
CLASS NOTES FOR APRIL 14, 2000

Announcement: Section 1.2, Questions 3,5 have been deferred from Assignment 1
to Assignment 2. Section 1.4, Question 5 has been dropped entirely.

1. Review of Wednesday class

Let (X, d) be a metric space. A set E ⊂ X is said to be dense if E = X .

Theorem 1.1. (Baire category theorem) If X is complete and V1, V2, . . . are open
dense sets, then

⋂∞

n=1 Vn is dense.

A set E ⊂ X is said to be nowhere dense if E has no interior. Examples: Z is
nowhere dense in R. The set

{1, 1/2, 1/4, 1/8, 1/16, . . .}

is also nowhere dense in R. The set Q∩ [0, 1] is not nowhere dense in R (it’s closure
has interior (0, 1)).

2. Conclusion of Wednesday class

Another example of nowhere dense sets: any line or circle in R2 is nowhere dense.

Nowhere dense sets are in some sense the opposite of dense sets. A precise connec-
tion is:

Exercise 2.1. A set E is nowhere dense if and only if E
c

is open and dense.

Proof (Optional) We first prove the ”only if” part. Suppose E is nowhere dense.
Then E has no interior. Since closures are closed, E is closed, which means that
E

c
are open. Now we have to show that E

c
is dense.

Let B be an open ball. We have to show that E
c

intersects the ball B. Suppose
for contradiction that E

c
did not intersect B. Then B would be contained in E,

contradicting the fact that E has no interior.

Now suppose that E
c

is open and dense. Then every ball must contain at least one
point in E

c
, which means that no ball can be completely contained inside E. This

means that E has no interior, which means that E is nowhere dense.
1
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Example: the set R is nowhere dense in R2. R is closed (the only points adherent
to R are the points that are already on R, so the above Exercise implies that R2\R
is open and dense in R2.

We can use the Baire category theorem to say something about nowhere dense sets:

Theorem 2.2. Let X be a complete metric space, and let E1, E2, . . . be a sequence
of nowhere dense sets in X. Then

X 6=

∞
⋃

n=1

En. (1)

In other words, a complete metric space cannot be covered by a countable number
of nowhere dense sets.

Proof The sets En are nowhere dense. By the above exercise, this means that the
sets En

c
are open and dense. By the Baire category theorem, this implies that the

set
∞
⋂

n=1

En
c

is dense. In particular, it is non-empty (since the empty set is not dense). Thus we

can find a point x ∈ X such that x ∈ En
c

for all n. This implies that x 6∈ En for
any n. Thus we have found a point in X which is not in

⋃∞

n=1 En, which proves
(1).

This theorem is quite powerful. As just one example, it shows that if you take
a totally arbitrary sequence C1, C2, . . . of circles in R2, then the circles do not
completely fill out R2, i.e. there is always at least one point in R2 which is not
covered by any one of the circles. This is a typical example of how the theorem is
used: to show that given any sequence of nowhere dense sets, that there is always
at least one point which avoids all of them. We’ll see some more applications in a
couple weeks.

(Optional): Of course, if you take the set of all circles in R2, of arbitrary center and
radius, then these circles will definitely fill out R2 (every point in R2 is certainly
contained in at least one circle). However, this does not contradict Theorem 2.2
because the set of all circles in R2 is uncountable - it cannot be organized as a
sequence.

By the way, René-Louis Baire (1874-1932) divided sets into two categories. He
defined a set of the first category to be any set which could be written as the
countable union of nowhere dense sets. For instance, any set which is made up of
a countable number of circles is of the first category. Anything which is not of the
first category was placed in the second category. Baire’s theorem then says that
every complete space is in the second category. (Nowadays, the concept of first and
second category are not used very much, but this is the historical reason for the
name “Baire Category Theorem”.
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3. Compact sets

We now turn to a trickier notion, that of compactness.

Our motivation shall be the Extremal Value Theorem from lower-division math:

Theorem 3.1. Let f : [a, b] → R be a continuous function on an interval [a, b].
Then there are points xmax, xmin in [a, b] such that f(xmax) is the maximum of f
and f(xmin) is the minimum of f on [a, b].

This theorem only works for closed intervals; for open intervals it is false (e.g.
f(x) = 1/x on (0, 1)) and it is also false for unbounded sets (e.g. f(x) = x on
[0,∞)). The topological explanation for this is that closed intervals have a special
property, called compactness, which makes the Extreme Value Theorem (and many,
many other results) work.

Compactness is quite a tricky and unintuitive notion to pin down. Here is the
formal definitions:

Definition 3.2. Let (X, d) be a metric space. An open cover of X is a (possibly
infinite) collection {Vα}α∈A of open sets in X such that

X ⊆
⋃

α∈A

Vα.

We say that a metric space is compact if every open cover has a finite subcover.

For instance, consider R with the usual metric. This space has many open covers;
for instance, one can use the balls B(x, 1), as x ranges over all real numbers, to
cover R. Some of these balls are redundant (e.g. because B(1.9, 1) and B(2.1, 1)
are in the open cover, the ball B(2, 1) is unnecessary and could be removed), but
no matter how many redundant balls you remove, you still need an infinite number
of balls in this collection to cover R, because one could never cover R with a finite
number of balls. Thus, R is not compact.

On the other hand, let’s consider the set {1, 2, 3}. This set is compact for the
following reason. Let {Vα}α∈A be an open cover of {1, 2, 3}. Since 1 is an element
of {1, 2, 3}, 1 must be contained in one of the Vα; let’s say 1 ∈ Vα1

. Similarly we
can find an α2 ∈ A such that 2 ∈ Vα2

, and an α3 ∈ A such that 3 ∈ Vα3
. The

sub-collection {Vα1
, Vα2

, Vα3
} is now a finite sub-cover of the original open cover

which covers {1, 2, 3}. Since every open cover has a finite sub-cover, {1, 2, 3} is
compact.

As you can see already, this definition is very unwieldy. Fortunately, there are other
ways to characterize compactness for metric spaces which are easier to deal with.
To do this we first need some more definitions.

Definition 3.3. A space X is said to be bounded if there is some ball B(x, r) which
contains X . A space is said to be totally bounded if, for every ε > 0, one can cover
X by a finite number of open balls of radius ε.
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For instance, R is not bounded (it can’t be enclosed inside a ball) and it is not
totally bounded either. The set [0, 1] is both bounded and totally bounded (for any
ε > 0 one can cover [0, 1] by a finite number of ε-balls).

Now consider the integers Z with the discrete (or “teleport”) metric

d(x, y) =

{

1 if x 6= y
0 if x = y

In other words, all the integers are distance 1 apart from each other under this
metric. In this case, Z is actually bounded (e.g. it is contained in B(0, 2)) but it is
not totally bounded (it is not possible to cover Z by balls of radius 1/2).

Exercise 3.4. Show that every totally bounded set is bounded.

Proof (Optional) Let X be a totally bounded set. Then it can be covered by a finite
number of balls of radius 1 (for instance). Let’s call these balls B(x1, 1), . . . , B(xn, 1).
Let R denote the radius

R = 1 + max
1≤i≤n

d(xi, x1).

From the triangle inequality we see that

B(xi, 1) ⊂ B(x1, R)

for all 1 ≤ i ≤ n. Since the B(xi, 1) cover X , we thus see that

X ⊂ B(x1, R)

and hence X is bounded.

Theorem 3.5. Let (X, d) be a metric space The following statements are equiva-
lent:

• (i) X is compact.
• (ii) Every sequence in X has at least subsequence which converges in X.
• (iii) X is complete and totally bounded.

The properties (ii) and (iii) are a bit more intuitive to work with than (i). For
instance, from (ii) we can see why (0, 1) is not compact, and it is plausible that
[0, 1] is compact.

The proof of this theorem is somewhat complicated. There are three steps: showing
that (i) implies (ii); showing that (ii) implies (iii); and showing that (iii) implies
(i). Of these, the first two are fairly straightforward. The last one is nastier and
will be left to the written notes.

4. Proof of (i) =⇒ (ii).

Let X be a compact set, and suppose that x1, x2, . . . is a sequence in X . We have
to find a subsequence of the xi which converges in X .
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There are two cases:

Case 1: There exists a point x ∈ X such that every open ball centered at x contained
infinitely many elements of the sequence x1, x2, . . . .

Then we would be done, for the following reason. Since the ball B(x, 1) contains
infinitely many elements of the sequence, we can pick an element xn1

in B(x, 1).
Then, since B(x, 1/2) contains infinitely many elements of the sequence, it must
contain at least one element xn2

with n2 > n1. Repeating this, we can find an
element xn3

∈ B(x, 1/3) with n3 > n2. More generally, we can choose a subsequence
xn1

, xn2
, . . . such that nj+1 > nj and xnj

∈ B(x, 1/j) for all j = 1, 2, 3, . . . . Then
it is clear that this sequence is convergent to x, and we are done.

Case 2: For every point x ∈ X there exists an open ball centered at x which contains
at most finitely many elements of the sequence x1, x2, . . . .

For every x ∈ X , let Bx be an open ball centered at x which contains at most
finitely many elements of the sequence xn. Then the collection of all these balls
{Bx}x∈X is an open cover of X , because every x ∈ X is contained in at least one
ball in the collection, namely the ball Bx centered at x. However, this open cover
cannot have a finite sub-cover, because every ball only contains a finite number
of elements of the sequence, and there are an infinite number of elements of the
sequence to cover. This contradicts compactness.

5. Proof of (ii) =⇒ (iii).

Let X satisfy property (ii), i.e. every sequence in X has a convergent subsequence.
We need to show that X is complete and totally bounded.

Let’s first show that X is complete. Let x1, x2, . . . be a Cauchy sequence in X . We
need to show that this sequence converges.

By (ii), we can find a subsequence xn1
, xn2

, xn3
, . . . of x1, x2, . . . which converges

to some point in X , say x. This is almost what we want, but we need to show
that the entire sequence converges to x, not just a subsequence. I’ll leave this as
an exercise:

Exercise 5.1. If xn is a Cauchy sequence, and a sub-sequence xnj
of xn converges

to x, then xn itself converges to x.

Proof (Optional) We need to show that for every ε > 0 there exists N > 0 such
that d(xn, x) < ε for all n > N . Well, because xnj

converges to x, we can find a
J > 0 such that

d(xnj
, x) < ε/2

for all j > J . Also, since xn is Cauchy, we can find an N > 0 such that

d(xn, xm) < ε/2
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for all n, m > N .

Since nj is an increasing sequence, there must exist a j > J such that nj > N .
Then for any n > N we have

d(xn, x) ≤ d(xn, xnj
) + d(xnj

, x) < ε/2 + ε/2 = ε

which is what we want.

Now we show that X is totally bounded. Pick any ε > 0. We want to show that X
can be covered by a finite number of ε-balls.

We will do this in the most naive way possible - simply by drawing ε-balls one by
one until we exhaust the space X .

More precisely, pick any x1 ∈ X . If B(x1, ε) already covers X , then we are done.
Otherwise, let x2 be a point not in B(x1, ε). If B(x1, ε) and B(x2, ε) cover X , then
we are done. Otherwise, let x3 be a point which is not contained in either B(x1, ε)
or B(x2, ε). We repeat this process indefinitely.

If this process halts after a finite number of steps, we are done. Now suppose
the process never halts, so we find an infinite sequence of points x1, x2, . . . such
that each xn is not contained in any preceding ball B(x1, ε), . . . , B(xn−1, ε). In
particular, we have

d(xn, xm) ≥ ε for all n 6= m.

But this implies that this sequence can never have a Cauchy subsequence (because
Cauchy sequences need to eventually get within ε of each other). Since all conver-
gent sequences are Cauchy, this implies that the sequence x1, x2, . . . does not have
any convergent subsequences, contradicting (ii). Hence the process described above
must terminate in a finite number of steps, and we are done.

6. Proof of (iii) =⇒ (i). (Optional)

We prove the following standard fact:

Theorem 6.1. Every complete totally bounded metric space is compact.

Proof Let (X, d) be a complete totally bounded metric space. We need to show
that X is compact.

Suppose that {Vα}α∈A is an open cover of X . Our objective is to show that one
only needs a finite number of these Vα in order to cover X .

This will be a proof by contradiction. Let’s assume that the open cover {Vα}α∈A

has no finite subcover. In other words, any finite collection of Vα will fail to cover
X . We will obtain a contradiction from this.
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We know that X is totally bounded. In particular, we can cover X by a finite
number of balls of radius 1.

Suppose every one of these balls of radius 1 could be covered by a finite number
of Vα. Then the whole space X could also be covered by a finite number of Vα,
which would be a contradiction. Thus there must be at least one ball, let’s call it
B(x0, 1), which cannot be covered by a finite number of Vα.

Since X is totally bounded, and B(x0, 1) is a subset of X , B(x0, 1) is totally
bounded. In particular, we can cover B(x0, 1) by a finite number of balls of radius
1/2. We may assume that the centers of these balls are at a distance at most 1 + 1

2

from x0, since otherwise the ball would not intersect B(x0, 1) (why?), and so would
play no role in the cover.

Suppose every one of these balls of radius 1/2 could be covered by a finite number
of Vα. Then B(x0, 1) could also be covered by a finite number of Vα, which would
be a contradiction. So there must be at least one ball, let’s call it B(x1, 1/2), which
cannot be covered by a finite number of Vα. Also, from the previous discussion we
have

d(x0, x1) ≤ 1 +
1

2
.

Since X is totally bounded, and B(x1, 1/2) is a subset of X , B(x1, 1/2) is totally
bounded. In particular, we can cover B(x1, 1/2) by a finite number of balls of radius
1/4. We may assume that the centers of these balls are at a distance at most 1

2
+ 1

4

from x1, by similar arguments to before.

By similar arguments to before, we can find a ball, let’s call it B(x2, 1/4), which
cannot be covered by a finite number of Vα, and satisfies

d(x1, x2) ≤
1

2
+

1

4
.

Continuing in this vein, we can find a sequence x0, x1, x2, . . . of points in X such
that each ball B(xn, 2−n) cannot be covered by a finite number of Vα, and such
that

d(xn, xn+1) ≤ 2−n + 2−n−1

for all n = 0, 1, 2, . . . . In particular, this means that the xn are a fast Cauchy
sequence:

∞
∑

n=0

d(xn, xn+1) < ∞.

Thus the xn are a Cauchy sequence. Since X is complete, this means that xn is a
convergent sequence, and has some limit x.

Now, we are given that {Vα}α∈A covers X . Since x ∈ X , this means that there
must exist at least one α ∈ A such that Vα contains x. Pick one such α. Since Vα

is open, this means that x is in the interior of Vα. This implies that there exists
some radius r > 0 such that B(x, r) is contained in Vα.
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The sequence xn converges to x, and the sequence 2−n converges to 0. Since r > 0,
this implies that we can find an integer n such that

d(xn, x) < r/2

and
2−n < r/2.

In particular, this implies that

B(xn, 2−n) ⊂ B(x, r).

But since B(x, r) is contained in Vα, we have

B(xn, 2−n) ⊂ Vα.

This implies that B(xn, 2−n) can be covered by a finite number (in fact, just one)
of the Vα, which is a contradiction. The proof is complete.


