
CLASS NOTES FOR WEEK 8 (MAY 22-26, 2000)

1. Introduction

This week we will cover the topic of product spaces. Recall that the Cartesian
product of two sets X×Y is defined as the space of all pairs of elements (x, y) such
that x ∈ X , y ∈ Y :

X × Y := {(x, y) : x ∈ X, y ∈ Y }.

More generally, if X1, . . . , Xn are a finite collection of sets, the Cartesian product
X1 × Xn can be defined as

X1 × . . . × Xn := {(x1, . . . , xn) : xi ∈ Xi for all 1 ≤ i ≤ n}.

This product is sometimes abbreviated as
n∏

i=1

Xi := X1 × . . . × Xn.

For instance,

3∏

i=1

{0, 1} = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}

is the space of all binary sequences of length 3.

Even more generally, if one has an arbitrary collection {Xα}α∈A of sets, then one
can define the product

∏

α∈A

Xα := {(xα)α∈A : xα ∈ Xα for all α ∈ A}.

For instance,
∞∏

i=1

{0, 1}

is the space of all infinite binary sequences (sequences consisting only of 0s and 1s,
such as (0, 1, 0, 1, . . . ).)

We’ve just defined what a product means for sets, but we would also like to define
what products mean for topological spaces.

For instance, if X and Y are topological spaces, what kind of topology does X ×Y

get? What are the open sets, convergent sequences, etc?

We’ll first discuss the product of two spaces. The product of n spaces is pretty
much the same (just replace 2s by ns throughout). The infinite product case is
more tricky conceptually and will be left to the Wednesday class.
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2. Product of two spaces

Let X1 and X2 be two topological spaces. The space X1 ×X2 is the set of all pairs
(x1, x2), where x1 ∈ X1 and x2 ∈ X2.

Traditionally, we draw X1 as a horizontal set, X2 as a vertical set, and X1 ×X2 as
the rectangle with these co-ordinates. This picture can be a bit mis-leading though,
since X1 and X2 are not necessarily one-dimensional.

To make X1×X2 into a topological space, we need to specify what the open sets of
X1×X2 are. Well, if U1 is open in X1, and U2 is open in X2, then it seems plausible
that U1 × U2 is open in X1 × X2. (The sets U1 × U2 look like open rectangles).

Exercise 2.1. Show that this is actually the case when X1, X2 are metric spaces.

However, these rectangles are not enough to form a topology. For instance, the
union of two rectangles is not always a rectangle (e.g. take the union of (0, 1)×(0, 2)
and (0, 2) × (0, 1)). However, they do form a base for a topology.

Exercise 2.2. Show that the set {U1×U2 : U1 open in X1, U2 open in X2} satisfies
the axioms for a base (see (4.1), (4.2) on p. 70 of the text).

Definition 2.3. The product topology on X1 × X2 is defined to be the topology
generated by the base {U1 × U2 : U1 open in X1, U2 open in X2}.

In other words, a subset of X1×X2 is considered to be open in the product topology
if and only if it is the union of open rectangles of the form U1 × U2, where U1 is
open in X1 and U2 is open in X2.

How is the product topology on X1 × X2 related to the topology of X1 and X2?
The most direct relationship comes via the projection maps π1 : X1 × X2 → X1

and π2 : X1 × X2 → X2 defined by

π1(x1, x2) := x1

π2(x1, x2) := x2.

Theorem 2.4. The projections π1 and π2 are continuous and open. (A map is
called open if the image of every open set is open; it’s like continuity, but in reverse).

Proof We’ll just prove the theorem for π1, as the proof for π2 is similar.

To show that π1 is continuous, we have to show that the inverse image of any open
set in X1 is an open set in X1 × X2. So take any open set U1 in X1. The inverse
image π−1

1 (U1) is the set of all points in X1 ×X2 which project down to X1. If you
think about it, that set is just U1 × X2. Since U1 is open in X1 and X2 is open in
X2, U1 × X2 is open in X1 × X2. So π1 is continuous.

Now to show that π1 is open. Let’s take any open set V in X1 × X2. We have to
show that π1(V ) is open. Since V is open, it is the union of open rectangles. We
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can write this as

V =
⋃

α∈A

Uα
1 × Uα

2

where A is an index set (finite or infinite, it doesn’t matter) and for each α ∈ A,
Uα

1 is an open set in X1 and Uα
2 is an open set in X2. Of course we can assume that

the sets Uα
1 and Uα

2 are non-empty (if any of these sets were empty, they wouldn’t
contribute anything to the union and we could just throw them out).

It is clear that π1(U
α
1 × Uα

2 ) = Uα
1 for each α ∈ A, so

π1(V ) =
⋃

α∈A

Uα
1

(Exercise: prove this!). The right-hand side is the union of open sets, and is
therefore open. Thus π1 is open.

So the product topology has the nice property that the projections π1, π2 are
continuous. In fact, it is the smallest topology with this property; we threw in the
barest minumum of open sets in X1 × X2 which were required in order to make
these maps continuous. If we made the topology any smaller, at least one of π1 and
π2 would fail to be continuous. (Exercise: prove this!)

The above theorem can be used to prove many theorems of the form
If X1 × X2 have [insert property here], then

X1 and X2 must individually have [insert property here].

For instance, if X1×X2 is connected, then π1(X1×X2) is connected, since the image
of a connected set under a continuous map remains connected. But π1(X1 ×X2) =
X1, so X1 is connected. Similarly X2 is connected.

Conversely, if X1 and X2 both have some topological property, then one can usually
prove the same property for the product X1×X2. For instance, the product of two
connected sets is connected, two Hausdorff spaces is Hausdorff; the product of two
compact sets is compact, and so forth. These are a little trickier to prove, though,
and I’ll skip over them.

Note that X1 × X2 doesn’t actually contain X1 or X2 directly. (X1 × X2 consists
of pairs of elements, whereas X1 and X2 consist of individual elements). However,
for every x2 ∈ X2, X1 × X2 contains the set X1 × {x2}, which is homoeomorphic
to X1.

Exercise 2.5. For each x2 ∈ X2, show that the map fx2
: X1 → X1 ×{x2} defined

by fx2
(x1) = (x1, x2) is a homeomorphism from X1 to X1 × {x2}. (Of course,

X1 × {x2} is given the relative topology induced by X1 × X2).

Thus X1 ×X2 consists of many “horizontal slices”, each of which is homeomorphic
to X1. One can similarly divide X1 × X2 into vertical slices, each of which is
homeomorphic to X2.
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Suppose f : Y → X1 ×X2 is a continuous map from some topological space Y to a
product space X1×X2. This map has two components, π1 ◦f : Y → X1 and π2 ◦f :
Y → X2. For instance, if f : [0, 2π] → R × R is the curve f(t) = (cos(t), sin(t)),
then we can break it into the components π1 ◦ f(t) = cos(t) and π2 ◦ f(t) = sin(t).

Since f , π1, and π2 are all continuous, we see that π1 ◦ f and π2 ◦ f are continuous.
In other words, the components of a continuous function are also continuous. The
converse is also true:

Theorem 2.6. Let f : Y → X1 × X2 be such that π1 ◦ f and π2 ◦ f are both
continuous. Then f is also continuous.

Proof Let V be any open set in X1 × X2. Our job is to show that f−1(V ) is an
open set in Y .

Let y be any point in f−1(V ). We have to show that y is an interior point of
f−1(V ). Well, since y ∈ f−1(V ), we know that f(y) ∈ V . Since V is open, we
therefore know that f(y) is an interior point of V . Since the product topology uses
open rectangles as a base, there must exist an open rectangle U1 × U2 inside V

which contains f(y).

Since U1 ×U2 is inside V and contains f(y), the set f−1(U1 ×U2) is inside f−1(V )
and contains y. This will allow us to show that y is an interior point of f−1(V )
provided that f−1(U1 × U2) is open.

If we knew that f was continuous, then we’d be done, since U1 ×U2 is continuous.
But this is exactly what we’re trying to prove! So we can’t use that. However, we
do know that π1 ◦ f and π2 ◦ f are continuous, so we should try to use that.

Observe that for any z ∈ Y ,

z ∈ f−1(U1 × U2) ⇐⇒ f(z) ∈ U1 × U2 ⇐⇒ π1 ◦ f(z) ∈ U1 and π2 ◦ f(z) ∈ U2

⇐⇒ z ∈ (π1 ◦ f)−1(U1) and z ∈ (π2 ◦ f)−1(U2).

Thus

f−1(U1 × U2) = (π1 ◦ f)−1(U1) ∩ (π2 ◦ f)−1(U2).

Since π1 ◦ f and π2 ◦ f are open, the sets (π1 ◦ f)−1(U1) and (π2 ◦ f)−1(U2) are
open. Since the intersection of two open sets is open, f−1(U1 × U2) is thus open,
and we’re done.

3. The axiom of choice

Now we turn to the subject of infinite Cartesian products, which is a more subtle
topic. Conceptually, this is probably the most difficult part of the course. Before
we get to the topological aspects of these products, we need to make a digression
into one of the foundational axioms of set theory.
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Let A be an index set (finite or infinite), and for each α ∈ A let Xα be a topological
space. We define the infinite Cartesian product

∏
α∈A Xα to be the space of all

objects of the form (xα)α∈A, where for each α ∈ A xα is an element of Xα.

For instance, take A = Z, and let Xα = R for each α ∈ Z. Then the set
∏

α∈Z

R

consists of all objects of the form (xα)
α∈Z, where each xα is a real number. One

can think of these objects either as infinite sequences

(x1, x2, x3, . . . )

of real numbers, or as functions

α 7→ xα

from Z to R. Mathematically, both perspectives are equally valid.

Another example: take A ∈ Z, and let Xα = [α, α + 1] for each α ∈ Z. The set
∏

α∈Z

[α, α + 1]

consists of all objects of the form (xα)
α∈Z, where each xα is a real number between

α and α + 1 inclusive. One can visualize these objects as a function from

α 7→ xα

from Z to R such that the value of the function at each α must stay within the
interval [α, α + 1].

Now for a more difficult example to visualize. Take A = R, and let Xα = R for
each α ∈ A. Then the set ∏

α∈R

R

consists of all objects of the form (xα)
α∈R, where each xα is a real number. It’s a

bit difficult to think of this as an infinite sequence as before, because the reals are
not countable. However, one can think of such an object instead as a function

α 7→ xα

from R to R. In other words, one can think of
∏

α∈R R as the space of all functions
from R to R.

We can now state one of the foundational axioms of mathematics, the axiom of
Choice.

Axiom of Choice. If (Xα)α∈A is any collection of non-empty sets, then the product
space

∏
α∈A Xα is non-empty.

Or to put it another way: given any collection (Xα)α∈A of non-empty sets, it is
possible to find an object (xα)α∈A such that for each α ∈ A, xα is an element of
Xα.
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Intuitively, this axiom seems very plausible. To show that
∏

α∈A Xα is non-empty,
one just needs to choose an element xα of the non-empty set Xα, then put all the
xα together to create the object (xα)α∈A. If A is finite, this is non-controversial.
However, if A is infinite, this procedure requires one to make an infinite number of
arbitrary choices. Because of this, this axiom comes into conflict with a philosophy
of mathematics known as constructivism, which insists that one restricts one’s at-
tention to objects that can be constructed via precise algorithms, and not rely on
arbitrary choices.

Bertrand Russell (1872-1970) described the Axiom of Choice as follows. Suppose
you own infinitely many pairs of shoes, and want to select one shoe from each pair.
Then one does not need the axiom of choice to do this; one can simply take the left
shoe of each pair, and that will achieve your goal. Even a constructivist is happy
with that.

However, suppose you also own infinitely pairs of socks, and the two socks in each
pair are indistinguishable from each other. Then there is no algorithm for selecting
one sock from each pair, and one must make an infinite number of arbitrary choices.
The Axiom of Choice asserts that this is actually possible.

Despite being intuitive, the Axiom of Choice does have some counter-intuitive con-
sequences. One of the most famous is the Banach-Tarski paradox. Stefan Banach
and Alfred Tarski in 1926 showed that one can use the Axiom of Choice to divide the
unit ball B(0, 1) (for instance) into a finite number of sets, such that when these sets
are translated by some finite amount, their union becomes the ball B(0, 2). This is
called a paradox because it contradicts one’s intuitive notions about volume; one
should not be able to rearrange a ball of length 1 into a ball of length 2 just by
cutting and translating! (If you’re really interested, I’ve written up toy version of
the Banach-Tarski paradox on the class web page).

The Axiom of Choice is an indispensable tool when working with infinite-dimensional
objects, and even in in the ordinary finite-dimensional world. In fact, I’ve used the
Axiom of Choice implicitly a couple times already in this course. (For instance:
in a metric space, proving that a point is adherent to a set E if and only if it is
the limit of a sequence in E requires a rather mild form of the axiom of choice,
known as the axiom of countable choice, in which one is only allowed to make a
countable number of choices). It is accepted by mainstream mathematicians, but
there is still some debate as to its validity by logicians and philosophers. There are
formal results in logic which say that the axiom of choice can neither be proven
nor disproven from the other axioms of logic and set theory. Furthermore, any
“constructive” result which can be proven using Choice can also be proven without
Choice, although the proof may be much longer and less intuitive. Because of this,
the use of Choice is more a matter of taste than of fundamental truths. However,
it is intuitively appealing and very convenient to use, and so we shall continue to
use it in this course.

If you are interested in further discussion on this topic, I recommend the URL
http://math.vanderbilt.edu/ schectex/ccc/choice.html
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4. Zorn’s lemma

A particularly useful application of the Axiom of Choice is known as Zorn’s lemma,
discovered by Max Zorn in 1936, and has to do with partially ordered sets.

Definition 4.1. A partially ordered set is a set X and a binary relation < between
elements of X , which is anti-symmetric (if x < y, then y 6< x) and transitive (if
x < y and y < z, then x < z).

Definition 4.2. A totally ordered set is a partially ordered set X such that for any
two distinct x, y in X , either x < y or x > y.

A typical example of a partially ordered set: let X be the collection of all subsets
of {0, 1, 2}, and write x < y if x is a subset of y. This is a partially ordered set
with eight elements

X = {∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}.

It is not totally ordered because not every two elements are comparable, e.g. {1}
and {0, 2} are not comparable.

Often we are interested in the question of whether a partially ordered set X has a
maximal element. A maximal element is an element x such that x 6=< y for any
y ∈ X . For instance, the set X mentioned above has exactly one maximal element,
namely {0, 1, 2}. If one removed this element {0, 1, 2} from X , the resulting seven-
element set now has three maximal elements, namely {0, 1}, {0, 2}, {1, 2}. As one
can see, there can be more than one maximal element if a set is not totally ordered.
(It’s like how there can be more than one “unbeaten champion” in a contest as long
as the unbeaten champions do not play off against each other).

Some sets have no maximal element. For instance the natural numbers {1, 2, 3, . . .}
with the usual ordering < has no maximal element despite being totally ordered.
That’s because it contains an infinite chain of increasing elements with no upper
bound.

Zorn’s lemma is kind of a converse to the above remark:

Lemma 4.3 (Zorn’s lemma). Let X be a partially ordered non-empty set, and
suppose that every totally ordered subset Y of X has at least one upper bound (i.e.
there exists x ∈ X such that x ≥ y for all y ∈ Y ). Then X contains at least one
maximal element.

The proof is extremely technical, and uses the axiom of Choice. (In fact, Zorn’s
lemma is logically equivalent to the axiom of Choice). I include it here for com-
pleteness, but I wouldn’t recommend studying it unless you really are interested in
this stuff.

Proof (Very optional! Thanks to David Grayson for this proof. I’m skipping some
small steps for brevity).
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We need another definition. We call a set Y ⊂ X well-ordered if (a) it is totally
ordered, and (b) every non-empty subset of Y has a minimal element.

Suppose for contradiction that X did not contain a maximal element. In particular,
this means that for every element x ∈ X there is always some other x′ ∈ X such
that x′ > x. (There’s always a bigger fish. - Qui-Gon Jinn).

Every well-ordered subset Y ⊂ X is totally ordered, and thus has an upper bound.
If this upper bound is itself in Y , then there exists a larger upper bound by the
preceding paragraph, which cannot then be in Y . Thus every well-ordered subset
Y has an upper bound not contained in Y .

By the axiom of Choice, we may thus associate to each well-ordered subset Y an
upper bound g(Y ) of Y which is not contained in Y . (Note that g(∅) can be any
element of X , since any element is an upper bound for the empty set).

Call Y a g-set if Y is well-ordered and

x = g({y ∈ Y : y < x})

for every x ∈ Y .

Note that if Y is a g-set, then Y ∪ {g(Y )} is also a g-set.

Also: if Y and Y ′ are g-sets, then either Y ⊂ Y ′ or Y ⊂ Y ′. Proof: suppose not.
Let x be the least element of Y − Y ′. One then has {y ∈ Y : y < x} ( Y ′. Let x′

be the least element of Y ′ − {y ∈ Y : y < x}. Then we have

{y ∈ Y : y < x} = {y ∈ Y ′ : y < x′}.

Taking g of both sides we conclude that x = x′, contradicting the definition of x

and x′.

Let W be the union of all the g-sets. From the above, one may show that W is itself
a g-set, and then that W ∪{g(W )} is a g-set. But this contradicts the definition of
W .

Zorn’s lemma is useful for running algorithms which are infinitely long, as it is not
always clear that such algorithms do actually terminate. A typical example of how
it is used is

Theorem 4.4. Every vector space V has a basis.

Proof (Optional) Intuitively, the algorithm to obtain the basis is easy to state.
Initialize the basis to be the empty set. Pick any non-zero element of the vector
space, and add it to the basis. If it spans, then we’re done. Otherwise, we pick
another element of the vector space which is linearly independent from the basis,
and add it to the basis. If these two span, then we’re done. Otherwise, we pick
a another element which is linearly independent of the basis, and add it to the
basis. Repeat this infinitely often. It may be that even after an infinite number of
iterations of this procedure, the basis still has not yet managed to span. In which
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case, we keep going, adding yet another element to the basis. And so forth. Zorn’s
lemma ensures us that eventually (possibly after many infinite iterations of this
procedure) this algorithm must halt, which can only happen if one actually does
find a basis.

More rigorously, let X be the set of all linearly independent subsets of V . At the
very least, X contains at least one element, the empty subset ∅. Thus X is not
empty. X is partially ordered if we write x < y for x ⊂ y. Also, we claim every
totally ordered set in X has an upper bound. To see this, let Y be a totally ordered
subset of X . In other words, Y is a collection of subsets of V , such that each subset
consists of linearly independent elements, and for any two subsets in Y , one must
contain the other.

Let S denote the union of all the subsets of V which are members of Y . Clearly
S is a subset of V , and is an upper bound for Y . Now we claim S is linearly
independent. Suppose for contradiction that one could find elements s1, . . . , sn in
S and non-zero numbers a1, . . . , an such that a1s1+. . .+ansn = 0. Each si belongs
to some subset in Y . Since Y is totally ordered, one of these subsets is larger than
all the others. Thus there is a subset of Y which contains all the si. But then
this subset would consist of linearly dependent elements, a contradiction. Thus S

is linearly independent, and thus in Y .

Since X is non-empty, and every totally ordered set in X has an upper bound. By
Zorn’s lemma, this means that X contains at least one maximal element, T . T is
a linearly independent subset of V . T must span V , otherwise we could pick an
element of V not spanned by T and add it to T , contradicting maximality. Since
T is both linearly independent and spans, it is a basis.

5. Infinite product spaces

We now return to topology, and consider the question of how to define the product
topology on an infinite product

∏
α∈A Xα.

Actually, there are two topologies one could place on this topology. One is called
the weak topology or product topology; the other is called the strong topology or box
topology. The philosophies behind them are different. For the weak topology, one
places the bare minimum of open sets that one can get away with; for the strong
topology, one puts in as many open sets as one can get away with. It turns out
that the weak topology is the more useful, and that is the one we will discuss here.
(The box topology is discussed a little bit in the textbook, but we won’t ever need
it in this course).

To motivate the weak topology, let us introduce the projection operators

πβ :
∏

α∈A

Xα → Xβ
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for each β ∈ A, in analogy to the projections π1, π2 used in the finite case. These
projections are defined by

πβ((xα)α∈A) = xβ .

In other words, these projections just take out the β component of the object
(xα)α∈A and throw away everything else.

For instance, consider
∏

α∈R R, which is the space of all functions from R to R.
The projection πβ takes any such function f as input, and returns the value of f

at β (ignoring all the other aspects of f).

Since the projections π1 and π2 were continuous in the finite product case, it seems
natural to demand that the πβ are all continuous in the infinite product case. This

means that π−1
β (Uβ) needs to be open in

∏
α∈A Xα whenever Uβ is open in Xβ .

In the finite product case X1 ×X2, π−1
1 (U1) would be the “vertical slab” U1 ×X2,

while π−1
2 (U2) would be a horizontal slab X1×U2. In a triple product X1×X2×X3,

things are similar; a set π−1
1 (U1) would be the slab U1 × X2 × X3, and so forth.

More generally, π−1
β (Uβ) is the set of all objects (xα)α∈A in

∏
α∈A Xα such that xβ

happens to fall inside Uβ .

So we’d like the sets π−1
β (Uβ) to be open. But this isn’t a complete list of open

sets. First of all, finite intersections of open sets are supposed to be open. This
forces any set of the form

π−1
β1

(Uβ1
) ∩ π−1

β2
(Uβ2

) ∩ . . . ∩ π−1
βn

(Uβn
) (∗)

to be open, where β1, . . . , βn are distinct elements of A and each Uβi
is an open

set.

The above set is the set of all objects (xα)α∈A in
∏

α∈A Xα such that xβ1
falls

inside Uβ1
, xβ2

falls inside Uβ2
, etc.

Following the minimalist philosophy, we can now define the product topology (aka
the weak topology) on

∏
α∈A Xα.

Definition 5.1. The product topology on
∏

α∈A Xα is the topology generated using
the sets of the form (*) as a base.

Exercise 5.2. Show that the sets of the form (*) do actually obey the axioms for
a base.

Exercise 5.3. Show that the product topology on
∏

α∈{1,2} Xα co-incides with the

topology on X1 × X2 defined in previous notes.

Because of this definition, we shall refer to sets of the form (*) as basic open sets.

To illustrate the product topology we consider the space

X :=
∏

k∈Z

[0, 1];
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this is the product of a countable number of intervals. Elements of X can be thought
of as infinite sequences (x1, x2, x3, . . . ) where each component xk, k = 1, 2, 3, . . . is
a number in the interval [0, 1].

There are at least two topologies one can place on X . The first is the product
topology which we just defined. Another topology one can define is the uniform (or
l∞) topology, using the l∞ metric

d((x1, x2, x3, . . . ), (y1, y2, y3, . . . )) := sup
k≥1

|xk − yk|

to define a topology. (There is also the box topology, which is slightly different,
but won’t be discussed here).

Roughly speaking, the difference between the product topology and the uniform
topology is that the product topology is related to pointwise convergence, while
the uniform topology is related to uniform convergence.

More precisely, let x1, x2, x3, . . . be a sequence in X , and x be another point in X .
Note that the elements of the sequence xn are themselves sequences:

x1 = (x1
1, x

1
2, . . . )

x2 = (x2
1, x

2
2, . . . )

. . .

Recall that in order for xn to converge in x using the l∞ topology, the sequences
x1, x2, . . . must converge uniformly to x:

sup
k≥1

|xn
k − xk| → 0 as n → ∞.

Now let us consider what it means for the sequence xn to converge in x using the
product topology. This means that every neighbourhood of x must contain all but
a finite number of elements of the sequence xn.

In particular, any set of the form π−1
k (Uk) that contains x, must also contain all

but a finite number of elements of the sequence xn, since π−1
k (Uk) is an open set.

The set π−1
k (Uk) contains x if and only if xk ∈ Uk, and contains xn if and only

if xn
k ∈ Uk. So, for any k = 1, 2, 3, . . . , and any Uk which is open in [0, 1] and

contains xk, we must have that Uk contains all but a finite number of elements of
the sequence xn

k .

In other words, every neighbourhood of xk in [0, 1] contains all but a finite number
of elements of xn

k . In other words, xn
k converges to xk as n → ∞. In other words,

the sequence xn converges pointwise to x.

The converse is also true:

Exercise 5.4. Let
∏

α∈A Xα be a product space. If xn converges pointwise to x,
then xn converges to x in the product topology.
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Proof (Optional) Let xn converge pointwise to x. We have to show that xn

converges to x in the product topology.

Let V be any neighbourhood of x in the product topology. We have to show that
V contains all but a finite number of elements of the sequence xn.

Since the product topology is given by the basic open sets, and V is a neighbourhood
of x, there must exist a basic open set contained in V which contains x. So it suffices
to show that all basic open sets which contain x must also contain all but a finite
number of elements of the sequence xn.

So, fix a basic open set which contains x. Such a set has the form (*). In order for
this set to contain x, Uβi

must contain xβi
for each i = 1, . . . , n. Since xn converges

pointwise to x, xn
βi

converges to xβi
, and so Uβi

must also contain all but a finite
number of elements of the sequence xn

βi
. Since the number of βi is also finite, this

shows that the basic open set contains all but a finite number of elements of the
sequence xn, and we are done.

Some other properties of the product topology. The projections πβ are all continu-
ous and open (Exercise!). So if f : Y →

∏
α∈A Xα is continuous, then πβ ◦ f : Y →

Xβ is also continuous for all β ∈ A. Conversely, we have the following generalization
of Theorem 2.6.

Theorem 5.5. Let f : Y →
∏

α∈A Xα be such that πβ ◦ f is continuous for all
β ∈ A. Then f is also continuous.

We leave the proof as an exercise; it is a modification of the proof of Theorem 2.6.

So, even when the range is an infinite product spaces, a function is continuous if
and only if its components are.

6. Tychonoff’s theorem

Now we come to one of the most difficult of the fundamental theorems in topology,
namely Tychonoff’s theorem.

Of all the properties that topological spaces can have (connectedness, compactness,
Hausdorff, etc.), the property of being compact is perhaps the most powerful, es-
pecially when combined with the Hausdorff property. We’ve seen some examples
of this already. So we would love to have more compact sets out there.

It turns out that the finite product of compact sets is always compact; for instance,
since [0, 1] is compact, then any finite cube [0, 1]× [0, 1]× . . .× [0, 1] is also compact.
What about infinite products? One has to be a bit careful. For instance, if one
looks at the space

X =
∏

k∈Z

[0, 1]
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discussed earlier, this is a product of compact spaces. However, it is not compact
in the uniform topology. For instance, the sequence

x1 = (1, 0, 0, 0, 0, . . . )

x2 = (0, 1, 0, 0, 0, . . . )

x3 = (0, 0, 1, 0, 0, . . . )

x4 = (0, 0, 0, 1, 0, . . . )

are in X , but no subsequence of this sequence converges uniformly. On the other
hand, this sequence does converge pointwise to the zero sequence (0, 0, 0, . . . ). So
it still might be possible for X to be compact in the product topology. Fortunately,
this is indeed the case.

Theorem 6.1 (Tychonoff’s theorem). If Xα is a compact topological space for
every α ∈ A, then

∏
α∈A Xα is compact in the product topology.

As a typical application, this theorem shows that given any sequence x1, x2, . . . of
bounded sequences, one can always find a subsequence xn1 , xn2 , . . . which converge
pointwise. Similarly if one replaces “bounded sequences” by “bounded functions”.

Suppose the hypotheses of Tychonoff’s theorem are true. To show that
∏

α∈A Xα is
compact, we have to show that every open cover of

∏
α∈A Xα has a finite sub-cover.

That is actually quite difficult to show, so we’ll content ourselves with a weaker
version and leave the full version to an appendix.

Definition 6.2. We say that a set V is a sub-basic set in
∏

α∈A Xα if it is of the

form π−1
β (Uβ) for some β ∈ A and some set Uβ which is open in Xβ . We call β the

index of V , and Uβ the shadow of V . (This notation is specific to this section, and
is not widely used).

Clearly every sub-basic set is open, but of course the converse is not true.

Proposition 6.3 (Baby Tychonoff). Let Xα is a compact topological space for
every α ∈ A, and suppose that V is an open cover of

∏
α∈A Xα such that every

member of V is a sub-basic set. Then V contains a finite sub-cover.

This proposition is weaker than the full Tychonoff theorem because it doesn’t deal
with all possible open covers of

∏
α∈A Xα; it only handles those open covers which

consist entirely of sub-basic sets.

Proof Suppose for contradiction that V did not contain a finite sub-cover.

Fix some β ∈ A, and let Vβ denote those sub-basic sets in V with index β. Each
set in Vβ has a shadow which is an open set in Xβ. Let Wβ denote the collection
of all such shadows. If Wβ covers Xβ , then by compactness Wβ contains a finite
sub-cover of Xβ , which implies that Vβ contains a finite sub-cover of

∏
α∈A Xα.

This would contradict our assumption that V has no finite subcover. Hence we
may assume that Wβ fails to cover Xβ for every β ∈ A.
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By the Axiom of Choice, we can thus pick for every β ∈ A an element xβ in Xβ

such that xβ is not covered by Wβ .

Now let x denote the element x := (xβ)β∈A. Certainly x is an element of
∏

α∈A Xα.
Since xβ is not covered by Wβ , x is not covered by Vβ for any β ∈ A. But V is
the union of the Vβ . Thus x is not covered by V. This contradicts the assumption
that V is a cover, and we are done.

7. Appendix: Proof of Tychonoff’s theorem (Optional)

We now leverage the Baby Tychonoff theorem to the full Tychonoff theorem.

Let Xα be a compact topological space for every α ∈ A. Suppose for contradiction
that we could produce an open cover V of

∏
α∈A Xα which had no finite sub-cover.

Let Z denote the collection of all open covers of
∏

α∈A Xα which have no finite
sub-cover. (This is a set consisting of sets consisting of sets consisting of points of
the form (xα)α∈A!) We thus have that Z is non-empty.

We can make Z partially ordered by writing V < V′ for V ⊂ V′. In other words,
we write V < V′ if V is a subcover of V′.

We’re going to apply Zorn’s lemma to Z. To do this, we need to show that every
totally ordered subset Y of Z has an upper bound.

Let Y be a totally ordered subset of Z. In other words, Y consists entirely of open
covers with no finite subcover, such that any given two such covers, one must be a
sub-cover of the other. Let Vmax be the union of all these covers. In other words,
Vmax consists of those open sets in

∏
α∈A Xα with belong to at least one of the

covers in Y.

Clearly Vmax is also an open cover, and is an upper bound for Y. But is it in Z?
To qualify for membership in Z, Vmax needs to contain no finite sub-cover. Well,
suppose that Vmax did contain a finite subcover V1, . . . , Vn of

∏
α∈A Xα. Each of

the Vi must belong to an open cover Vi in Y, by definition of Vmax. Since Y is
totally ordered, one of the Vi is larger than all the others, and thus contains all
of V1, . . . , Vn. But then this Vi contains a finite sub-cover, contradicting the fact
that Vi is in Z. Thus Vmax contains no finite sub-civer and is indeed in Z.

So every totally ordered subset Y of Z has an upper bound. By Zorn’s lemma,
there must therefore exist a maximal element V∗ of Z. This is a really really big
open cover with no finite subcover, which is not contained in any other open cover
with no finite subcover.

The cover V∗ contains all kinds of open sets. Some are sub-basic open sets; others
are not. Let V∗∗ denote the collection of open sets in V∗ which are sub-basic. Then
V∗∗ is a subset of V∗. We now claim that V∗∗ is still an open cover of

∏
α∈A Xα.
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To show this, pick a point x ∈
∏

α∈A Xα. Suppose for contradiction that x is not
covered by V∗∗. However, it must be covered by V∗, so there exists some open
set V ∈ V∗ which contains x. By definition of the product topology, there must
therefore exist a basic open set in V which contains x.

This basic open set is the intersection of a finite number of sub-basic sets π−1
βi

(Uβi
).

Consider a single one of these sub-basc sets. This set contains x. It cannot be in
V∗, because if it was, then it would be in V∗∗, and we are assuming that x is not
covered by V∗∗. So if one adds π−1

βi
(Uβi

) to V∗ one would obtain an open cover

which is larger than V∗. By definition of V∗, that means that V∗∪{π
−1
βi

(Uβi
)} must

have a finite sub-cover. In particular, this implies that there is a finite subset Vi of
V∗ which covers the complement of π−1

βi
(Uβi

). The set V1 ∪ . . .Vn is thus a finite
subset of V∗ which covers the copmlement of the intersection of all the sub-basic
sets π−1

βi
(Uβi

), and therefore covers the complement of V . Thus V1∪ . . .∪Vn∪{V }

covers
∏

α∈A Xα, and so V∗ has a finite sub-cover, a contradiction. Thus V∗∗ must
cover every point in

∏
α∈A Xα.

Now we can finally finish the proof. V∗∗ is a cover of
∏

α∈A Xα such that every
member of V∗∗ is a sub-basic set. Thus by Baby Tychonoff, V∗∗ has a finite sub-
cover. Since V∗ contains V∗∗, we thus see that V∗ has a finite sub-cover, and we
are (finally!) done.


