Assignment 3 Due October 24 Covers: Sections 2.1-2.3

- Q1. Do Exercise 1(cdfh) of Section 2.1 of the textbook.
- Q2. Do Exercise 7 of Section 2.1 of the textbook.
- Q3. Do Exercise 10 of Section 2.1 of the textbook.
- Q4*. Do Exercise 17 of Section 2.1 of the textbook.
- Q5. Do Exercise 1(bcdf) of Section 2.2 of the textbook.
- Q6. Do Exercise 2(aceg) of Section 2.2 of the textbook.
- Q7. Do Exercise 7 of Section 2.2 of the textbook.
- Q8. (a) Let V, W be vector spaces, and let $T:V\to W$ be a linear transformation. Let U be a subspace of W. Show that the set

$$T^{-1}(U) := \{ v \in V : T(v) \in U \}$$

is a subspace of V. Explain why this shows that the null space N(T) is also a subspace.

• (b) Let V, W be vector spaces, and let $T: V \to W$ be a linear transformation. Let X be a subspace of V. Show that the set

$$T(X) := \{ Tv : v \in X \}$$

is a subspace of W. Explain why this shows that the range R(T) is also a subspace.

• Q9*. Show, without doing Gaussian elimination or any other computation, that there must be a solution to the system

$$12x_1 +34x_2 +56x_3 +78x_4 = 0$$

 $3x_1 +6x_2 +2x_3 +10x_4 = 0$
 $43x_1 +21x_2 +98x_3 +76x_4 = 0$

such that the x_1, x_2, x_3, x_4 are not all equal to zero. [**Hint:** consider the linear transformation $T: \mathbf{R}^4 \to \mathbf{R}^3$ defined by

$$T(x_1, x_2, x_3, x_4) := (12x_1 + 34x_2 + 56x_3 + 78x_4, 3x_1 + 6x_2 + 2x_2 + 10x_4, 43x_1 + 21x_2 + 98x_3 + 76x_4).$$

What can you say about the rank and nullity of T?

• Q10. Find a non-zero vector $v \in \mathbf{R}^2$, and two ordered bases β, β' of \mathbf{R}^2 , such that $[v]_{\beta} = [v]_{\beta'}$ but that $\beta \neq \beta'$.