Supplemental handout - The basics of mathematical logic

e The purpose of this supplemental handout is to give a quick introduc-
tion to mathematical logic, which is the language one uses to conduct
rigorous mathematical proofs. This material is not a direct compo-
nent of this course; however knowing how mathematical logic works is
also very helpful for understanding the mathematical way of thinking,
which once mastered allows you to approach mathematical concepts
and problems in a clear and confident way - including many of the
proof-type questions in this course.

e Writing logically is a very useful skill. It is somewhat related to, but not
the same as, writing clearly, or efficiently, or convincingly, or informa-
tively; ideally one would want to do all of these at once, but sometimes
one has to make compromises (though with practice you’ll be able to
achieve more of your writing objectives concurrently). Thus a logical
argument may sometimes look unwieldy, excessively complicated, or
otherwise appear unconvincing. The big advantage of writing logically,
however, is that one can be absolutely sure that your conclusion will
be correct, as long as all your hypotheses were correct and your steps
were logical; using other styles of writing one can be reasonably con-
vinced that something is true, but there is a difference between being
convinced and being sure.

e Being logical is not the only desirable trait in writing, and in fact some-
times it gets in the way; mathematicians for instance often resort to
short informal arguments which are not logically rigorous when they
want to convince other mathematicians of a statement without doing
through all of the long details, and the same is true of course for non-
mathematicians as well. So saying that a statement or argument is “not
logical” is not necessarily a bad thing; there are often many situations
when one has good reasons to not be emphatic about being logical.
However, one should be aware of the distinction between logical rea-
soning and more informal means of argument, and not try to pass off
an illogical argument as being logically rigorous. (In particular, if a
homework question or exam question is asking for a Proof, then it is
expecting you to be logical in your answer).



Logic is a skill that needs to be learnt like any other, but this skill
is also innate to all of you - indeed, you probably use the laws of
logic unconsciously in your everyday speech and in your own internal
(non-mathematical) reasoning. However, it does take a bit of training
and practice to recognize this innate skill and to apply it to abstract
situations such as those encountered in mathematical proofs. Because
logic is innate, the laws of logic that you learn should make sense -
if you find yourself having to memorize one of the principles or laws
of logic here, without feeling a mental “click” or comprehending why
that law should work, then you will probably not be able to use that
law of logic correctly and effectively in practice. So, please don’t study
this handout the way you might cram before a final - that is going to
be useless. Instead, put away your highlighter pen, and read and
understand this handout rather than merely studying it!
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Mathematical statements

Any mathematical argument proceeds in a sequence of mathematical
statements. These are precise statements concerning various mathe-
matical objects (numbers, vectors, functions, etc.) and relations be-
tween them (addition, equality, differentiation, etc.). These objects
can either be constants or variables; more on this later. Statements are
either true or false.

An example of a true statement is
242 =4
an example of a false statement is

2+2=05.

Not every combination of mathematical symbols is a statement. For
instance,
=24 44=—=2

is not a statement; we sometimes call it ¢ll-formed or ill-defined. The
previous two statements are well-formed or well-defined. Thus well-
formed statements can be either true or false; ill-formed statements



are considered to be neither true or false (in fact, they are usually not
considered statements at all). A more subtle example of an ill-formed

statement is
0/0 =1,

division by zero is undefined, and so the above statement is ill-formed.
A logical argument should not contain any ill-formed statements, thus
for instance if an argument uses a statement such as z/y = z, it needs
to first ensure that y is not equal to zero. (Many purported proofs of
“0=1" or other false statements rely on overlooking this “statements
must be well-formed” criterion).

Many of you have probably written ill-formed or otherwise inaccurate
statements in your homework or exams, while intending to mean some
other, well-formed and accurate statement. To a certain extent this is
permissible - it is similar to misspelling some words in a sentence, or
using a slightly inaccurate or ungrammatical word in place of a correct
one (“She ran good” instead of “She ran well”). In many cases, the
reader (or grader) can detect this mis-step and correct for it. How-
ever, it looks unprofessional and suggests that you may not know what
you are talking about. And if indeed you actually do not know what
you are talking about, and are applying mathematical or logical rules
blindly, then writing an ill-formed statement can quickly confuse you
into writing more and more nonsense - usually of the sort which re-
ceives no credit in grading. So it is important, especially when just
learning a subject, to take care in keeping statements well-formed and
precise. (Once you have more skill and confidence you can afford once
again to speak loosely, because you will know what you are doing and
won’t be in as much danger of veering off into nonsense, but I would
not recommend that at this stage.)

One of the basic axioms of mathematical logic is that every well-formed
statement is either true or false, but not both (though if there are
free variables, the truth of a statement may depend on the values of
these variables. More on this later). Furthermore, the truth or falsity
of a statement is intrinsic to the statement, and does not depend on
the opinion of the person viewing the statement (as long as all the
definitions and notations are agreed upon, of course). So to prove that



a statement is true; it suffices to show that it is not false; to show that
a statement is false, it suffices to show that it is not true; this is the
principle underlying the powerful technique of proof by contradiction.
This axiom is viable as long as one is working with precise concepts,
for which the truth or falsity can be determined (at least in principle)
in an objective and consistent manner. However, if one is working
in very non-mathematical situations, then this axiom becomes much
more dubious, and so it can be a mistake to apply mathematical logic
to non-mathematical situations. (For instance, a statement such as
“this rock weighs 52 pounds” is reasonably precise and objective, and
so it is fairly safe to use mathematical reasoning to manipulate it,
whereas statements such as “this rock is heavy”, “this piece of music
is beautiful” or “God exists” are much more problematic. So while
mathematical logic is a very useful and powerful tool, it still does have
some limitations of applicability.) One can still attempt to apply logic
(or principles similar to logic) in these cases (for instance, by creating a
mathematical model of a real-life phenomenon), but this is now science
or philosophy, not mathematics, and we will not discuss it further here.

(There are other models of logic which attempts to deal with statements
that are not definitely true or definitely false, such as modal logics,
intuitionist logics, or fuzzy logics, but these are definitely in the realm
of logic and philosophy and thus well beyond the scope of this course).

Being true is different from being useful or efficient. For instance, the
statement
2=2

is true but unlikely to be very useful. The statement
4<4

is also true, but not very efficient (the statement 4 = 4 is more precise).
It may also be that a statement may be false yet still be useful, for
instance

T =22/7

is not true, but is still useful as a first approximation. In mathematical
reasoning, we only concern ourselves with truth rather than usefulness
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or efficiency; the reason is that truth is objective (everybody can agree
on it) and we can deduce true statements from precise rules, whereas
usefulness and efficiency are to some extent matters of opinion, and do
not follow precise rules. Also, even if some of the individual steps in
an argument may not seem very useful or efficient, it is still possible
(indeed, quite common) for the final conclusion to be quite non-trivial
(i.e. not obviously true) and useful.

Statements are different from expressions. Statements are true or false;
expressions are a sequence of mathematical sequence which produces
some mathematical object (a number, matrix, function, set, etc.) as
its value. For instance

243%5

is an expression, not a statement; it produces a number as its value.
Meanwhile,
24+3x5=17

is a statement, not an expression. Thus it does not make any sense to
ask whether 2 4+ 3 % 5 is true or false. As with statements, expressions
can be well-defined or ill-defined; 2 + 3/0, for instance, is ill-defined.
More subtle examples of ill-defined expressions arise when, for instance,
attempting to add a vector to a matrix, or evaluating a function outside
of its domain, e.g. sin™'(2).

One can make statements out of expressions by using relations such
as =, <, >, €, C, etc. or by using properties (such as “is prime”, “is
continuous”, “is invertible”, etc.) For instance, “30 + 5 is prime” is a
statement, as is “304+5 < 42 —7". Note that mathematical statements

are allowed to contain English words.

One can make a compound statement from more primitive statements
by using logical connectives such as and, or, not, if-then, if-and-only-if,
and so forth. We give some examples below, in decreasing order of
intuitiveness.

Conjunction. If X is a statement and Y is a statement, the statement
“X and Y” is true if X and Y are both true, and is false otherwise.
For instance, “2+2 =4 and 3 + 3 = 6” is true, while “2 4+ 2 =4 and



3+ 3 = 05" is not. Another example: “2+2 =4 and 2+ 2 = 4" is
true, even if it is a bit redundant; logic is concerned with truth, not
efficiency.

Due to the expressiveness of the English language, one can reword the
statement “X and Y” in many ways, e.g. “X and also Y”, or “Both
X and Y are true”, etc. Interestingly, the statement “X, but Y” is
logically the same statement as “X and Y”, but they have different
connotations (both statements affirm that X and Y are both true, but
the first version suggests that X and Y are in contrast to each other,
while the second version suggests that X and Y support each other).
Again, logic is about truth, not about connotations or suggestions.

Disjunction. If X is a statement and Y is a statement, the statement
“X or Y” is true if either X or Y is true, or both. For instance,
“242=4o0r3+3=5"1is true, but “24+2 =5 or 34+ 3 = 5" is not.
Also “24+ 2 =4 or 3+ 3 = 6" is true (even if it is a bit inefficient; it
would be a stronger statement to say “2+2 =4 and 3+ 3 = 6"). Thus
by default, the word “or” in mathematical logic defaults to inclusive or.
The reason we do this is that with inclusive or, to verify “X or Y7, it
suffices to verify that just one of X or Y is true; we don’t need to show
that the other one is false. So we know, for instance, that “24+2 =4
or 2353 + 5931 = 7284” is true without having to look at the second
equation. As in the previous discussion, the statement “2 4+ 2 = 4 or
2+ 2 = 4" is true, even if it is highly inefficient.

If one really does want to use exclusive or, use a statement such as
“Either X or Y is true, but not both” or “Exactly one of X or YV is
true”. Exclusive or does come up in mathematics, but nowhere near as
often as inclusive or.

Negation. The statement “X is not true” or “X is false”, or “It is
not the case that X7, is called the negation of X, and is true if and
only if X is false, and is false if and only if X is true. For instance, the
statement “It is not the case that 2 + 2 = 5” is a true statement. Of
course we could abbreviate this statement to “2 + 2 # 5”.

Negations convert “and” into “or”. For instance, the negation of “Jane
Doe has black hair and Jane Doe has blue eyes” is “Jane Doe doesn’t
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have black hair or doesn’t have blue eyes”, not “Jane Doe doesn’t have
black hair and doesn’t have blue eyes”. (Can you see why?). Similarly,
if  is an integer, the negation of “z is even and non-negative” is “x is
odd or negative”, not “z is odd and negative” (Note how it is important
here that or is inclusive rather than exclusive). Or the negation of
“r>2and x <6” (ie. “2<x<6")is “e<2orz>6",not “z.<2
and x > 6" or “2<x>6.".

Similarly, negations convert “or” into “and”. The negation of “John
Doe has brown hair or black hair” is “John Doe does not have brown
hair and does not have black hair”, or equivalently “John Doe has
neither brown nor black hair”. If x is a real number, the negation of
“r>lorz<—1"is “e<land z>—-1" (ie. -1 <z <1).

Quiz: how do you negate an exclusive or?

It is quite possible that a negation of a statement will produce a state-
ment which could not possibly be true. For instance, if = is an integer,
the negation of “x is either even or odd” is “z is neither even nor
odd”, which cannot possibly be true. Remember, though, that even
if a statement is false, it is still a statement, and it is definitely pos-
sible to arrive at a true statement using an argument which at times
involves false statements. (Proofs by contradiction, for instance, fall
into this category. Another example is proof by dividing into cases. If
one divides into three mutually exclusive cases, Case 1, Case 2, and
Case 3, then at any given time two of the cases will be false and only
one will be true, however this does not necessarily mean that the proof
as a whole is incorrect or that the conclusion is false.)

Negations are sometimes unintuitive to work with, especially if there
are multiple negations. (A statement such as “It is not the case that
either z is not odd, or z is not larger than or equal to 3, but not both”
is not particularly fun to use). Fortunately, one rarely has to work with
more than one or two negations at a time, since often negations cancel
each other. For instance, the negation of “X is not true” is just “X
is true”, or more succinctly just “X”. Of course one should be careful
when negating more complicated expressions because of the switching
of “and” and “or”, and similar issues.



e Implication. Now we come to the least intuitive of the commonly
used logical connectives - implication. If X is a statement, and Y is
a statement, then “if X, then Y” is the implication from X to Y;
it is also written “when X is true, Y is true”, or “X implies Y” or
“Y is true when X is” or “X is true only if Y is true” (this last one
takes a bit of mental effort to see). What this statement “if X, then
Y” means depends on whether X is true or false. If X is true, then
“if X, then Y” is true when Y is true, and false when Y is false. If
however X is false, then “if X, then Y” is always true, regardless of
whether Y is true or false! To put it another way, when X is true, the
statement “if X, then Y” implies that Y is true. But when X is false,
the statement “if X, then Y” offers no information about whether Y
is true or not; the statement is true, but vacuous (i.e. does not convey
any new information beyond the fact that the hypothesis is false).

e Some examples. If z is an integer, then the statement “If x = 2, then
22 = 47 is true, regardless of whether z is actually equal to 2 or not
(though this statement is only likely to be useful when z is equal to 2).
This statement does not assert that x is equal to 2, and does not assert
that 22 is equal to 4, but it does assert that when and if z is equal to
2, then 2?2 is equal to 4. If z is not equal to 2, the statement is still
true but offers no conclusion on z or z2.

e Some special cases of the above implication: the implication “If 2 = 2,
then 22 = 4” is true (true implies true). The implication “If 3 = 2, then
3% = 4” is true (false implies false). The implication “If —2 = 2, then
(—2)? = 4” is true (false implies true). The latter two implications are
considered vacuous - they do not offer any new information since their
hypothesis is false. (Nevertheless, it is still possible to employ vacuous
implications to good effect in a proof - a vacously true statement is still
true. We shall see one such example shortly).

e As we see, the falsity of the hypothesis does not destroy the truth of an
implication, in fact it is just the opposite! (When a hypothesis is false,
the implication is automatically true). The only way to disprove an
implication is to show that the hypothesis is true while the conclusion
is false. Thus “If 2+2 = 4, then 444 = 2” is a false implication. (true
does not imply false).



e Vacuously true implications are often used in ordinary speech, some-
times without knowing that the implication is vacuous. A somewhat
frivolous example is “If wishes were wings, then pigs would fly”. (The
statement “hell freezes over” is also a popular choice for a false hy-
pothesis). A more serious one is “If John had left work at 5pm, then
he would be here by now.” This kind of statement is often used in a
situation in which the conclusion and hypothesis are both false; but the
implication is still true regardless. This statement, by the way, can be
used to illustrate the technique of proof by contradiction: if you believe
that “If John had left work at 5pm, then he would be here by now”, and
you also know that “John is not here by now”, then you can conclude
that “John did not leave work at 5pm”, because John leaving work at
5pm would lead to a contradiction. Note how a vacuous implication
can be used to derive a useful truth.

e To summarize, implications are sometimes vacuous, but this is not ac-
tually a problem in logic, since these implications are still true, and
vacuous implications can still be useful in logical arguments. In partic-
ular, one can safely use statements like “If X, then Y” without neces-
sarily having to worry about whether the hypothesis X is actually true
or not (i.e. whether the implication is vacuous or not).

e Implications can also be true even when there is no causal link between
the hypothesis and conclusion. The statement “If 1 + 1 = 2, then
Sacramento is the capital of California” is true (true implies true),
although rather odd; the statement “If 2 4 2 = 3, then Los Angeles
is the capital of California” is similarly true (false implies false). Of
course, such a statement may be unstable (the capital of California may
one day change, while 141 remains equal to 2) but it is true, at least for
the moment. While it is possible to use acausal implications in a logical
argument, it is not recommended as it can cause unneeded confusion.
(Thus, for instance, while it is true that a false statement can be used
to imply any other statement, true or false, doing so arbitrarily would
probably not be helpful to the reader).

e To prove an implication “If X, then Y”, the usual way to do this is
to first assume that X is true, and use this (together with whatever
other facts and hypotheses you have) to deduce Y. This is still a valid
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procedure even if X later turns out to be false; the implication does not
guarantee anything about the truth of X, and only guarantees the truth
of Y conditionally on X first being true. For instance, the following
is a valid argument, even though both hypothesis and conclusion are
false:

Claim. If 2+ 2 = 5, then 4 = 10 — 4. Proof. Assume 2+ 2 = 5.
Multiplying both sides by 2, we obtain 4 + 4 = 10. Subtracting 4 from
both sides, we obtain 4 = 10 — 4 as desired. U

On the other hand, a common error is to prove an implication by
first assuming the conclusion and then arriving at the hypothesis. For
instance, the following Claim is correct, but the proof is not:

Claim. Suppose that 2z + 3 = 7. Show that z = 2. Proof (incor-
rect). t=2;s02rx=4;s02x+3="T/

When doing proofs, it is important that you are able to distinguish the
hypothesis from the conclusion. If you do not do so correctly, you are
unlikely to be able to write anything useful (or gradable) for that proof.

Here is a short proof which uses implications which are possibly vacu-
ous.

Theorem. Suppose that n is an integer. Then n(n + 1) is an even
integer.

Proof. Since n is an integer, n is even or odd. If n is even, then
n(n + 1) is also even, since any multiple of an even number is even. If
n is odd, then n 4 1 is even, which again implies that n(n + 1) is even.
Thus in either case n(n + 1) is even, and we are done. O

Note that this proof relied on two implications: “if n is even, then
n(n + 1) is even”, and “if n is odd, then n(n + 1) is even”. Since n
cannot be both odd and even, at least one of these implications has
a false hypothesis and is therefore vacuous. Nevertheless, both these
implications are true, and one needs both of them in order to prove the
theorem, because we don’t know in advance whether n is even or odd.
And even if we did, it might not be worth the trouble to check it. For
instance, as a special case of this Theorem we immediately know
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e Corollary. Let n = (253 + 142) * 123 — (423 + 198)342 + 538 — 213.
Then n(n + 1) is an even integer.

e In this particular case, one can work out exactly which parity n is -
even or odd - and then use only one of the two implications in above
the Theorem, discarding the vacuous one. This may seem like it is
more efficient, but it is a false economy, because one then has to de-
termine what parity n is, and this requires a bit of effort - more effort
than it would take if we had just left both implications, including the
vacuous one, in the argument. So, somewhat paradoxically, the inclu-
sion of vacuous, false, or otherwise “useless” statements in an argument
can actually save you effort in the long run! (I'm not suggesting, of
course, that you ought to pack your proofs with lots of time-wasting
and irrelevant statements; all I'm saying here is that you need not be
unduly concerned that some hypotheses in your argument might not be
correct, as long as your argument is still structured to give the correct
conclusion regardless of whether those hypotheses were true or false).

e The statement “If X, then Y” is not the same as “If Y, then X”;
for instance, while “If z = 2, then 2% = 4” is true, “If 22 = 4, then
x = 2”7 can be false if z is equal to -2. These two statements are called
converses of each other; thus the converse of a true implication is not
necessarily another true implication. We use the statement “X if and
only if Y” to denote the statement that “If X, then Y; and if Y, then
X7, Thus for instance, we can say that x = 2 if and only if 2z = 4,
because if £ = 2 then 2x = 4, while if 22 = 4 then z = 2. One way
of thinking about an if-and-only-if statement is to view “X if and only
if Y” as saying that X is just as true as Y; if one is true then so is
the other, and if one is false, then so is the other. For instance, the
statement “If 3 = 2, then 6 = 4” is true, since both hypothesis and
conclusion are false. (Under this view, “If X, then Y” can be viewed
as a statement that Y is at least as true as X). Thus one could say “X
and Y are equally true” instead of “X if and only if Y.

e Similarly, the statement “If X is true, then Y is true” is NOT the
same as “If X is false, then Y is false”. Saying that “if z = 2, then
2? = 47 does not imply that “if z # 2, then 22 # 47, and indeed we
have z = —2 as a counterexample in this case. If-then statements are
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not the same as if-and-only-if statements. (If we knew that “X is true
if and only if Y is true”, then we would also know that “X is false if
and only if Y is false”). The statement “If X is false, then Y is false” is
sometimes called the inverse of “If X is true, then Y is true”; thus the
the inverse of a true implication is not necessarily a true implication.

If you know that “If X is true, then Y is true”, then it is also true that
“If Y is false, then X is false” (because if Y is false, then X can’t be
true, since that would imply Y is true, a contradiction). For instance,
if we knew that “If z = 2, then 22 = 4”, then we also know that “If
22 # 4, then x # 27. Or if we knew “If John had left work at 5pm,
he would be here by now”, then we also know “If John isn’t here now,
then he could not have left work at 5pm”. The statement “If YV is false,
then X is false” is known as the contrapositive of “If X, then Y” and
both statements are equally true.

In particular, if you know that X implies something which is known
to be false, then X itself must be false. This is the idea behind proof
by contradiction or reductio ad absurdum: to show something must be
false, assume first that it is true, and show that this implies something
which you know to be false (e.g. that a statement is simultaneously
true and not true). For instance:

Question. Suppose that z is a positive number such that sin(z) = 1.
Show that z > 7/2.

Proof. Suppose for contradiction that z < 7/2. Since z is positive,
we thus have 0 < z < /2. Since sin(z) is increasing for 0 < z < 7/2,
and sin(0) = 0 and sin(7/2) = 1, we thus have 0 < sin(z) < 1. But
this contradicts the hypothesis that sin(z) = 1. Hence z > 7/2. O

Note that one feature of proof by contradiction is that at some point in
the proof you assume a hypothesis (in this case, that < 7/2) which
later turns out to be false. Note however that this does not alter the
fact that the argument remains valid, and that the conclusion is true;
this is because the ultimate conclusion does not rely on that hypothesis
being true (indeed, it relies instead on it being false!).
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Proof by contradiction is particularly useful for showing “negative”
statements - that X is false, that a is not equal to b, that kind of thing.
But the line between positive and negative statements is sort of blurry
(is the statement x > 2 a positive or negative statement? What about
it’s negation, that x < 2?) so this is not a hard and fast rule.

Logicians often use special symbols to denote logical connectives; for
instance “X implies Y” can be written “X=Y", “X is not true” can
be written “~ X7 “1X” or “-X”, “X and Y” can be written “X AY”
or “X&Y”, and so forth. But for general-purpose mathematics, these
symbols are not often used; English words are often more readable, and
don’t take up much more space. (Also, using these symbols tends to
blur the line between expressions and statements; it’s not as easy to
parse “((x =3)A (y=5))=(x+y=28)" as “If t =3 and y = 5, then
x4y = 8"). So in general I would not recommend using these symbols
(except possibly for =, which is a very intuitive symbol).

X %k ok ok ok

The structure of proofs

To prove a statement, one often starts by assuming the hypothesis
and working one’s way toward a conclusion; this is the direct approach
to proving a statement. Such a proof might look something like the
following:

Claim. Show that A implies B.

Proof. Assume A is true. Since A is true, C' is true. Since C' is true,
D is true. Since D is true, B is true, as desired. O
Example. Show that if z = 7, then sin(z/2) +1 = 2.

Proof. Let z = 7. Since z = 7w, we have /2 = 7/2. Since z/2 = 71/2,
we have sin(z/2) = 1. Since sin(z/2) = 1, we have sin(z/2) +1 = 2.0

Note what we did here was started at the hypothesis and moved steadily
from there toward a conclusion. It is also possible to work backwards
from the conclusion and seeing what it would take to imply it:

Claim. Show that A implies B.
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Proof. To show B, it would suffice to show D. Since C implies D, we
just need to show C. But C follows from A. Oi

Example. Show that if z = 7, then sin(z/2) + 1 = 2.

Proof. To show sin(z/2) + 1 = 2, it would suffice to show that
sin(z/2) = 1. Since z/2 = 7/2 would imply sin(z/2) = 1, we just
need to show that z/2 = /2. But this follows since z = 7. O

Logically speaking, the above two proofs are the same, just arranged
differently. Note how this proof style is different from the (incorrect)
approach of starting with the conclusion and seeing what it would im-
ply; instead, we start with the conclusion and see what would imply
it.

Another example of a proof written in this backwards style is the fol-
lowing:

Claim. Let 0 < 7 < 1 be a real number. Show that the series ) >, nr”
is convergent.

Proof. To show this series is convergent, it suffices by the ratio test
to show that the ratio

r"+1(n—|—1)| n+1
=r
r'n n

converges to something less than 1 as n — oo. Since r is already less
than 1, it will be enough to show that ”T“ converges to 1. But since
"T“ =1+ %, it suffices to show that % — 0. But this is clear since

n — 00. O

One could also do any combination of moving forwards from the hy-
pothesis and backwards from the conclusion:

Claim. Show that A implies B.

Proof. To show B, it would suffice to show D. So now let us show
D. Since we have A by hypothesis, we have C. Since C' implies D, we
thus have D as desired. O
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Again, from a logical point of view this is exactly the same proof as
before. Thus there are many ways to write the same proof down; how
you do so is up to you, but certain ways of writing proofs are more
readable and natural than others, and different arrangements tend to
emphasize different parts of the argument. (Of course, when you are
just starting out doing mathematical proofs, you're generally happy to
get some proof of a result, and don’t care so much about getting the
“best” arrangement of that proof; but the point here is that a proof
can take many different forms.)

The above proofs were pretty simple because there was just one hy-
pothesis and one conclusion. When there are multiple hypotheses and
conclusions, and the proof splits into cases, then proofs can get more
complicated. For instance a proof might look as tortuous as this:

Example. Suppose that A and B are true. Show that C' and D are
true.

Proof. Since A is true, F is true. From E and B we know that F' is
true. Also, in light of A, to show D it suffices to show G. There are
now two cases: H and I. If H is true, then from F and H we obtain
C, and from A and H we obtain G. If instead [ is true, then from I we
have GG, and from I and G we obtain C'. Thus in both cases we obtain
both C' and G, and hence C and D. O

(Incidentally, that proof could be rearranged into a much tidier manner,
but you at least get the idea of how complicated a proof could become).

To show an implication there are several ways to proceed: you can
work forward from the hypothesis; you can work backward from the
conclusion; or you can divide into cases in the hope to split the problem
into several easier sub-problems. Another is to argue by contradiction,
for instance you can have an argument of the form

Example. Suppose that A is true. Show that B is false.

Proof. Suppose for contradiction that B is true. This would imply
that C is true. But since A is true, this implies that D is true; which
contradicts C. Thus B must be false. O
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e Asyou can see, there are several things to try when attempting a proof.
With experience, it will become clearer which approaches are likely to
work easily, which ones will probably work but require much effort, and
which ones are probably going to fail. In many cases there is really only
one obvious way to proceed. Of course, there may definitely be multiple
ways to approach a problem, so if you see more than one way to begin
a problem, you can just try whichever one looks the easiest, but be
prepared to switch to another approach if it begins to look hopeless.

e Also, it helps when doing a proof to keep track of which statements
are known (either as hypotheses, or deduced from the hypotheses, or
coming from other theorems and results), and which statements are
desired (either the conclusion, or something which would imply the
conclusion, or some intermediate claim or lemma which will be useful
in eventually obtaining the conclusion). Mixing the two up is almost
always a bad idea, and can lead to one getting hopelessly lost in a
proof.

* % k % %

Variables and quantifiers

e One can get quite far in logic just by starting with primitive statements
(such as “2+2 = 4” or “John has black hair”), then forming compound
statements using logical connectives, and then using various laws of
logic to pass from one’s hypotheses to one’s conclusions; this is known
as propositional logic or Boolean logic. (It is possible to list a dozen or so
such laws of propositional logic, which are sufficient to do everything
one wants to do, but I have deliberately chosen not to do so here,
because you might then be tempted to memorize that list, and that
is NOT how one should learn how to do logic, unless one happens to
be a computer or some other non-thinking device. However, if you
really are curious as to what the formal laws of logic are, look up “laws
of propositional logic” or something similar in the library or on the
internet).

e However, to do mathematics, this level of logic is insufficient, because
it does not incorporate the fundamental concept of variables - those
familiar symbols such as x or n which denote various quantities which
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are unknown, or set to some value, or assumed to obey some property.
Indeed we have already sneaked in some of these variables in order to
illustrate some of the concepts in propositional logic (mainly because it
gets boring after a while to talk endlessly about variable-free statements
such as 2+ 2 = 4 or “Jane has black hair”). Mathematical logic is thus
the same as propositional logic but with the additional ingredient of
variables added.

A wariable is a symbol, such as n or z, which denotes a certain type
of mathematical object - an integer, a vector, a matrix, that kind of
thing. In almost all circumstances, the type of object that the variable
is should be declared, otherwise it will be difficult to make well-formed
statements using it. (There are a very few number of true statements
one can make about variables which can be of absolutely any type.
For instance, given a variable x of any type whatsoever, it is true that
x = z, and if we also know that x = y, then we can conclude that
y = x. But one cannot say, for instance, that x + y = y + x, until we
know what type of objects x and y are and whether they support the
operation of addition; for instance, the above statement is ill-formed if
x is a matrix and y is a vector. Thus if one actually wants to do some
useful mathematics, then every variable should have an explicit type).

One can form expressions and statements involving variables, for in-
stance, if z is a real variable (i.e. a variable which is a real number),
x4+ 3 is an expression, and z +3 = 5 is a statement. But now the truth
of a statement may depend on the value of the variables involved; for
instance the statement z +3 = 5 is true if z is equal to 2, but is false if
x is not equal to 2. Thus the truth of a statement involving a variable
may depend on the contert of the statement - in this case, it depends
on what z is supposed to be. (This is a modification of the rule for
propositional logic, in which all statements have a definite truth value).

Sometimes we do not set a variable to be anything (other than speci-
fying its type). Thus, we could consider the statement z + 3 = 5 where
x is an unspecified real number. In such a case we call this variable a
free variable; thus we are considering x + 3 = 5 with z a free variable.
Statements with free variables might not have a definite truth value,
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as they depend on an unspecified variable. For instance, we have al-
ready remarked that x + 3 = 5 does not have a definite truth value
if z is a free real variable, though of course for each given value of z
the statement is either true or false. On the other hand, the statement
(x +1)% = 2% + 22 + 1 is true for every real number z, and so we can
regard this as a true statement even when z is a free variable.

At other times, we set a variable to equal a fixed value, by using a
statement such as “Let x = 2” or “Set x equal to 2”. In that case, the
variable is known as a bound variable, and statements involving only
bound variables and no free variables do have a definite truth value.
For instance, if we set x = 342, then the statement “x + 135 = 477"
now has a definite truth value, whereas if = is a free real variable then
“r 4+ 135 = 477" could be either true or false, depending on what x
is. Thus, as we have said before, the truth of a statement such as
“r 4135 = 477" depends on the context - whether z is free or bound,
and if it is bound, what it is bound to.

One can also turn a free variable into a bound variable by using the
quantifiers “for all” or “for some”. For instance, the statement

(z+1)2=22+22+1

is a statement with one free variable x, and need not have a definite
truth value, but the statement

(z +1)® = 2° + 22 + 1 for all real numbers z

is a statement with one bound variable x, and now has a definite truth
value (in this case, the statement is true). Similarly, the statement

rT+3=5

has one free variable, and does not have a definite truth value, but the
statement
x + 3 = 5 for some real number x

is true, since it is true for z = 2. On the other hand, the statement
x + 3 = 5 for all real numbers x

is false, because there are some (indeed, there are many) real numbers
x for which = + 3 is not equal to 5.
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e Universal quantifiers. Let P(z) be some statement depending on a
free variable z. The statement “P(z) is true for all z of type T” means
that given any z of type T, the statement P(z) is true regardless of
what the exact value of x is. In other words, the statement is the same
as saying “if x is of type T, then P(x) is true”. Thus the usual way to
prove such a statement is to let  be a free variable of type T' (by saying
something like “Let = be any object of type 77 ), and then proving P(x)
for that object. The statement becomes false if one can produce even a
single counterexample, i.e. an element x which lies in 7" but for which
P(z) is false. For instance, the statement “z? is greater than z for all
positive 2”7 can be shown to be false by producing a single example,
such as z = 1 or z = 1/2, where x? is not greater than .

e On the other hand, producing a single example where P(x) is true will
not show that P(x) is true for all z. For instance, just because the
equation x + 3 = 5 has a solution when z = 2 does not imply that
x4+ 3 = 5 for all real numbers z; it only shows that z + 3 = 5 is true for
some real number z. (This is the source of the often-quoted, though
somewhat inaccurate, slogan “One cannot prove a statement just by
giving an example”. The more precise statement is that one cannot
prove a “for all” statement by examples, though one can certainly prove
“for some” statements this way, and one can also disprove “for all”
statements by a single counterexample).

e It occasionally happens that there are in fact no variables x of type 7.
In that case the statement “P(z) is true for all z of type T is vacuously
true - it is true but has no content, similar to a vacuous implication.
For instance, the statement

6<2z<4forall3<xz<?2

is true, and easily proven, but is vacuous. (Such a vacuously true
statement can still useful in an argument, this doesn’t happen very
often).

e One can use phrases such as “For every” or “For each” instead of “For
all” | e.g. one can rephrase “(z + 1)? = 22 + 2z + 1 for all real numbers
x” as “For each real number z, (z + 1)? is equal to 2% + 2z + 1”. For
the purposes of logic these rephrasings are equivalent.
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e Existential quantifiers The statement “P(z) is true for some z of
type T” means that there exists at least one z of type T for which P(x)
is true, although it may be that there is more than one such z. (One
would use a quantifier such as “for exactly one z” instead of “for some
2” if one wanted both existence and uniqueness of such an x). To prove
such a statement it suffices to provide a single example of such an z.
For instance, to show that

2% + 22 — 8 = 0 for some real number z

all one needs to do is find a single real number x for which 2242z —8 =
0, for instance x = 2 will do. (One could also use x = —4, but one
doesn’t need to use both). Note that one has the freedom to select x
to be anything you want when proving a for-some statement; this is
in contrast to proving a for-all statement, where you have to let = be
arbitrary. (One can compare the two statements by thinking of two
games between you and an opponent. In the first game, the opponent
gets to pick what z is, and then you have to prove P(z); if you can
always win this game, then you have proven that P(z) is true for all x.
In the second game, you get to choose what z is, and then you prove
P(z); if you can win this game, you have proven that P(z) is true for
some x.)

e Usually, saying something is true for all x is much stronger than just
saying it is true for some z. There is one exception though, if the
condition on z is impossible to satisfy, then the for-all statement is
vacuously true, but the for-some statement is false. For instance

6<2zr<4dforall3 <z <2

is true, but
6 < 2x < 4 for some 3 < x < 2

is false.
e One can use phrases such as “For at least one” or “There exists . ..such
that” instead of “For some”. For instance, one can rephrase “z?+42x—8

for some real number 2”7 as “There exists a real number z such that
x? +2r — 8”.
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Nested quantifiers

e One can nest two or more quantifiers together. For instance, consider
the statement

For every positive number z, there exists a positive number y such that y? = z.

e What does this statement mean? It means that for each positive num-
ber x, the statement

There exists a positive number y such that y> =

is true. In other words, one can find a positive square root of x for
each positive number z. So the statement is saying that every positive
number has a positive square root.

e To continue the gaming metaphor, suppose you play a game where your
opponent first picks a positive number z, and then you pick a positive
number y. You win the game if 2 = z. If you can always win the game
regardless of what your opponent does, then you have proven that for
every positive z, there exists a positive y such that y? = z.

e Quiz: what do each of the following statements mean, and which of
them are true? Can you find gaming metaphors for each of these state-
ments?

e (a) For every positive number z, and every positive number y, we have
y? = x.

e (b) There exists a positive number z such that for every positive number
y, we have y? = .

e (c) There exists a positive number x, and there exists a positive number
y, such that y? = .

e (d) For every positive number y, there exists a positive number x such
that y? = z.
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(e) There exists a positive number y such that for every positive number
x, we have y? = z.

Negating a universal statement produces an existential statement. The
negation of “All swans are white” is not “All swans are not white”,
but rather “There is some swan which is not white”. Similarly, the
negation of “For every 0 < z < /2, we have cos(z) > 0” is “For some
0 < z < /2, we have cos(z) < 0, NOT “For every 0 < z < 7/2, we
have cos(z) < 0”.

Negating an existential statement produces a universal statement. The
negation of “There exists a black swan” is not “There exists a swan
which is not black”, but rather “All swans are not black”. Similarly,
the negation of “There exists a real number x such that 2?2 +z+1 =07
is “For every real number z, 2 +x+1 # 07, NOT “There exists a real
number = such that 22+ xz +1 # 0”. (The situation here is very similar
to how “and” and “or” behave with respect to negations.)

If you know that a statement P(x) is true for all x, then you can set
x to be anything you want, and P(x) will be true for that value of x;
this is what “for all” means. Thus for instance if you know that

(x +1)® = 2* + 2z + 1 for all real numbers z,
then you can conclude for instance that
(r+1)?2=7n"+2r+1,
or for instance that
(cos(y) + 1)* = cos(y)? + 2 cos(y) + 1 for all real numbers y

(because if y is real, then cos(y) is also real), and so forth. Thus
universal statements are very versatile in their applicability - you can
get P(x) to hold for whatever z you wish. Existential statements, by
contrast, are more limited; if you know that

22 + 22 — 8 = 0 for some real number z

then you cannot simply substitute in any real number you wish, e.g.
7, and conclude that 72 + 27 — 8 = 0. However, you can of course still
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conclude that 22 + 22 — 8 = 0 for some real number z, it’s just that
you don’t get to pick which z it is. (To continue the gaming metaphor,
you can make P(z) hold, but your opponent gets to pick x for you, you
don’t get to choose for yourself).

(A historical note: In the history of logic, quantifiers were formally
studied thousands of years before Boolean logic was. Indeed, Aris-
totlean logic, developed of course by Aristotle and his school, deals
with objects, their properties, and quantifiers such as “for all” and “for
some”. A typical line of reasoning (or syllogism) in Aristotlean logic
goes like this: All men are mortal. Socrates is a man. Hence, Socrates
is mortal. Aristotlean logic is a subset of mathematical logic, but is not
as expressive because it lacks the concept of logical connectives such
as and, or, or if-then (although “not” is allowed), and also lacks the
concept of a binary relation such as = or <.)

Swapping the order of two quantifiers may or may not make a differ-
ence to the truth of a statement. Swapping two “for all” quantifiers is
harmless: a statement such as

For all real numbers a, and for all real numbers b, we have (a+b)* = a*+2ab+b?
is logically equivalent to the statement
For all real numbers b, and for all real numbers a, we have (a+b)* = a*+2ab+b?

(why? The reason has nothing to do with whether the identity (a+b)* =
a® + 2ab + b? is actually true or not). Similarly, swapping two “there
exists” quantifiers has no effect:

There exists a real number a, and there exists a real number b, we have a*+b*> =0
is logically equivalent to

There exists a real number b, and there exists a real number a, we have a?4+b* = 0.

However, swapping a “for all” with a “there exists” makes a lot of
difference. Consider the following two statements:
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e 1. For every integer n, there exists an integer m which is larger than
n.

e 2. There exists an integer m such that for every integer n, m is larger
than n.

e Statement 1 is obviously true: if your opponent hands you an integer n,
you can always find an integer m which is larger than n. But Statement
2 is false: if you choose m first, then you cannot ensure that m is
larger than every integer m; your opponent can easily pick a number
n bigger than n to defeat that. The crucial difference between the
two statements is that in Statement 1, the integer n was chosen first,
and integer m could then be chosen in a manner depending on n; but
in Statement 2, one was forced to choose m first, without knowing in
advance what n is going to be.

e In short, the reason why the order of quantifiers is important is that
the inner variables may possibly depend on the outer variables, but not
vice versa.

Some examples of proofs and quantifiers

e Here we give some simple examples of proofs involving the “for all” and
“there exists” quantifiers. The results themselves are simple, but you
should pay attention instead to how the quantifiers are arranged and
how the proofs are structured.

e Claim. Show that for every ¢ > 0 there exists a 6 > 0 such that
26 < e.

e Proof. Let € > 0 be arbitrary. We have to show that there exists a
0 > 0 such that 26 < . We only need to pick one such §; choosing
d := ¢/3 will work, since one then has 20 = 2¢/3 < ¢. O

e Notice how ¢ has to be arbitrary, because we are proving something
for every ¢; on the other hand,  can be chosen as you wish, because
you only need to show that there exists a 6 which does what you want.
Note also that d can depend on &, because the J-quantifier is nested
inside the e-quantifier. (If the quantifiers were reversed, i.e. if you were
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asked to prove “There exists a d > 0 such that for every ¢ > 0, 26 < 7,
then you would have to select § first before being given ¢. In this case
it is impossible to prove the statement, because it is false (why?).)

Normally, when one has to prove a “There exists...” statement, e.g.

“Prove that there exists an € > 0 such that X is true”, one proceeds
by selecting ¢ carefully, and then showing that X is true for that .
However, this sometimes requires a lot of foresight, and it is legitimate
to defer the selection of € until later in the argument, when it becomes
clearer what properties € needs to satisfy. The only thing to watch
out for is to make sure that £ does not depend on any of the bound
variables nested inside X. For instance:

Claim. Show that there exists an ¢ > 0 such that sin(z) > z/2 for all
0<z<e.

Proof. We pick € > 0 to be chosen later, and let 0 < x < £. Since the
derivative of sin(z) is cos(z), we see from the mean-value theorem we
have ) ) )

sin(z)  sin(z) — sin(0)

r z—0 = cos(y)

for some 0 < y < z. Thus in order to ensure that sin(z) > z/2, it
would suffice to ensure that cos(y) > 1/2. To do this, it would suffice
to ensure that 0 < y < 7/3 (since the cosine function takes the value
of 1 at 0, takes the value of 1/2 at 7/3, and is decreasing in between).
Since 0 <y <z and 0 < x < ¢, we see that 0 < y < e. Thus if we pick
e := /3, then we have 0 < y < 7/3 as desired, and so we can ensure
that sin(x) > z/2 for all 0 < z < e. O

Note that the value of £ that we picked at the end did not depend on the
nested variables x and y. This makes the above argument legitimate.
Indeed, we can rearrange it so that we don’t have to postpone anything:

Claim. Show that there exists an € > 0 such that sin(z) > /2 for all
0<z<e.

Proof. We choose ¢ := 7/3; clearly € > 0. Now we have to show that
for all 0 < z < 7/3, we have sin(z) > z/2. Solet 0 < z < 7/3 be
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arbitrary. By the mean-value theorem we have

sin(x) _ sin(x) — sin(0)
x z—0

— cos(y)

for some 0 <y < z. Since 0 <y <z and 0 < z < 7/3, we have 0 <
y < m/3. Thus cos(y) > cos(m/3) = 1/2, since cos is decreasing on the
interval [0,7/3]. Thus we have sin(z)/z > 1/2 and hence sin(z) > z/2
as desired. O

e If we had chosen ¢ to depend on x and y then the argument would not
be valid, because ¢ is the outer variable and z,y are nested inside it.

X %k ok ok ok

Equality

e As mentioned before, one can create statements by starting with ex-
pressions (such as 2 x 3 + 5) and then asking whether an expression
obeys a certain property, or whether two expressions are related by
some sort of relation (=, <, €, etc.). There are many relations, but the
most important one is equality, and it is worth spending a little time
reviewing this concept.

e Equality is a relation linking two objects z,y of the same type T (e.g.
two integers, or two matrices, or two vectors, etc.). Given two such
objects z and y, the statement x = y may or may not be true; it depends
on the value of z and y and also on how equality is defined for the class
of objects under consideration. For instance, for the real numbers the
two numbers 0.9999 ... and 1 are equal. In modular arithmetic with
modulus 10 (in which numbers are considered equal to their remainders
modulo 10), the numbers 12 and 2 are considered equal, 12 = 2, even
though this is not the case in ordinary arithmetic.

e How equality is defined depends on the class 7" of objects under con-
sideration, and to some extent is just a matter of definition. However,
for the purposes of logic we require that equality obeys the following
four axioms of equality:

e Axiom I. Given any object x, we have x = z. (Equality is reflexive).
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Axiom II. Given any two objects x and y of the same type, if z = y,
then y = z. (Equality is symmetric).

Axiom III. Given any three objects z, y, z of the same type, if z = y
and y = z, then z = 2. (Equality is transitive).

Axiom IV (substitution axiom). Given any two objects z and y of the
same type, if x = y, then f(z) = f(y) for all functions or operations f.
Similarly, for any property P(z) depending on z, if x = y, then P(x)
and P(y) are equivalent statements.

Axioms I-11I are clear, together, they assert that equality is an equiva-
lence relation. To illustrate Axiom IV we give some examples.

Example 1. Let z and y be real numbers. If x = y, then 22 = 2y, and
sin(z) = sin(y). Furthermore, z + z = y + z for any real number z.

Example 2. Let n and m be integers. If n is odd and n = m, then m
must also be odd. If we have a third integer k£, and we know that n > k
and n = m, then we also know that m > k.

Example 3. Let z,y,z be real numbers. If we know that z = sin(y)
and y = 22, then by Axiom IV we have sin(y) = sin(z?), and hence by
Axiom IIT we have x = sin(2?).

Quiz: Suppose you have four real numbers a, b, ¢, d and you know that
a = band ¢ = d. Use the above four axioms to deduce that a+c = b+d.
(Actually you only need Axioms III and IV in this case).

Thus, from the point of view of logic, we can define equality on a
however we please, so long as it obeys Axioms I-I1I, and it is consistent
with all other operations on the class of objects under discussion. For
instance, if we decided one day to modify the integers so that 12 was
now equal to 2, one could only do so if one also made sure that 2 was
now equal to 12, and that f(2) = f(12) for any operation f on these
modified integers. For instance, we now need 2 + 5 to be equal to
12+ 5. (In this case, pursuing this line of reasoning will eventual leads
to modular arithmetic with modulus 10).
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