Math 131AH - Week 2

Textbook pages: 1-11, 24-25. (Optional additional reading: 17-21, 52-54).

Topics covered:

Some operations on the rationals
Gaps in the rational numbers
Cauchy sequences (of rationals)
The real numbers

Ordering and the reals

The least upper bound property

Cardinality of sets

X %k ok ok ok

Review of last week’s notes

In the last week’s notes, we began the systematic and rigorous construc-
tion of our familiar number systems: the natural number system N, the
integers Z, the rationals Q, and the real numbers R. (Incidentally, N,
Q, and R stand for “natural”, “quotient”, and “real” respectively. Z
stands for “Zahlen”, the German word for number.) We defined the
natural numbers using the five Peano axioms, and postulated that such
a number system existed; this is intuitively reasonable, since the natu-
ral numbers correspond to the very intuitive and fundamental notion of
sequential counting. Using that number system one could then recur-
sively define addition and multiplication, and verify that they obeyed
the usual laws of algebra. We then constructed the integers by taking
formal differences of the natural numbers, a ——b. (Formal means “hav-
ing the form of”; at the beginning of our construction the expression
a ——b did not actually mean the difference a — b, since the symbol —
was meaningless. It only had the form of a difference. Later on we
defined subtraction and verified that the formal difference was equal to
the actual difference, so this eventually became a non-issue, and our



symbol for formal differencing was discarded). We then constructed
the rationals by taking formal quotients of the integers, a//b, although
we need to exclude division by zero in order to keep the laws of algebra
reasonable. (You are of course free to design your own number system,
possibly including one where division by zero is permitted; but you will
have to give up one or more of the field axioms from last week’s notes,
among other things, and you will probably get a less useful number
system in which to do any real-world problems).

The rational system is already sufficient to do a lot of mathematics -
much of high school algebra, for instance, works just fine if one only
knows about the rationals. However, there is one important, and basic,
area of mathematics where the rational number system does not suffice
- that of geometry. For instance, a right-angled triangle with both sides
equal to 1 gives a hypotenuse of /2, which we will see is an irrational
number. Things get even worse when one starts to deal with the sub-
field of geometry known as trigonometry, when one sees numbers such
as 7 or cos(1), which turn out to be in some sense “even more” irrational
than v/2. (These numbers are known as transcendental numbers, but
to discuss this further would be far beyond the scope of this course).
Thus, in order to have a number system which can adequately describe
geometry - or even something as simple as measuring lengths on a line
- one needs to replace the rational number system with the real number
system. Since differential and integral calculus is also intimately tied
up with geometry - think of slopes of tangents, or areas under a curve
- calculus also requires the real number system in order to function

properly.

However, a rigorous way to construct the reals from the rationals turns
out to be somewhat difficult - requiring a bit more machinery than what
was needed to pass from the naturals to the integers, or the integers
to the rationals. In those two constructions, the task was to introduce
one more algebraic operation to the number system - e.g. one can get
integers from naturals by introducing subtraction, and get the rationals
from the integers by introducing division. But to get the reals from the
rationals is to pass from a “discrete” system to a “continuous” one,
and requires the introduction of a somewhat different notion - that of



a limit. The limit is a concept which on one level is quite intuitive, but
to pin down rigorously turns out to be quite difficult. (Even such great
mathematicians as Euler and Newton had difficulty with this concept.
It was only in the nineteenth century when mathematicians such as
Cauchy and Dedekind figured out how to deal with limits rigorously.)

The purpose of this weeks notes is to explore the “gaps” in the rational
numbers, and how to fill them in using limits to create the real num-
bers. The real number system will end up being a lot like the rational
numbers, but will have some new operations - notably that of supre-
mum, which can then be used to define limits and thence to everything
else that calculus needs.
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Some operations on the rationals

We have already introduced the four basic arithmetic operations of
addition, subtraction, multiplication, and division on the rationals.
(Recall that subtraction and division came from the more primitive
notions of negation and reciprocal by the formulae z — y := z + (—y)
and z/y := z x y~'). We also have a notion of order <, and have or-
ganized the rationals into the positive rationals, the negative rationals,
and zero. In short, we have shown that the rationals Q form an ordered
field.

One can now use these basic operations to construct more operations.
There are many such operations we can construct, but we shall just
introduce two particularly useful ones: absolute value and exponentia-
tion.

Definition If z is a rational number, the absolute value |z| of z is
defined as follows. If z is positive, then |z| := z. If x is negative, then
|z| ;== —x. If x is zero, then |z| := 0.

Let 2 and y be real numbers. The quantity |z —y| is called the distance
between x and y and is sometimes denoted d(z,y), thus d(z,y) :=
|z — y|. For instance, d(3,5) = 2.

The basic properties of absolute value are the following:
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e Proposition 1. Let x,y be rational numbers. Then |z| is either posi-
tive or zero, and |z| = 0 if and only if x is 0. Also, we have the triangle
inequality

|z +yl < |z|+[yl,
the bounds
—|z[ <z <zl

and the multiplicative identity

lzy| = |=| [y|.

In particular we have
| — x| = |xl.

The distance d(z,y) obeys the following properties. If z, y, z are ratio-
nal numbers, then d(z,y) = 0 if and only if © = y. Also, we have the
symmetry property d(z,y) = d(y,z) and the triangle inequality

d(z,z) < d(z,y) + d(y, 2).

e Proof. See Week 2 Homework. O

e Absolute value is useful for measuring how “close” two numbers are.
Let us make a somewhat artificial definition:

e Definition. Let ¢ > 0, and z,y be rational numbers. We say that y is
e-close to z iff we have d(y,z) < e.

e Examples. The numbers 0.99 and 1.01 are 0.1-close, but they are not
0.01 close, because d(0.99,1.01) = |0.99 — 1.01] = 0.02 is larger than
0.01. The numbers 2 and 2 are e-close for every positive .

e We do not bother defining a notion of e-close when ¢ is zero or negative,
because if ¢ is zero then x and y are only e-close when they are equal,
and when € is negative then x and y are never e-close. (In any event
it is a long-standing tradition in analysis that the Greek letters g, §
should only denote positive (and probably small) numbers).



Note: This definition is not standard in mathematics textbooks; I will
use it as “scaffolding” to construct the more important notions of lim-
its (and of Cauchy sequences) later on, and once we have those more
advanced notions we will discard the notion of e-close.

Some basic properties of e-closeness are the following.
Proposition 2. Let z,y, z, w be rational numbers.

(a) If x = y, then z is e-close to y for every € > 0. Conversely, if z is
e-close to y for every € > 0, then we have z = y.

(b) Let ¢ > 0. If x is e-close to y, then y is e-close to .

(c) Let £,6 > 0. If x is e-close to y, and y is d-close to z, then z and z
are (¢ + ¢)-close.

(d) Let £,0 > 0. If z and y are e-close, and z and w are d-close, then
x4z and y+w are (e49)-close, and z—z and y—w are also (e+0)-close.

(e) Let € > 0. If = and y are e-close, they are also ¢'-close for every
g >e.

(f) Let € > 0. If y and 2z are both e-close to z, and w is between y and
z (ie. y<w<zorz<w<y), then w is also e-close to z.

(g) Let ¢ > 0. If z and y are e-close, and z is non-zero, then zz and yz
are ¢|z|-close.

(h) Let £,0 > 0. If 2 and y are e-close, and z and w are d-close, then
zz and yw are (¢|z| + 6|z| + €d)-close.

Proof. We only prove the most difficult one, (g); we leave (a)-(f) to
the exercises. Let €, > 0, and suppose that z and y are e-close. If we
write a := y — z, then we have y = z + a and that |a| < . Similarly,
if z and w are d-close, and we define b := w — z, then w = z + b and
b <8

Since y = x4+ a and w = z + b, we have

yw = (z+a)(z +b) =xz + az + zb + ab.



Thus
lyw — zz| = |az + bz + ab| < |az| + |[bz| + |ab| = |al|z| + [b]|z| + |al|b].
Since |a| < ¢ and |b| < 4, we thus have
lyw — xz| < €lz| + 6|z| + €
and thus that yw and zz are (¢|z| + §|x| + £6)-close. O

One should compare statements (a)-(c) of this Proposition with the
first three axioms of equality (see supplemental handout on logic).

Now we define exponentiation for natural number exponents. Just like
addition was recursive incrementation and multiplication was recursive
addition, exponentiation is recursive multiplication (at least when the
exponent is a natural number)

Definition Let = be a rational number. To raise x to the power 0, we
define z° := 1. Now suppose that recursively that ™ has been defined
for some natural number n, then we define z"*+ := 2™ x z.

Thus for instance 2! = 2° xz =1 xz2 =12, 22 = 2! x 2z = z x 23
2® = 22 x £ = 2 X X x; and so forth. This recursive definition defines
2" for all natural numbers n.

We have the following properties of exponentiation with natural num-
ber exponents:

Proposition 3. Let x,y be rational numbers, and let n, m be natural
numbers.

(a) We have z"z™ = "™ (™)™ = 2™ and (xy)" = a™y".
(b) We have 2" = 0 if and only if z = 0.

(¢) If x >y >0, then z™ > y™ > 0.

(d) We have |z"| = |z|™.

Proof. These are all easy applications of induction, and are left to the
reader. O



Now we define exponentiation for negative integer exponents.

Definition Let x be a non-zero rational number. Then for any negative
integer —n, we define z=" :=1/z".

Thus for instance 2 = 1/2® = 1/(z x x X ). We now have z" defined
for any integer n, whether n is positive, negative, or zero.

Exponentiation with integer exponents has the following properties:

Proposition 4. Let z,y be non-zero rational numbers, and let n,m
be integers.

(a) We have z"z™ = "™ (™)™ = 2™, and (xy)" = 2™y".

(b) If z > y > 0, then z™ > y™ > 0 if n is positive, and 0 < 2™ < y" if
n is negative.

(¢) We have |z"| = |z|".

Proof. This follows easily from Proposition 3, and a division into cases
depending on whether n and m are natural number or negative integers,
and is left to the reader. O
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Gaps in the rational numbers

e Imagine that we arrange the rationals on a line, arranging x to the right

of y if x > y. (This is a non-rigorous arrangement, since we have not
yet defined the concept of a line, but this discussion is only intended
to motivate the more rigorous propositions below). Inside the rationals
we have the integers, which are thus also arranged on the line. Now we
work out how the rationals are arranged within the integers.

Proposition 5. Let x be a rational number. Then there exists an
integer n such that n < z < n + 1. In fact, this integer is unique (i.e.
for each x there is only one n for which n <z < n +1). In particular,
there exists a natural number N such that N > z (i.e. there is no
such thing as a rational number which is larger than all the natural
numbers).



Proof. See Week 2 Homework. O

We also know from last week’s notes that between every pair of rational
numbers there is another. This seems to give a lot of rational numbers,
but it turns out there are still some “gaps”. For instance, we will now
show that the rational numbers do not contain any square root of two.

Proposition 6. There does not exist any rational number x for which
2
e =2

Proof. We only give a sketch of a proof; the gaps will be filled in the
homework.

Suppose for contradiction that we had a rational number z for which
2? = 2. Clearly z is not zero. We may assume that z is positive, for if
x were negative then we could just replace = by —z (since z* = (—z)?).
Thus = = p/q for some positive integers p, q, so (p/q)*> = 2, which we
can rearrange as p° = 2¢°.

Define a natural number p to be even if p = 2k for some natural number
k, and odd if p = 2k + 1 for some natural number k. Every natural
number is either even or odd, but not both (why? See Homework). If
p is odd, then p? is also odd (why? See Homework), which contradicts
p? = 2¢°. Thus p is even, i.e. p = 2k for some natural number k. Since
p is positive, k¥ must also be positive. Inserting p = 2k into p?> = 24>
we obtain 4k% = 2¢?, so that ¢* = 2k2.

To summarize, we started with a pair (p,q) of positive integers such
that p> = 2¢°, and ended up with a pair (g, k) of positive integers such
that ¢> = 2k%. Since p* = 2¢%, we have q < p (why?). If we rewrite
p' = q and ¢' := k, we thus can pass from one solution (p,q) to the
equation p® = 2¢® to a new solution (¢, ¢') to the same equation which
has a smaller value of p. But then we can repeat this procedure again
and again, obtaining a sequence (p”,q"), (p"”,¢"), etc. of solutions to
p? = 2¢?, each one with a smaller value of p than the previous, and each
one consisting of positive integers. But this contradicts the principle
of infinite descent (see Homework). This contradiction shows that we
could not have had a rational z for which 2? = 2. [l



e On the other hand, we can get rational numbers which are arbitrarily
close to a square root of 2:

e Proposition 7. For every rational number € > 0, there exists a non-
negative rational number z such that 22 < 2 < (z + ).

e Proof. Let £ > 0 be rational. Suppose for contradiction that there is
no non-negative rational number z for which 22 < 2 < (z + €)?. This
means that whenever z is non-negative and z? < 2, we must also have
(z+¢)? < 2 (note that (z+¢)? cannot equal 2, by Proposition 6). Since
0? < 2, we thus have 2 < 2, which then implies (2¢)? < 2, and indeed
a simple induction shows that (ne)? < 2 for every natural number n.
(Note that ne is non-negative for every natural number n - why?). But,
by Proposition 5 we can find an integer n such that n > 2/e, which
implies that ne > 2, which implies that (ne)? > 4 > 2, contradicting
the claim that (ne)? < 2 for all natural numbers n. This contradiction
gives the proof. O

e For example, if ¢ = 0.001, we can take x = 1.414, since 2% = 1.999396
and (z + ¢)? = 2.002225. (Incidentally, we will use the decimal sys-
tem for defining terminating decimals, for instance 1.414 is defined to
equal the rational number 1414/1000. We defer more discussion on the
decimal system to a supplemental handout).

e This Proposition indicates that, while the set Q of rationals do not
actually have v/2 as a member, we can get as close as we wish to v/2.
For instance, the sequence of rationals

1.4,1.41,1.414,1.4142,1.41421, . . .
seem to get closer and closer to V/2, as their squares indicate:
1.96,1.9881, 1.99396, 1.99996164, 1.9999899241, . ..

Thus it seems that we can create a square root of 2 by taking a “limit” of
a sequence of rationals. This is how we shall construct the reals. (There
is another way to do so, using something called “Dedekind cuts”; this
is the approach pursued in the textbook, but this is optional reading
material for the course. One can also proceed using infinite decimal
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expansions, but there are some sticky issues when doing so, e.g. one has
to make 0.999... equal to 1.000..., and this approach, despite being
the most familiar, is actually more complicated than other approaches).

X 3k sk ok ok

Cauchy sequences

e Let us first define the concept of a sequence. Let m be an integer.
A sequence (a,)S2,, of rational numbers is any function from the set
{n € Z : n > m} to Q, i.e. a mapping which assigns to each integer
n greater than or equal to m, a rational number a,. More informally,
a sequence (a,)>, of rational numbers is a collection of rationals ay,

An41; On+42, - - -

e For instance, the sequence (n?)%, is the collection 0,1,4,9, ... of nat-
ural numbers; the sequence (3)°, is the collection 3,3, 3, ... of natural
numbers. These sequences are indexed starting from 0, but we can
of course make sequences starting from 1 or any other number; for
instance, the sequence (a,)% 5 denotes the sequence ag, a4, as, ..., SO
(n?)2°_, is the collection 9,16, 25, . .. of natural numbers.

e We want to define the real numbers as the limits of sequences of rational
numbers. To do so, we have to distinguish which sequences of rationals
are convergent and which ones are not. For instance, the sequence

1.4,1.41,1.414,1.4142,1.41421, . . .
looks like it is trying to converge to something, as does
0.1,0.01, 0.001, 0.0001, . ..
while other sequences such as
1,2,4,8,16, ...

or
1,0,1,0,1,...

do not.
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To do this we use the definition of e-closeness defined earlier. Recall
that two rational numbers z, y are e-close if d(z,y) = |z — y| < e.

(e o]

Definition. Let ¢ > 0. A sequence (a,)$%, is said to be e-steady
iff each pair a;, a; of sequence elements is e-close for every natural
number 7, k. In other words, the sequence ag, a1, as, ... is e-steady iff
d(aj,ar) < ¢ for all j, k.

(Again, this notion of e-steadiness is is a temporary notion, which we
will not use in later weeks notes).

This definition is for sequences whose index starts at 0, but clearly we
can make a similar notion for sequences whose indices start from any
other number: asequence ay, any1, ... is e-steady if one has d(a;, aj) <
e for all j,k > N.

Example. The sequence 1,0,1,0,1,... is 1-steady, but is not 1/2-
steady. The sequence 0.1,0.01,0.001, 0.0001, ... is 0.1-steady, but is
not 0.01-steady (why?). The sequence 1,2,4,8,16,... is not e-steady
for any € (why?). The sequence 2,2,2,2, ... is e-steady for every € > 0.

The notion of e-steadiness of a sequence is simple, but does not really
capture the limiting behavior of a sequence, because it is too sensitive
to the initial members of the sequence. For instance, the sequence

10,0,0,0,0,0,...

is 10-steady, but is not e-steady for any smaller value of ¢, despite the
sequence converging almost immediately to zero. So we need a more
robust notion of steadiness that does not care about the initial members
of a sequence.

Definition. Let ¢ > 0. A sequence (a,)%, is said to be eventually
e-steady iff the sequence ay, any1,anyo, - - . is e-steady for some natural
number N > 0. In other words, the sequence ag, a1, as, . . . is eventually
e-steady iff there exists an N > 0 such that d(a;, ax) < ¢ for all j,k >
N.
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Example. The sequence ai,as,... defined by a, := 1/n, (i.e. the
sequence 1,1/2,1/3,1/4,...) is not 0.1-steady, but is eventually 0.1-
steady, because the sequence ayg, ai1, a9, ... (i.e. 1/10,1/11,1/12,...)
is 0.1-steady. The sequence 10,0,0,0,0,... is not e-steady for any &
less than 10, but it is eventually e-steady for every € > 0 (why?).

Now we can finally define the correct notion of what it means for a
sequence of rationals to “want” to converge. (As I mentioned before,
the notion of e-steadiness is just scaffolding).

Definition. A sequence (a,)$, of rational numbers is said to be a
Cauchy sequence iff for every rational € > 0, the sequence (a,)2°, is
eventually e-steady. In other words, the sequence ag,aq,as,... is a
Cauchy sequence iff for every ¢ > 0, there exists an N > 0 such that
d(aj,ar) <eforall j,k> N.

Informal example. Consider the sequence 1.4,1.41,1.414,... men-
tioned earlier. This sequence is already 1-steady. If one discards the
first element, i.e. 1.41,1.414,1.4142, ... then it is now 0.1-steady, which
means that the original sequence was eventually 0.1-steady. Discarding
the next element gives 1.414,1.4142, ... which is 0.01-steady; thus the
original sequence was eventually 0.01-steady. Continuing in this way it
seems plausible that this sequence is in fact e-steady for every ¢ > 0,
which seems to suggest that this is a Cauchy sequence. However, this
discussion is not rigorous for several reasons, for instance I have not
precisely defined what this sequence 1.4,1.41,1.414,... really is. An
example of a rigorous treatment follows next.

Claim. The sequence ai,as,as, ... defined by a, := 1/n (i.e. the
sequence 1,1/2,1/3,...) is a Cauchy sequence.

Proof. We have to show that for every € > 0, the sequence ay, as, ...
is eventually e-steady. So let £ > 0 be arbitrary. We now have to find a
number N > 1 such that the sequence ay,ayn.1,... is e-steady. Let us
see what this means. This means that d(a;, ax) < € for every j,k > N,
i.e.

[1/5 — 1/k| < € for every j,k > N.
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Now since j,k > N, we know that 0 < 1/4,1/k < 1/N, so that |1/j —
1/k| <1/N. Soin order to force |1/j — 1/k| to be less than or equal to
g, it would be sufficient for 1/N to be less than €. So all we need to do
is choose an N such that 1/N is less than ¢, or in other words that NV
is greater than 1/¢. But this can be done thanks to Proposition 5. [

As you can see, verifying from first principles (i.e. without using any
of the machinery of limits, etc.) that a sequence is a Cauchy sequence
requires some effort, even for a sequence as simple as 1/n. (And the
part about selecting an N can be difficult for beginners - one has to
think in reverse, working out what conditions on N would suffice to
force the sequence ay,ani1,an412,-.. to be e-steady, and then finding
an N which obeys those conditions). Later we will develop the limit
laws which allow us to determine when a sequence is Cauchy with more
ease.

We first prove a basic fact about Cauchy sequences: they are bounded.

Definition. Let M > 0. A finite sequence aq,as,...,a, is bounded
by M iff |a;| < M for all 1 < ¢ < n. An infinite sequence (a,)5,
is bounded by M iff |a;| < M for all i > 1. A sequence is said to be
bounded iff it is bounded by M for some M > 0.

For instance, the finite sequence 1, —2,3, —4 is bounded (in this case,
it is bounded by 4, or indeed by any M greater than or equal to 4).
But the infinite sequence 1,—2,3,—4,5,—6,... is unbounded. (Can
you prove this? Use Proposition 5). The sequence 1,—1,1,—1,... is
bounded (e.g. by 1), but not a Cauchy sequence. Note that a sequence
is bounded by M if and only if it is M-close to the zero sequence
0,0,0,... (why?).

Lemma 8. Every finite sequence ay, as, ..., a, is bounded.

Proof. We prove this by induction on n. When n = 1 the sequence
ay is clearly bounded, for if we choose M := |a;| then clearly we have
la;| < M for all 1 <4 < n. Now suppose that we have already proved
the lemma, for some n > 1; we now prove it for n++, i.e. we prove every
sequence ai, s, - .., 0,4+ is bounded. By the induction hypothesis we
know that ai,as,...,a, is bounded by some M > 0; in particular, it
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must be bounded by M + |a,;.|. On the other hand, a,, is also
bounded by M + |a44|.- Thus aq,aq,...,a,, ayyy is bounded by M +
|any |, and is hence bounded. This closes the induction. O

e Note that while this argument shows that every finite sequence is
bounded, no matter how long the finite sequence is, it does not say
anything about whether an infinite sequence is bounded or not. (Infin-
ity is not a natural number). However, we have

e Lemma 9. Every Cauchy sequence (a,)$2; is bounded.

e Proof. See Week 2 homework. O
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Equivalent Cauchy sequences

e Consider the two Cauchy sequences of rational numbers:
1.4,1.41,1.414,1.4142,1.41421, . . .

and
1.5,1.42,1.415,1.4143,1.41422, . ..

Informally, both of these sequences seem to be converging to the same
number, the square root v/2 = 1.41421. .. (though this statement is
not yet rigorous because we have not defined real numbers yet). If we
are to define the real numbers from the rationals as limits of Cauchy
sequences, we have to know when two Cauchy sequences of rationals
give the same limit, without first defining a real number (since that
would be circular). To do this we use a similar set of definitions to
those used to define a Cauchy sequence in the first place.

e Definition. Let (a,)2°, and (b,)$%, be two sequences, and let £ > 0.
We say that the sequence (a,)3, is e-close to (b,)5%, iff a,, is e-close to
b, for each n € N. In other words, the sequence ag, a1, as, ... is e-close
to the sequence by, by, bo, ... iff |a, — b,| < e foralln=0,1,2,....

e Example. The two sequences

1,-1,1,-1,1

3 Ay by Ty Ly e
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and
1.1,-1.1,1.1,-1.1,1.1,....

are 0.1-close to each other. (Note however that neither of them are
0.1-steady).

Definition Let (a,)22, and (b,)32, be two sequences, and let ¢ > 0.
We say that the sequence (a,)%, is eventually e-close to (b)), iff
there exists an N > 0 such that the sequences (a,)% , and (b,)%° , are
e-close. In other words, ag, aq, as, . . . is eventually e-close to by, b1, ba, . . .
iff there exists an N > 0 such that |a, — b,| < e for all n > N.

Example. The two sequences
1.1,1.01,1.001, 1.0001, . ..

and
0.9,0.99,0.999, 0.9999, . ..

are not 0.1-close (because the first elements of both sequences are not
0.1-close to each other). However, the sequences are still eventually
0.1-close, because if we start from the second elements onwards in the
sequence, these sequences are 0.1-close. A similar argument shows that
the two sequences are eventually 0.01 close (by starting from the third
element onwards), and so forth.

Definition Two sequences (a,)2, and (b,)S2, are equivalent iff for
each rational ¢ > 0, the sequences (a,)2°, and (b,)2°, are eventually
e-close. In other words, ag, a1, as, ... and by, by, be, ... are equivalent iff
for every rational € > 0, there exists an N > 0 such that |a, — b,| < ¢
forallm > N.

Thus the two sequences above appear to be equivalent. We now prove
this rigorously.

Claim. Let (a,)>°; and (b,)2; be the sequences a, = 1 + 107" and
b, =1 —107". Then the sequences a,, b, are equivalent.

Proof. We need to prove that for every ¢ > 0, the two sequences

(@)%, and (b,)32, are eventually e-close to each other. So we fix an
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e > 0. We need to find an N > 0 such that (a,)2 5 and (b,)2 y are
e-close; in other words, we need to find an N > 0 such that

la, — by| < e for all n > N.
However, we have
lan, — b = |(14+107") = (1 —107™)| =2 x 107"

Since 107" is a decreasing function of n (i.e. 10™™ < 10~" whenever
m > n; this is easily proven by induction), and n > N, we have
2 x10™™ < 2 x 10~V. Thus we have

lan — by <2 x 107N for alln > N.

Thus in order to obtain |a, — b,| < & for all n > N, it will be sufficient
to choose N so that 2 x 10~ < . This is easy to do using logarithms,
but we have not yet developed logarithms yet, so we will use a cruder
method. First, we observe using induction that 10V is always greater
than N for any N > 1. (Proof: This is true for N = 1: 10' > 1. Now
suppose inductively that N > 1, and we have already proved 10V > N,
Multiplying this by 10, we obtain 10Y** > 10N; since 10N > N + +
(why?), we thus have 10"** > N + +). Thus 107" < 1/N, and so
2x 1077 < 2/N. Thus to get 2 x 107" < ¢, it will suffice to choose N
so that 2/N < ¢, or equivalently that N > 2/e. But by Proposition 5
we can always choose such an N, and the claim follows. O

X %k ok ok ok

The construction of the real numbers

e We are now ready to construct the real numbers. We shall introduce
a new (meaningless) symbol LIM, similar to the notations — and //
defined earlier; as the notation suggests, this will eventually match the
familiar operation of lim.

e Definition. A real number is defined to be an object of the form
LIM,, 00tn, where (a,)%, is a Cauchy sequence of rational numbers.
Two real numbers LIM,, ,a, and LIM,,_,.b, are said to be equal iff
(an)2°; and (b,)s°, are equivalent Cauchy sequences. The set of all

real numbers is denoted R.
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Informal example. Let a4, as, as, ... denote the sequence
1.4,1.41,1.414,1.4142,1.41421, . ..

and let by, by, b3, . .. denote the sequence
1.5,1.42,1.415,1.4143,1.41422, . ..

then LIM,,_,sa, is a real number, and is the same real number as
LIM,,—y00bn, because (a,); and (b,), are equivalent Cauchy se-
quences: LIM, . a, = LIM,,_,oob,.

We will call LIM,, ,xa, the formal limit of the sequence a,,. Later on
we will define a genuine notion of limit, and show that the formal limit
of a Cauchy sequence is the same as the limit of that sequence; after
that, we will not need formal limits ever again. (The situation is much
like what we did with formal subtraction — and formal division //).

In order to ensure that this definition is valid, we need to check that
the notion of equality in the definition obeys the first three laws of
equality:

Proposition 10. Let z = LIM,,_,a,, v = LIM,b,, and z =
LIM,,_;s0C,, be real numbers. Then, with the above definition of equality
for real numbers, we have © = x. Also, if x = y, then y = z. Finally,
ifr =y and y = 2z, then z = 2.

Proof. See Week 2 homework. O

Because of this Proposition, we know that our definition of equality
between two real numbers is legitimate. (Of course, when we define
other operations on the reals, we have to check that they obey the law
of substitution: two real number inputs which are equal should give
equal outputs when applying any operation on the real numbers).

Now we want to give the real numbers all the usual arithmetic opera-
tions: addition, multiplication, etc. We begin with addition.

Definition Let x = LIM,, ,,.a, and y = LIM,,_,,.b, be real numbers.
Then we define the sum z + y to be z + y := LIM,,_, o0, + by,.
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Thus, for example, the sum of LIM,,,,1 + 1/n and LIM, 2 + 3/n
should be LIM,, ;3 + 4/n.

We now check that this definition is valid. The first thing we need to
do is confirm that the sum of two real numbers is in fact a real number:

Lemma 11. Let x = LIM,, ,ya, and y = LIM,, , b, be real numbers.
Then z +y is also a real number (i.e. (a,+b,)22, is a Cauchy sequence
of rationals).

Proof. We need to show that for every € > 0, the sequence (a,+b,)22,
is eventually e-steady. Now from hypothesis we know that (a,)3, is
eventually e-steady, and (b,)5%, is eventually e-steady, but it turns out
that this is not quite enough (this can be used to imply that (a,+b,)5
is eventually 2e-steady, but that’s not what we want). So we need to
do a little trick, which is to play with the value of ¢.

We know that (a,)$°; is eventually d-steady for every value of §. This
implies not only that (a,)3? ; is eventually e-steady, but it is also even-
tually €/2-steady. Similarly, the sequence (b,,)2°, is also eventually €/2-
steady. This will turn out to be enough to conclude that (a, + b,)2
is eventually e-steady.

Let’s see how. Since (a,)$%, is eventually ¢/2-steady, we know that
there exists an N > 1 such that (a,)° y is £/2-steady, i.e. a, and ay,
are €/2-close for every n,m > N. Similarly there exists an M > 1
such that (b,)3 ,, is €/2-steady, i.e. b, and b, are €/2-close for every
n,m> M.

Let max(N, M) be the larger of N and M (we know from week 1 notes
that one has to be greater than or equal to the other). If n,m >
max (N, M), then we know that a, and a,, are €/2-close, and b, and b,,
are /2 close, and so by Proposition 2 we see that a, + b, and a,, + by,
are e-close for every n, m > max (N, M). This implies that the sequence
(an + bp)$2, is eventually e-close, as desired. O

The other thing we need to check is the axiom of substitution: if we
replace a real number z by another number equal to x, this should
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not change the sum z + y (and similarly if we substitute y by another
number equal to y).

Lemma 12. Let x = LIM,, 000, y = LIM,, ,0ob,,, and 2’ = LIM,,_,.a),
be real numbers. Suppose that x = z’. Then we have z +y = 2’ + ¥.

Proof. Since x and z’ are equal, we know that the Cauchy sequences
(@)%, and (al)9e, are equivalent, so in other words they are even-
tually e-close for each ¢ > 0. We need to show that the sequences
(an +b,); and (al, +b,)°; are eventually e-close for each ¢ > 0. But
we already know that there is an N > 1 such that (a,)$ 5 and (a},)2
are e-close, i.e. that a, and a], are e-close for each n > N. Since b, is
of course 0-close to b,, we thus see from Proposition 2 that a,, + b, and
al, + by, are e-close for each n > N. This implies that (a, + b,)°, and

(al, + bp)ee, are eventually e-close for each € > 0, and we are done. [J

The above lemma verifies the axiom of substitution for the “x” variable
in £ + y, but one can similarly prove the axiom of substitution for the
[{Pe))

y” variable. (A quick way is to observe from the definition of = + y
that we certainly have z +y = y + z, since a, + b, = by + ay,).

We can similarly define multiplication:

Definition Let x = LIM,, ,a, and y = LIM,,_,,b, be real numbers.
Then we define the product zy to be xy := LIM,, o0y, by.

The following Proposition ensures that this definition is valid, and that
the product of two real numbers is in fact a real number:

Proposition 13. Let x = LIM, s a,, ¥y = LIM,_,.b,, and 2’ =
LIM,,,a,, be real numbers. Then zy is also a real number. Further-
more, if x = 2/, then xy = 2'y.

Proof See Week 2 homework. O

Of course we can prove a similar substitution rule when y is replaced
by a real number 3’ which is equal to v.
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e At this point we embed the rationals back into the reals, by equating
every rational number ¢ with the real number LIM,,_,,,q. For instance,
if a1, a9, as, ... is the sequence

0.5,0.5,0.5,0.5,0.5,...

then we set lim,,_,, a, equal to 0.5. This embedding is consistent with
our definitions of addition and multiplication, since for any rational
numbers a, b we have

LIM, s 00a+LIM,,_,oob = LIM,,,oca+b; LIM,,_,caxLIM, b = LIM,,_, ab;

this means that when one wants to add or multiply two rational num-
bers a,b it does not matter whether one thinks of these numbers as
rationals or as the real numbers LIM,,_,a, LIM,,_,.b. Also, this identi-
fication of rational numbers and real numbers is consistent with our def-
initions of equality: if a and b are equal, then LIM,,_,oa and LIM,,_,,.b
are equal, and if ¢ and b are unequal, then LIM,,_,,a and LIM,,_,..b
are unequal (because the Cauchy sequences a, a,a,qa,...and b,b,b,b...
are not equivalent (why?)).

e We can now easily define negation —z for real numbers x by the formula
—z:=(-1) x z,

since —1 is a rational number and is hence real. Note that this is
clearly consistent with our negation for rational numbers since we have
—q = (—1) x g for all rational numbers ¢. Also, from our definitions it
is clear that

—LIM,, 0a, = LIM,, oo — ay,

(why?). Once we have addition and negation, we can define subtraction
as usual by
r—y:=2+(-y),

note that this implies

LIM, 5 00n — LIMy 000 = LIM,, s 00ap, — by,

e We can now easily show that the real numbers obey all the usual rules
of algebra:
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e Proposition 14. All the laws of Proposition 16 from last weeks notes
hold not only for the integers, but for the reals as well.

e Proof. We illustrate this with one such rule: z(y + z) = zy + zz. Let
xr = LIM,, s 000p, y = LIM,, , by, and z = LIM,, ,,.c, be real numbers.
Then by definition, xy = LIM,,_,s0,b, and xz = LIM,,_,sa,¢,, and so
xy + xz = LIM;, 4 00nby + anc,. A similar line of reasoning shows that
z(y+2) = LIM, 50000 (by + ¢,). But we already know that a, (b, +cy,) is
equal to a,b, + a,c, for the rational numbers a,, b,, ¢,, and the claim
follows. The other laws of algebra are proven similarly. O

e The last arithmetic operation we need to define is reciprocal: z — z~!.

This one is a little more subtle. The naive definition is to define
(LIMn_)ooan)*l = LIMn_,ooa,;l,

but there are a few problems with this. For instance, let ay,as,as, ...
be the Cauchy sequence

0.1,0.01, 0.001,0.0001, . . .,

and let z := LIM,_,a,. Then by this definition, z=' would be
LIM,,oobn, where by, by, bs, . .. is the sequence

10, 100, 1000, 10000, . ..

but this is not a Cauchy sequence (it isn’t even bounded). Of course,
the problem here is that our original Cauchy sequence (a,), was
equivalent to the zero sequence (0)$°, (why?), and hence that our real
number x was in fact equal to 0. So we should only allow the operation

of reciprocal when x is non-zero.

e However, even when we restrict ourselves to non-zero real numbers, we
have a slight problem, because a non-zero real number might be the
formal limit of a Cauchy sequence which contains zero elements. For
instance, the number 1, which is rational and hence real, is the formal
limit 1 = LIM,, ,a,, of the Cauchy sequence

0,0.9,0.99,0.999,0.9999, . ..
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but using our naive definition of reciprocal, we cannot invert the real
number 1, because we can’t invert the first element (0) of this Cauchy
sequence!

To get around these problems we need to keep our Cauchy sequence
away from zero. To do this we first need a definition.

Definition A sequence (a,)3, is said to be bounded away from zero

iff there exists a ¢ > 0 such that |a,| > ¢ for all n > 1.

For instance, the sequence 1,—1,1,—1,1,—1,1,... is bounded away
from zero (all the coefficients have absolute value at least 1). But
the sequence 0.1,0.01,0.001,... is not bounded away from zero, and

neither is 0,0.9,0.99,0.999,0.9999, .... The sequence 10,100, 1000, ...
is bounded away from zero, but is not bounded.

We now show that every non-zero real number is the formal limit of a
Cauchy sequence bounded away from zero:

Lemma 15. Let x be a non-zero real number. Then z = LIM,,_,a,
for some Cauchy sequence (a,,)2°; which is bounded away from zero.

Proof. Since z is real, we know that z = LIM,,_,,b, for some Cauchy
sequence (b,)>° ;. But we are not yet done, because we do not know
that b, is bounded away from zero. On the other hand, we are given
that z # 0 = LIM,,_,»,0, which means that the sequence (b,)22; is NOT
equivalent to (0)32,. Thus the sequence (b,)5, cannot be eventually
e-close to (0), for every € > 0. Therefore we can find an € > 0 such

that (b,)s2; is NOT eventually e-close to (0)5°,.

n=1
Let us fix this . We know that (b,)%, is a Cauchy sequence, so
it is eventually e-steady. Moreover, it is eventually e/2-steady, since
e/2 > 0. Thus there is an N > 1 such that |b, — b,,| < &/2 for all
n,m> N.

On the other hand, we cannot have |b,| < ¢ for all n > N, since this
would imply that (b,)52, is eventually e-close to (0)52;. Thus there
must be some ng > N for which |b,,| > €. Since we already know
that |b,, — b,| < e/2 for all n > N, we thus conclude from the triangle

inequality (how?) that [b,| > ¢/2 for all n > N.
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This almost proves that (b,)52 ; is bounded away from zero. Actually,

what it does is show that (,)5%, is eventually bounded away from
zero. But this is easily fixed, by defining a new sequence a,,, by setting
an = ¢/2if n < N and a, := b, if n > N. Since b, is a Cauchy
sequence, it is not hard to verify that a, is also a Cauchy sequence
which is equivalent to b, (because the two sequences are eventually the
same), and so x = LIM,, ,000,,- And since |b,| > /2 for all n > N, we
know that |a,| > &/2 for all n > 1 (splitting into the two cases n > N
and n < N separately). Thus we have a Cauchy sequence which is
bounded away from zero (by €/2 instead of €, but that’s still OK since

e/2 > 0), and which has x as a formal limit, and so we are done. [

Once a sequence is bounded away from zero, we can take its reciprocal
without any difficulty:

Lemma 16. Let (a,)$%,; be a Cauchy sequence which is bounded away

from zero. Then the sequence (a,;')%, is also a Cauchy sequence.

Proof. Since (a,)52, is bounded away from zero, we know that there
is a ¢ > 0 such that |a,| > ¢ for all n > 1. Now we need to show
that (a, '), is eventually e-steady for each € > 0. Thus let us fix an

e > 0; our task is now to find an N > 1 such that |a;! — a;!| < & for
alln,m > N. But

(O _ o — )
o] = |t M

la. " —a
n Gy, Oy c2

(since |aml, |a,| > ¢), and so to make |a,;' — a,'| less than or equal to
g, it will suffice to make |a,, — a,| less than or equal to c?c. But since
(a,)%, is a Cauchy sequence, and c?¢ > 0, we can certainly find an N
such that the sequence (a,,)2 y is c?e-steady, i.e. |ay, —a,| < % for all
n > N. By what we have said above, this shows that |a, — a,,| < € for
all m,n > N, and hence the sequence (a,')%, is eventually e-steady.
Since we have proven this for every ¢, we have that (a, ') ; is a Cauchy
sequence, as desired. O

We are now ready to make the definition of reciprocal:

Definition. Let x be a non-zero real number. Let (a,)$°; be a Cauchy
sequence bounded away from zero such that z = LIM,, ,a, (such a
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sequence exists by Lemma 15). Then we define the reciprocal ! by
the formula z7! := LIM,, ,»a,'. (From Lemma 16 we know that x™!
is a real number.)

We need to check one thing before we are sure this definition makes
sense: what if there are two different Cauchy sequences (a,)5°; and
(b,)92, which have z as their formal limit, x = LIM,, ,a, = LIM,,_,oob,.
The above definition might conceivably give two different reciprocals
z~ !, namely LIM,, ,a, ' and LIM,,_, b, . Fortunately, this never hap-
pens:

Lemma 17. Let (a,)2, and (b,)$2; be two Cauchy sequences bounded

away from zero such that LIM, ,.a, = LIM, b, (i.e. the two se-
quences are equivalent). Then LIM,, ,oa,! = LIM,, b, .

Proof Consider the following product P of three real numbers:
P = (LIMy 5000, ") X (LIMp50005) X (LIMp_y00b; ).
If we multiply this out, we obtain
P =LIM,_,a; ta,b; ' = LIM, _,o.b. "

On the other hand, since LIM,,_,sa,, = LIM,,_b,, we can rewrite P
as
P = (LM, 000, ") X (LIMy00bn) X (LIM,00b, )

(cf. Proposition 13). Now if we multiply things out again, we get
P = LIM, 000, 'bpb. " = LIM,_,00a;, .

Comparing our different formulae for P we see that LIM, ,.a,' =
LIM,, ,00b;, !, as desired. O

Thus reciprocal is well-defined (for each non-zero real number z, we
have exactly one definition of the reciprocal z7'). Note it is clear from
the definition that xz=! = 7'z = 1 (why?); thus all the field axioms
(Proposition 20 from last week’s notes) apply to the reals as well as to
the rationals. We of course cannot give 0 a reciprocal, since 0 multiplied
by anything gives 0, not 1. Also note that if ¢ is a non-zero rational,
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and hence equal to the real number LIM,,_,,q, then the reciprocal of
LIM,, g is LIM, ¢~ ' = ¢~ '; thus the operation of reciprocal on
real numbers is consistent with the operation of reciprocal on rational
numbers.

e Once one has reciprocal, one can define division z/y of two real numbers
x,y, provided y is non-zero, by the formula

zfy=zxy ',

just as we did with the rationals. In particular, we have the cancellation
law: if x, y, z are real numbers such that xz = yz, and z is non-
zero, then by dividing by z we conclude that x = y. Note that this
cancellation law does not work when z is zero.

e We now have all four of the basic arithmetic operations on the reals:
addition, subtraction, multiplication, and division, with all the usual
rules of algebra. Next we turn to the notion of order on the reals.

X %k ok ok ok

Ordering the reals

e We know that every rational number is positive, negative, or zero. We
now want to say the same thing for the reals: each real number should
be positive, negative, or zero. Since a real number z is just a formal
limit of rationals a,, it is tempting to make the following definition:
a real number x = LIM,,_,,a,, is positive if all of the a, are positive,
and negative if all of the a,, are negative (and zero if all of the a,, are
zero). However, one soon realizes some problems with this definition.
For instance, the sequence (a,)%, defined by a, := 107", thus

0.1,0.01, 0.001, 0.0001, . ..

consists entirely of positive numbers, but this sequence is equivalent
to the zero sequence 0,0,0,0,... and thus LIM,, ,sa, = 0. Thus even
though all the rationals were positive, the real formal limit of these
rationals was zero rather than positive. Another example is

0.1,—0.01,0.001, —0.0001, ... .;

this sequence is a hybrid of positive and negative numbers, but again
the formal limit is zero.
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The trick, as with the reciprocals in the previous section, is to limit
one’s attention to sequences which are bounded away from zero.

Definition Let (a,)3°; be a sequence of rationals. We say that this
sequence is positively bounded away from zero iff we have a positive
rational ¢ > 0 such that a, > ¢ for all n > 1 (in particular, the
sequence is entirely positive). The sequence is negatively bounded away
from zero iff we have a negative rational —c < 0 such that a, < —c for
all n > 1 (in particular, the sequence is entirely negative).

Examples. The sequence 1.1,1.01,1.001, 1.0001, . . . is positively bounded
away from zero (all terms are greater than or equal to 1). The se-
quence —1.1,—1.01,—-1.001, —1.0001,... is negatively bounded away
from zero. The sequence 1,—1,1,—1,1,—1,... is bounded away from
zero, but is neither positively bounded away from zero nor negatively
bounded away from zero.

It is clear that any sequence which is positively or negatively bounded
away from zero, is bounded away from zero. Also, a sequence cannot
be both positively bounded away from zero and negatively bounded
away from zero at the same time.

Definition A real number z is said to be positive iff it can be written as
z = LIM,,_,sa, for some Cauchy sequence (a,)2 ; which is positively
bounded away from zero. zx is said to be negative iff it can be written as
x = LIM,,_,oca,, for some sequence (a,)3 ; which is negatively bounded
away from zero.

We now give the basic properties of positive and negative numbers.

Proposition 18. For every real number x, exactly one of the following
three statements is true: (a) z is zero; (b) x is positive; (c) x is negative.
A real number z is negative if and only if —z is positive. If  and y are
positive, then so are x 4+ y and xy.

Proof. See Week 2 Homework. O

Note that if ¢ is a positive rational number, then the Cauchy sequence
q,q,q,...1is positively bounded away from zero, and hence LIM,, ,,.q =
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q is a positive real number. Thus the notion of positivity for rationals
is consistent with that for reals. Similarly for the notion of negativity.

Once we have defined positive and negative numbers, we can define
order.

Definition Let x and y be real numbers. We say that x is greater than
y, and write z > y, if z — y is a positive real number, and =z < y iff
x — y is a negative real number. We define x > y iff z > y or x = y,
and similarly define z < y.

Comparing this with the definition of order on the rationals from week
1 notes we see that order on the reals is consistent with order on the
rationals, i.e. if two rational numbers ¢, ¢’ are such that ¢ is less than
¢’ in the rational number system, then ¢ is still less than ¢’ in the real
number system, and similarly for “greater than”.

Proposition 19. All the properties from Proposition 22 of last week’s
notes which held for rationals, continue to hold for real numbers.

Proof. This is an easy consequence of Proposition 18, and is left to
the reader. Example: suppose we have x < y and z a positive real,
and want to conclude that zz < yz. Since z < y, y — x is positive,
hence by Proposition 18 (y — x)z = yz — xz is positive, hence zz < yz.
The other analogues of Proposition 22 are proven in a similar manner
(using Proposition 18 and the basic laws of algebra). O

As an application of these propositions, we prove

Proposition 20. Let x be a positive real number. Then z7! is also

positive. Also, if y is another positive number and > y, then 27! <
-1
y~ L

Proof. Let z be positive. Since zz~! = 1, the real number ! cannot

be zero (since 0 = 0 # 1). Also, from Proposition 18 it is easy to see
that a positive number times a negative number is negative; this shows
that z=! cannot be negative, since this would imply that zz=! = 1 is
negative, a contradiction. Thus, by Proposition 18, the only possibility
left is that z~! is positive.
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Now let y be positive as well, so 7' and y~  are also positive. If
27! > y~!, then by Proposition 19 we have zz~! > yz~' > yy~!, thus
1 > 1, which is a contradiction. Thus we must have z ! < y 1. O

Another application is that the laws of exponentiation (Proposition 4)
that were previously proven for rationals, are also true for reals; see the
Appendix at the end of these notes.

We have already seen that the formal limit of positive rationals need not
be positive; it could be zero, as the example 0.1,0.01,0.001, . . . showed.
However, the formal limit of non-negative rationals (i.e. rationals that
are either positive or zero) is non-negative. (Eventually, we will see a
better explanation of this fact: the set of non-negative reals is closed,
whereas the set of positive reals is open).

Proposition 21. Let a1, aq,as,... be a Cauchy sequence of non-
negative rational numbers. Then LIM,, ,,a, is a non-negative real
number.

Proof. We argue by contradiction, and suppose that the real number
x := LIM,,_,0a, is a negative number. Then by definition of negative
real number, we have x = LIM,,_,,b, for some sequence b, which is
negatively bounded away from zero, i.e. there is a negative rational
—c < 0 such that b, < —c for all n > 1. On the other hand, we have
a, > 0 for all n > 1, by hypothesis. Thus the numbers a,, and b,, are
never c¢/2-close, since ¢/2 < c¢. Thus the sequences (a,)2; and (b,)2
are not eventually c¢/2-close. Since ¢/2 > 0, this implies that (a,)2,
and (b,)32, are not equivalent. But this contradicts the fact that both

these sequences have x as their formal limit. O

Corollary 22. Let (a,)22, and (b,)32, be Cauchy sequences of ratio-

n=1

nals such that a, > b, for all n > 1. Then LIM,,,oa, > LIM,_coby.
Proof. Apply Proposition 21 to the sequence a,, — b,. [l

Note that the above Corollary does not work if the > signs are replaced
by >: for instance if a, := 1+1/n and b, := 1 —1/n, then a, is always
strictly greater than b,, but the formal limit of a, is not greater than
the formal limit of b,, instead they are equal.
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Once we have the notion of positive and negative real numbers, we can
define absolute value |z|, and distance d(z,y) := |z — y| just as we did
for the rationals. In fact, Propositions 1 and 2 hold not only for the
rationals, but for the reals; the proof is identical, since the real numbers
obey all the laws of algebra and order that the rationals do.

We now observe that the real numbers cannot get any “smaller” or
“larger” than the rational numbers can:

Proposition 23. Let = be a positive real number. Then there exists a
positive rational number ¢ such that ¢ < z, and there exists a positive
integer N such that x < N.

Proof. Since z is a positive real, it is the formal limit of some Cauchy
sequence (a,)%; which is positively bounded away from zero. Also, by
Lemma 9, this sequence is bounded. Thus we have rationals ¢ > 0 and
r such that ¢ < a,, < r for all n > 1. But by Proposition 5 we know
that there is some integer /N such that » < N; since ¢ is positive and
g <r < N, we see that N is positive. Thus ¢ < a,, < N for all n > 1.
Applying Corollary 22 we obtain that ¢ < z < N, as desired. U

Corollary 24 (Archimedean property). Let z and € be any positive
real numbers. Then there exists a positive integer M such that Me > z.

Proof. The number z /¢ is positive, and hence by Proposition 23 there
exists a positive integer N such that z/e < N. If we set M := N + +,
then xz/e < M. Now multiply by e. O

This property is quite important; it says that no matter how large x is
and how small ¢ is, if one keeps adding ¢ to itself, one will eventually
overtake x.

Proposition 25. Given any two real numbers x < y, we can find a
rational number ¢ such that x < ¢ < y.

Proof. See Week 2 Homework.

We have now completed our construction of the real numbers. This
number system contains the rationals, and has almost everything that
the rational number system has: the arithmetic operations, the laws of
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algebra, the laws of order. However, we have not yet demonstrated any
advantages that the real numbers have over the rationals; so far, after
much effort, all we have done is shown that they are at least as good
as the rational number system. But in the next few sections we show
that the real numbers can do more things than rationals: for example,
we can take square roots in a real number system.

One side remark: up until now, we have not addressed the fact that
real numbers can be expressed using the decimal system. For instance,
the formal limit of

1.4,1.41,1.414,1.4142,1.41421, . . .

is more conventionally represented as the infinite decimal 1.41421 .. ..
We will address this in a supplemental handout, but remark that there
are some subtleties in the decimal system, for instance 0.9999... and
1.000... are in fact the same real number.

X %k ok ok ok

The least upper bound property.

We now give one of the most basic advantages of the real numbers over
the rationals; one can take the least upper bound sup(FE) of any subset
FE of the real numbers R.

For this we of course need some basic set theory, to make sense of
such notions as “subset”. This we leave to a supplemental handout
of set theory. In the main sequence of notes we assume the reader is
comfortable with sets, and related notions such as subset, union, and
intersection, and the element relation €.

Definition. Let E be a subset of R, and let M be a real number.
We say that M is an upper bound for F, iff we have x < M for every
element z in F.

Example. Let E be the interval £ := {r ¢ R: 0 < 2 < 1}. Then 1
is an upper bound for F, since every element of F is less than or equal
to 1. It is also true that 2 is an upper bound for F, and indeed every
number greater or equal to 1 is an upper bound for E. On the other
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hand, any other number, such as 0.5, is not an upper bound, because
0.5 is not larger than every element in E. (Merely being larger than

some elements of E is not necessarily enough to make 0.5 an upper
bound.)

Example. Let R" be the set of positive reals: R" := {x € R : z > 0}.
Then R™ does not have any upper bounds at all (why?).

Example. Let () be the empty set. Then every number M is an upper
bound for (}, because M is greater than every element of the empty set
(this is a vacuously true statement, but still true).

It is clear that if M is an upper bound of E, then any larger number
M' > M is also an upper bound of £. On the other hand, it is not so
clear whether it is also possible for any number smaller than M to also
be an upper bound of E. This motivates the following definition:

Definition. Let E be a subset of R, and M be a real number. We say
that M is a least upper bound for E iff (a) M is an upper bound for E,
and also (b) any other upper bound M’ for E must be larger than or
equal to M.

Example Let E be the interval E := {x € R: 0 <z < 1}. Then, as
noted before, £ has many upper bounds, indeed every number greater
than or equal to 1 is an upper bound. But only 1 is the least upper
bound; all other upper bounds are larger than 1.

Example The empty set does not have a least upper bound (why?).

Proposition 26. Let E be a subset of R. Then E can have at most
one least upper bound.

Proof. Suppose for contradiction that £ has at least two least upper
bounds, say M; and M, where M; # M,. Since M; is a least upper
bound and M, is an upper bound, then by definition of least upper
bound we have M, > M;. Since M, is a least upper bound and M;
is an upper bound, we similarly have M; > M,. Thus M; = M,, a
contradiction. O

Now we come to an important property of the real numbers:
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e Theorem 27 (Least upper bound property). Let E be a non-
empty subset of R. If E has an upper bound, (i.e. E has some upper
bound M), then it must have exactly one least upper bound.

e Proof. (Optional) Let E be a non-empty subset of R with an upper
bound M. By Proposition 26, we know that £ has at most one least
upper bound; we have to show that E has at least one least upper
bound.

Since E is non-empty, it contains at least one real number; let’s say
that E contains a real number z,.

e Now let n be any positive integer. Since zo — 1/n is less than zy, we
know that 2o —1/n is NOT an upper bound for E. On the other hand,
by the Archimedean property (Corollary 24), there is an integer K such
that xy + K/n > M (why?). Thus zo + K/n is an upper bound for
FE. From these two statements, we can thus conclude that there exists
some natural number ¢ with 0 <4 < K such that xy + ¢/n is an upper
bound for E, while 2y + (i — 1) /n is not an upper bound for E. (Proof:
if no such number 7 existed, then it is easy to use induction to show
that zo +4/n is not an upper bound for E for any 0 < i < K. But this
implies that 2o + K/n is not an upper bound for E, a contradiction).
Since xo + (1 — 1)/n < zy + i/n, we can use Proposition 25 to find a
rational number a,, such that

zo+ (i —1)/n < ap < xo+1/n.

Thus a, + 1/n is an upper bound for E (being larger than the upper
bound zy + i/n, but a, — 1/n is not an upper bound for F (since it is
less than xy + (¢ — 1)/n, which was not an upper bound for F).

e Now let n, m be two positive integers. Since a,+1/n is an upper bound
for E, but a,, —1/m is not, we must have a,, +1/n > a,, — 1/m (why?
prove by contradiction). Similarly we have a,, +1/m > a, —1/n. Thus
we have

—1/n—1/m<a, —an, <1l/n+1/m.

In particular, for any positive integer N > 1, we have

—2/N < a, — a,, < 2/N for every n,m > N. (1)
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Thus a, and a,, are 2/N-close for all n, m > N, which implies that the
sequence (a,)$%, is eventually 2/N-steady for every positive integer
N. Thus the sequence (a,)2, is eventually e-steady for every ¢ > 0
(since one can always find an integer N such that N > 2/¢, and hence
2/N < ¢). In particular, (a,)$2, is a Cauchy sequence. We can thus
construct the real number x := LIM,,_,o0y,.

From equation (1), we have in particular that
—2/N < a, —ay < 2/N for every n > N.

From Corollary 22 (and a little modification; can you see what needs
to be done?) we thus have

—2/N <z —ayn <2/N
for any N > 1.

We now show that x is the least upper bound for E. First, we show
that = is an upper bound for E. Let y be any element of E; we have
to show that y < x. But we already know that for any positive integer
n, a, +1/n is already an upper bound for F, thus y < a,, + 1/n. Since
-2/n < x — a,, we thus have y < z + 3/n. But this is true for all n,
so this implies that y < z as desired (why? Note that if y > z then we
can find an n such that n > 3/(y — z), and thus z + 3/n < y). Thus z
is an upper bound for F.

Now we show that x is the least upper bound for F. Suppose we have
some other upper bound z of F; we have to show that z < z. But we
already know that for any positive integer n, a, — 1/n is not an upper
bound for E; this implies that a, —1/n < z (why?). Since z—a, < 2/n,
we thus have z < z+ 3/n. But this is true for all n; arguing as before,
this implies x < z as desired. O

Thus if E is non-empty and has some upper bound, we can talk about
the least upper bound of E; we denote this by sup(F) or sup F, and
is also known as the supremum of E. Some additional notation: we
introduce two new symbols, +o00 and —oo. If E has no upper bound,
we set sup £ = +o0; if F is empty, we set sup F = —o0o. (At present,
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400 and —oo are meaningless symbols; we have no operations on them
at present, and none of our results involving real numbers apply to +oo
and —oo, because these are not real numbers. Sometimes we add +oo
and —oo to the reals to form the extended real number system, but this
system is not as convenient to work with as the real number system,
because many of the laws of algebra break down. (For instance, it
is not a good idea to try to define 400 + —o0; setting this equal to
0 causes some problems). We will discuss the extended real number
system more in the next set of notes.

Now we give an example of how the least upper bound property is
useful.

Proposition 28. There exists a positive real number x such that
2
Tt = 2.

This should be compared with Proposition 6; it shows that certain
numbers are real but not rational. (Such numbers are called irrational).
The proof of this proposition also shows that the rationals Q do not
obey the least upper bound property, otherwise one could use that
property to construct a square root of 2, which by Proposition 6 is not
possible.

Proof. Let E be the set {y € R:y > 0 and y? < 2}; thus F is the set
of all non-negative real numbers whose square is less than 2. Observe
that E has an upper bound of 2 (because if y > 2, then ¢ > 4 > 2
and hence y ¢ F). Also, E is non-empty (for instance, 1 is an element
of E). Thus by the least upper bound property, we have a real number
x := sup(F) which is the least upper bound of E. Then z is greater
than or equal to 1 (since 1 € E) and less than or equal to 2 (since 2 is
an upper bound for E). So z is positive. Now we show that z? = 2.

We argue this by contradiction. We show that both 22 < 2 and 22 > 2
lead to contradictions. First suppose that 22 < 2. Let 0 < e < 1 be a
small number; then we have

(x+e)l=a2"+2ex+e* <2’ +4de+e=2a"+5¢

since z < 2 and €2 < e. Since 22 < 2, we see that we can choose an
0 < € < 1 such that z? + 5¢ < 2, thus (z + £)? < 2. By construction

34



of E, this means that = +¢ € F; but this contradicts the fact that x is
an upper bound of F.

e Now suppose that 22> > 2. Let 0 < £ < 1 be a small number; then we
have
(x—¢e)’ =222+ >12° 21 > 1" —4de

since z < 2 and €2 > 0. Since 22 > 2, we can choose 0 < € < 1 such that
12 —4e > 2, and thus (z —¢)? > 2. But then this implies that z—¢ > y
forally € E (why? If z—e < y then (z—¢)? < y? < 2, a contradiction).
Thus  — € is an upper bound for F, which contradicts the fact that
x is the least upper bound of E. From these two contradictions we see
that 22 = 2, as desired. d

e Next week we will use the least upper bound property to develop the
theory of limits, which allows us to do many more things than just take
square roots.

e We can of course talk about lower bounds, and greatest lower bounds,
of sets E; the greatest lower bound of a set E is also known as the
infimum of E and is denoted inf(E) or inf E. Everything we say about
supremum has a counterpart for infimum; we will usually leave such
statements to the reader.

X %k ok ok ok

Cardinality of sets

e We have spent a lot of effort patiently building up our number systems,
starting with the natural number system and working our way all the
way up to the real number system. (We could continue onward, to
the complex number system and even beyond, but we will not do so
here). We will of course need the real number system to do all sorts of
things, starting with limits and continuing through infinite series and
to derivatives and integrals. However, for now, we will backtrack and
return to the natural numbers to clear up one point - the connection
between natural numbers and cardinality of sets.

o We defined the natural numbers axiomatically, assuming that they were
equipped with a 0 and an increment operation, and assuming five ax-
ioms on these numbers. Philosophically, this is quite different from
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one of our main conceptualizations of natural numbers - that of car-
dinality, or measuring how many elements there are in a set. Indeed,
the Peano axiom approach treats natural numbers more like ordinals
than cardinals. (The cardinals are One, Two, Three, ..., and are used
to count how many things there are in a set. The ordinals are First,
Second, Third, ..., and are used to order a sequence of objects. There is
a subtle difference between the two, especially when comparing infinite
cardinals with infinite ordinals, but this is beyond the scope of this
course, and is dealt with in Math 112). We paid a lot of attention to
what number came next after a given number n - which is an operation
which is quite natural for ordinals, but less so for cardinals - but did
not address the issue of whether these numbers could be used to count
sets. The purpose of this section is to correct this issue by noting that
the natural numbers can be used to count the cardinality of sets, as
long as the set is finite.

e The first thing is to work out when two sets have the same size: it
seems clear that the sets {1,2,3} and {4, 5,6} have the same size, but
that both have a different size from {8,9}. One way to define this is to
say that two sets have the same size if they have the same number of
elements, but we have not yet defined what the “number of elements”
in a set is. Besides, this runs into problems when a set is infinite.

e The right way to define the concept of “two sets having the same size”
is not immediately obvious, but can be worked out with some thought.
One intuitive reason why the sets {1,2,3} and {4,5,6} have the same
size is that one can match the elements of the first set with the elements
in the second set in a perfect pairing: 1 <> 4, 2 <> 5, 3 <> 6. (Indeed,
this is how we first learn to count a set: we match the set we are trying
to count with another set, such as a set of fingers on your hand). We
will use this intuitive understanding as our rigorous basis for “having
the same size”.

e Definition Let f : X — Y be a function from one set X to another
set Y. We say that f is bijective iff for every y € Y there is exactly one
z € X such that f(z) =y.

e Being bijective is the same as being one-to-one and onto (see the supple-
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mental handout on sets and functions). It is also the same as being in-
vertible; if f is bijective, then there is an inverse function f~': Y — X
such that f(f1(y)) =y for every y € Y, and f(f(z)) = z for every
z € X. (Indeed, we can define f~!(y) to be the unique element z for
which f(z) =v).

Example. Let f: {0,1,2} — {3,4} be the function f(0) := 3, f(1) :=
3, f(2) := 4. This function is not bijective because if we set y = 3,
then there is more than one z in {0, 1,2} such that f(z) = y (this is
a failure of injectivity). Now let g : {0,1} — {2, 3,4} be the function
g(0) := 2, g(1) := 3; then g is not bijective because if we set y = 4,
then there is no x for which g(x) = y (this is a failure of surjectivity).
Now let A : {0,1,2} — {3,4,5} be the function h(0) := 3, h(1) := 4,
h(2) := 5. Then h is bijective, because each of the elements 3, 4, 5
comes from exactly one element from 0, 1, 2.

Remark. A common error is to say that a function f : X — Y is
bijective iff “for every x in X, there is exactly one y in Y such that
y = f(z).” This is not what it means for f to be bijective; it is what it
means for f to be a function: each input gives exactly one output. A
function cannot map one element to two different elements, for instance
one cannot have a function f for which f(0) = 1 and also f(0) = 2.
The functions f, g given in the previous example are not bijective, but
they are still functions, since each input still gives exactly one output.

Definition We say that two sets X and Y have equal cardinality iff
there exists a bijection f: X — Y from X to Y.

Thus, for instance, the sets {0,1,2} and {3,4,5} have equal cardinal-
ity, since we can find a bijection between the two sets. Note that we
do not yet know whether {0,1,2} and {3,4} have equal cardinality;
we know that one of the functions f from {0,1,2} to {3,4} is not a
bijection, but we have not proven yet that there might still be some
other bijection from one set to the other. (It turns out that they do not
have equal cardinality, but we will prove this a little later). Note that
this definition makes sense regardless of whether X is finite or infinite
(in fact, we haven’t even defined what finite means yet).
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Note that two sets having equal cardinality does not preclude one set
containing the other. For instance, if X is the set of natural numbers
and Y is the set of even natural numbers, then the map f: X — Y
defined by f(n) := 2n is a bijection from X to Y (why?), and so X and
Y have equal cardinality, despite Y being a subset of X and seeming
intuitively as if it should only have “half” of the elements of X.

The notion of having equal cardinality is an equivalence relation:

Proposition 29 Let X, Y, Z be sets. Then X has equal cardinality
with X. If X has equal cardinality with Y, then Y has equal cardinality
with X. If X has equal cardinality with Y and Y has equal cardinality
with Z, then X has equal cardinality with Z.

Proof. See Week 2 Homework. O

Let n be a natural number. Now we want to say when a set X has n
elements. Certainly we want theset {i e N:1<i<n}={1,2,...,n}
to have n elements. (This is true even when n = 0; theset {i € N : 1 <
i < 0} is just the empty set). Using our notion of equal cardinality, we
thus define:

Definition Let n be a natural number. A set X is said to have cardi-
nality n, iff it has equal cardinality with {i € N : 1 <7 < n}. We also
say that X has n elements iff it has cardinality n.

One can use the set {i € N : i < n} instead of {i € N : 1 < i < n},
since these two sets clearly have equal cardinality (why? What is the
bijection?).

Example. Let a,b,c,d be distinct objects. Then {a,b,c,d} has the
same cardinality as {i € N : i <4} ={0,1,2,3}or {i e N:1<i <
4} = {1,2,3,4} and thus has cardinality 4. Similarly, the set {a} has
cardinality 1. The empty set {} has cardinality 0 (why?).

There might be one problem with this definition: a set might have two
different cardinalities. But this is not possible:
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Proposition 30. Let X be a set with some cardinality n. Then X
cannot have any other cardinality, i.e. X cannot have cardinality m for
any m # n.

Before we prove this Proposition, we need a lemma.

Lemma 31. Suppose that n > 1, and X has cardinality n. Then X is
non-empty, and if z is any element of X, then the set X — {z} (i.e. X
with the element = removed) has cardinality n — 1.

Proof. If X is empty then it clearly cannot have the same cardinality
as the non-empty set {i € N : 1 < i < N}, as there is no bijection from
the empty set to a non-empty set (why?). Now let z be an element
of X. Since X has the same cardinality as {i € N : 1 < i < N}, we
thus have a bijection f from X to {i € N :1 <4 < N}. In particular,
f(z) is a natural number between 1 and N. Now define the function
g: X —{z}to{i e N:1< i< N —1} by the following rule: for
any y € X — {z}, we define g(y) := f(y) if f(y) < f(z), and define
gly) := f(y) — 1if f(y) > f(z). (Note that f(y) cannot equal f(x)
since y # x and f is a bijection). It is easy to check that this map
is also a bijection (why?), and so X — {z} has equal cardinality with
{i e N:1<i< N —1}. In particular X — {z} has cardinality n — 1,
as desired. O

Proof of Proposition 30. We induct on n. First suppose that n = 0.
Then X must be empty, and so X cannot have any non-zero cardinality.
Now suppose that the Proposition is already proven for some n; we now
prove it for n + +. Let X have cardinality n + +; and suppose that X
also has some other cardinality m # n + +. By Proposition 29, X is
non-empty, and if z is any element of X, then X — {z} has cardinality
n and also has cardinality m — 1. By induction hypothesis, this means
that n = m — 1, which implies that m = n + +, contradiction. This
closes the induction O

Thus, for instance, we now know, thanks to Proposition 30 (and Propo-
sition 29), that the sets {0, 1,2} and {3,4} do not have equal cardinal-
ity, since the first set has cardinality 3 and the second set has cardinality
2.
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e Definition A set is finite iff it has cardinality n for some natural num-
ber n; otherwise, the set is called infinite.

e Thus, for instance, the sets {0, 1,2} and {3, 4} are finite, as is the empty
set (0 is a natural number). However, some sets are infinite:

e Theorem 32. The set of natural numbers N is infinite.

e Proof. Suppose for contradiction that the set of natural numbers
N was finite, so it had some cardinality n. Then there is a bijec-
tion f from {i € N :1 < i < n} to N. Now consider the sequence
f(1), f(2),..., f(n). By Lemma 8, this sequence is bounded by some
rational number, which then implies (e.g. by Proposition 23) that it is
bounded by some natural number M. Thus f(i) < M for all 1 <i < n.
But then the natural number M + 1 is not equal to any of the f(7),
contradicting the hypothesis that f is a bijection. U

e One can also use similar arguments to show that any unbounded set is
infinite; for instance the rationals Q and the reals R are infinite. How-
ever, in the next week’s notes we will show that the real numbers are
in some sense “more” infinite than the rationals and natural numbers.

X %k %k 3k X

Appendix: Exponentiation of reals.

e In the beginning of this week’s notes we defined exponentiation ™ when
x is rational and n is a natural number, or when z is a non-zero rational
and n is an integer. Now that we have all the arithmetic operations on
the reals (and Proposition 19 assures us that the arithmetic properties
of the rationals that we are used to, continue to hold for the reals) we
can similarly define exponentiation of the reals.

e Definition Let z be a real number. To raise x to the power 0, we
define z° := 1. Now suppose that recursively that 2™ has been defined
for some natural number n, then we define 2" := 2™ x z.

e Definition Let x be a non-zero real number. Then for any negative
integer —n, we define z~" :=1/2".
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Clearly these definitions are consistent with the definition of rational
exponentiation given earlier. We can then assert

Proposition 33. All the properties in Proposition 3 and 4 remain
valid if z and y are assumed to be real numbers instead of rational
numbers.

Instead of giving an actual proof of this proposition, we shall give a
metaproof (an argument appealing to the nature of proofs, rather than
the nature of real and rational numbers).

Meta-proof. If one inspects the proof of Propositions 3 and 4 we
see that they rely on the laws of algebra and the laws of order for the
rationals (Propositions 20 and 22 of Week 1 notes). But by Propositions
14, 19, and the identity zz=! = 27!z = 1 we know that all these laws of
algebra and order continue to hold for real numbers as well as rationals.
Thus we can modify the proof of Proposition 3 and 4 to hold in the
case when z and y are real. O

In the rest of the course we shall now just assume the real numbers to
obey all the usual laws of algebra, order, and exponentiation.
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