%_,,

by the formula

@} = sup(an) -

Thus a}; is the supremum of ay, and all the elements in the sequence
after ay. We then define the limit superior of the sequence (a,)3,.,
denoted limsup,,_, ., an, by the formula

lim sup a, := inf(a )X
n—o0

Similarly, we can define

ay = inf(a,) y
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oo

o s denoted liminf,_, . a,,

and define the limit inferior of the sequence (a,,)
by the formula

lim inf a, :=sup(ay)Fem-
n— o0

Example. Let ay, ao, a3, ... denote the sequence
1.1,-1.01,1.001, —1.0001, 1.00001, . . ..
Then af,af, a7, ... is the sequence

1.1,1.001,1.001, 1.00001, 1.00001, . .

(why?), and its infimum is 1. Hence the limit superior of this sequence
is 1. Similarly, a; , a5, a3, ... is the sequence

~1.01, —1.01, —1.0001, —1.0001, —1.000001, . ..

(why?), and the supremum of this sequence is -1. Hence the limit infe-
rior of this sequence is -1. One should compare this with the supremum
and infimum of the sequence, which are 1.1 and —1.01 respectively.

Example. Let ay,ao, a3, ... denote the sequence
1,-2,3,-4,5,-6,7,-8,...
Then af,aj, ... is the sequence
+00, +00, +00, +00, ...

(why?) and so the limit superior is +00. Similarly, a7, a;,... is the
sequence
—00, —00, —00, —00, . . .

and so the limit inferior is —oo.

Example. Let aq,ao, a3, ... denote the sequence
1,-1/2,1/3,—1/4,1/5,—1/6, ...

Then af,aj, ... is the sequence

1,1/3,1/3,1/5,1/5,1/1, ...
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which has an infimum of 0 (why?), so the limit superior is 0. Similarly,
ay,a,,...is the sequence

-1/2,-1/2,-1/4,-1/4,-1/6,—-1/6
which has a supremum of 0. So the limit inferior is also 0.
Example. Let aq,ao, a3, ... denote the sequence
1,2,3,4,5,6,...
Then af,af,... is the sequence
+00, +00, +00, . . .
so the limit superior is +oo. Similarly, a7 ,a;,... is the sequence
1,2,3,4,5,...
which has a supremum of +o0c. So the limit inferior is also +o00.

Some authors use lim,_,a, instead of lim SUD,, 00 O, and lim, . a,
instead of liminf,_,, a,. Note that the starting index m of the sequence
is irrelevant; if one removes the first few elements of the sequence, e.g.
using instead the sequence (a,)$%,, for some M > m, then this does
not affect either the limit superior or limit inferior (why?). Similarly,
shifting the sequence by replacing a,, with a,x does not affect the limit

superior or limit inferior (why?).

Returning to the piston analogy, imagine a piston at +0o0 moving left-
ward until it is stopped by the presence of the sequence a1, as,.... The
place it will stop is the supremum of a1, as, as, . . ., which in our new no-
tation is af. Now let us remove the first element a; from the sequence;
this may cause our piston to slip leftward, to a new point aj (though
in many cases the piston will not move and af will just be the same
as aj ). Then we remove the second element ay, causing the piston to
slip a little more. If we keep doing this the piston will keep slipping,
but there will be some point where it cannot go any further, and this
is the limit superior of the sequence. A similar analogy can describe
the limit inferior of the sequence.
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We now describe some basic properties of limit superior and limit in-
ferior.

Proposition 27. Let (a,),, be a sequence of real numbers, let LT
be the limit superior of this sequence, and let L~ be the limit inferior
of this sequence (thus both L™ and L~ are extended real numbers).

(a) For every © > LT, there exists an N > m such that a, < x for
all n > N. (In other words, for every z > LT, the sequence (a,)%,.
is eventually less than z). Similarly, for every y < L~ there exists an

N > m such that a,, > y for all n > N.

(b) For every z < L™, and every N > m, there exists an n > N such
that a, > x. (In other words, for every z < LT, the sequence (a,)3,,
is continually greater than z). Similarly, for every y > L~ and every

N > m, there exists an n > N such that a, < y.
(c) We have inf(a,)2,, < L~ < LT <sup(a,),,.

(d) If ¢ is any limit point of (a,)$°, . then we have L~ < ¢ < L™.

n=m?’

(e) If L™ is finite, then it is a limit point of (a,)5,,. Similarly, if L~

is finite, then it is a limit point of (a,)22,,..

(f) Let ¢ be areal number. If (a,)2° . converges to ¢, then we must have
Lt =L~ =c. Conversely, if LT = L™ = ¢, then (a,)3,, converges to
c.

Proof. We shall prove (a) and (b), and leave (cdef) to the exer-
cises. Suppose first that > L. Then by definition of L™, we have
z > inf(a})¥_,,- By Proposition 24, there must then exist an inte-
ger N > m such that z > a},. By definition of a};, this means that
x > sup(a,)> n. Thus by Proposition 24 again, we have z > a,, for all
n > N, as desired. This proves the first part of (a); the second part of
(a) is proven similarly.

Now we prove (b). Suppose that z < L. Then we have z < inf(a},)%_,,.
If we fix any N > m, then by Proposition 24, we thus have z < a},. By
definition of aj;, this means that z < sup(a,) . By Proposition 24
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again, there must thus exist n > N such that a, > x, as desired. This
proves the first part of (b), the second part of (b) is proven similarly.

The proofs of (c), (d), (e), (f) are left to the Week 4 homework. O

e Proposition 27(cd) says, in particular, that L™ is the largest limit point
of (a,)2,., and L~ is the smallest limit point (providing that L™ and
L_ are finite. Proposition 27 (f) then says that if L™ and L~ co-incide
(so there is only one limit point), then the sequence in fact converges.
This gives a way to test if a sequence converges: compute its limit

superior and limit inferior, and see if they are equal.

e We now give a basic comparison property of limit superior and limit
inferior.

e Lemma 28 (Comparison principle). Let (a,),, and (b,)22,. be
two sequences of real numbers, and suppose that a,, < b, for all n > m.

Then we have

sup (an)vozo:m S sup (bn)n:m

and
inf(an)nZ,, <inf(bn)nl,,
and
lim sup a, < lim sup b,
n—00 n—oo
and
lim inf a, < lim inf b,
n—oo n—odo
e Proof. See Week 4 Homework. O

e Corollary 29 (Squeeze test). Let (a,)52,,, (b,)5,,, and (c,)22,, be
sequences of real numbers such that

an, < b, <c,

for all n > M. Suppose also that (a,)32,, and (¢,),. both converge
to the same limit L. Then (b,)s°,, is also convergent to L.

e Proof. See Week 4 Homework. O
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Example. We already know (see Proposition 17) that lim, ., 1/n =
0. By the limit laws, this also implies that lim, ,,,2/n = 0 and
lim, ;oo —2/n = 0. The squeeze test then shows that any sequence
(bp)52, for which

—2/n <b, <2/nforaln>1

is convergent to 0. For instance, we can use this to show that the
sequence (—1)"/n + 1/n? converges to zero, or that 27" converges to
zero (note one can use induction to show that 0 < 27" < 1/n for all
n >1).

This squeeze test, combined with the limit laws and the principle that
monotone bounded sequences always have limits, allows to compute a
large number of limits. We give some examples in the next set of notes.

Finally, we can give the converse to Proposition 18:

Theorem 30. Every Cauchy sequence (a,)° ; of real numbers is also
convergent.

Note that while this is very similar in spirit to Proposition 19, it is a bit
more general (Proposition 19 refers to Cauchy sequences of rationals,
not real numbers).

Proof. We know from Corollary 20 that the sequence (a,)S, is
bounded; by Lemma 28 (or Proposition 27(c)) this implies that the
liminf L_ := liminf, ,, @, and limsup L, := limsup,,_, a, of the
sequence are both finite. To show that the sequence converges, it will
suffice by Proposition 27(f) to show that L_ = L,.

Now let € > 0 be any real number. Since (a,)2°, is a Cauchy sequence,
it must be eventually e-steady, so in particular there exists an N > 1
such that the sequence (a,)i°  is e-steady. In particular, we have
ay —¢ < a, < ay+e foralln > N. By Proposition 24 (or Lemma 28)
this implies that

ay —e < inf(a,)N_,, < sup(ay)¥_,, < any +¢€

34



and hence by the definition of L_ and L, (and Proposition 24 again)
ay—e<L <L, <any+e.

Thus we have
0<L,—-L <2

But this is true for all ¢ > 0, and L, and L_ do not depend on ¢;
so we must therefore have L, = L_. (If L, > L_ then we could set
e := (Ly — L_)/3 and obtain a contradiction). By Proposition 27(f)
we thus see that the sequence converges. U

In the language of metric spaces (which you will learn about in Math
121), Theorem 30 asserts that the real numbers are a complete metric
space - that they do not contain “holes” the same way the rationals
do. (Certainly the rationals have lots of Cauchy sequences which do not
converge to other rationals; take for instance 3, 3.1, 3.14, 3.141, 3.1415, . . .).
This property is closely related to the least upper bound property dis-
cussed in Week 2 notes, and is one of the principal characteristics which
make the real numbers superior to the rational numbers for the pur-
poses of doing analysis (taking limits, taking derivatives and integrals,
finding zeroes of functions, that kind of thing), as we shall see in later
notes.
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