Assignment 1 Due October 10 Covers: Sections 1.1-1.6 • Q1. Let V be the space of real 3-tuples $$V = \{(x_1, x_2, x_3) : x_1, x_2, x_3 \in \mathbf{R}\}\$$ with the standard addition rule $$(x_1, x_2, x_3) + (y_1, y_2, y_3) = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$$ but with the non-standard scalar multiplication rule $$c(x_1, x_2, x_3) = (cx_1, x_2, x_3).$$ (In other words, V is the same thing as the vector space \mathbf{R}^3 , but with the scalar multiplication law changed so that the scalar only multiplies the first co-ordinate of the vector.) Show that V is *not* a vector space. (Which ones of the axioms I-VIII in the lecture notes (or (VS1)-(VS8) in the textbook) hold, and which ones fail?) - Q2. (a) Find a subset of \mathbb{R}^3 which is closed under scalar multiplication, but is not closed under vector addition. - (b) Find a subset of \mathbb{R}^3 which is closed under vector addition, but not under scalar multiplication. - Q3. Find three distinct non-zero vectors u, v, w in \mathbb{R}^3 such that span $(\{u, v\}) = \text{span}(\{v, w\}) = \text{span}(\{u, v, w\})$, but such that span $(\{u, w\}) \neq \text{span}(\{u, v, w\})$. - Q4. Find a basis for $M_{2\times 2}^0(\mathbf{R})$, the vector space of 2×2 matrices with trace zero. Explain why the set you chose is indeed a basis. - Q5. Do Exercise 1(abghk) of Section 1.2 in the textbook. - Q6. Do Exercise 8(aef) of Section 1.2 in the textbook. - Q7. Do Exercise 23 of Section 1.3 in the textbook. - Q8*. Do Exercise 19 of Section 1.3 in the textbook. [**Hint**: Prove by contradiction. If $W_1 \not\subseteq W_2$, then there must be a vector w_1 which lies in W_1 but not in W_2 . Similarly, if $W_2 \not\subseteq W_1$, then there must be a vector w_2 which lies in W_2 but not in W_1 . Now suppose that both $W_1 \not\subseteq W_2$ and $W_2 \not\subseteq W_1$, and consider what one can say about the vector $w_1 + w_2$.] - Q9. Do Exercise 4(a) of Section 1.4 in the textbook. - Q10. Do Exercise 1(abdef) of Section 1.5 in the textbook.