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1. Generalized solutions

In many applications of mathematics, one uses a set of equations (often a set of
partial differential equations) to model some system in real-life or in theoretical
science; a typical such system might be expressible as a linear partial differential
equation

Lu(x) = f(x) for all x ∈ Ω
where Ω is the domain of space (or spacetime), u represents the unknowns (either
scalar or vector-valued), L is some linear differential operator, and f is some given
data, though certainly more complicated nonlinear equations are certainly possible1.
However, in some cases the assumptions used to justify the model are not uniformly
valid, but may break down (or become otherwise dubious) at isolated places. For
instance, an assumption that a certain field or medium is continuous may fail if
there is a phase transition (e.g. a transition between liquid and solid matter) or
a singularity (e.g. point masses or point charges with infinite mass density or
charge density). In such cases, there will be locations where the various functions
used to describe the system are not differentiable, and hence the partial differential
equation Lu = f does not make sense. Nevertheless, one would still like to have
a mathematically meaningful notion of a solution to a partial differential equation,
even in the presence of singularities. This leads to various notions of a generalized
solution; a major task in this field is to identify to what extent these notions are
compatible, a task which is now quite well understood for linear equations such as
Lu = f but still very interesting for non-linear equations.

One possible notion of a generalized solution to an equation such as Lu = f is
to allow for the existence of some singular set S ⊂ Ω in which the solution u is
allowed to be singular or undefined, but require that u be smooth outside of S
(or at least smooth enough that it is clear how to define Lu), and only require
that the equation Lu(x) = f(x) be true outside of S. Typically the set S will be
closed and suitably “small” (e.g. zero measure, or having positive codimension,
or being contained in a finite union of hypersurfaces). This is one of the simplest
ways to define a generalized solution, but it is usually too weak in the sense that
it does not exclude various physically implausible solutions. For instance, consider
an equation describing a field (e.g. an electromagnetic field) permeating two types
of material (say glass and air), with a discontinuity at the boundary S between

1For simplicity we shall completely ignore the important issue of what kind of boundary con-
ditions to specify on the boundary of Ω.
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the glass and the air. One might have one equation for the field inside the glass,
and one equation for the field inside the air. But if we do not require any sort of
“compatibility condition” at the boundary S then there is no relationship between
the two different materials, and we will not be able to answer such basic questions
as what happens to an electromagnetic wave in air when it encounters glass. This
is clearly unsatisfactory from the viewpoint of applications, and so we seek better
notions of generalized solution2 which have some non-trivial content at singularities.

There are a number of ways to achieve this, often based from motivation from
the physical world. For instance, in the real world, we expect there to be no
actual singularities (except perhaps in extreme situations such as black holes), only
approximate singularities, where for instance a function gets very large or very
steep but not actually infinite or non-differentiable. One can incorporate this in
the mathematical model by introducing some sort of regularizing parameter ε > 0
which has the effect of automatically truncating all singularities past a certain
cutoff, constructing solutions for the regularized model, and then taking limits as
ε → 0. (Variants of this method include viscosity methods, penalization methods,
and finite difference schemes). For instance, in order to avoid the singularity in
Newton’s famous inverse square law Fx,y = −Gm1m2(x−y)

|x−y|3 for gravitation at the
diagonal x = y, one might regularize this law by instead considering a law of the
form Fx,y = − Gm1m2(x−y)

(ε2+|x−y|2)3/2 , which avoids singularity at the origin but approaches
the original law when ε → 0. Mathematically, this might result in a family uε

of smooth solutions to an approximate equation, such as Lεuε = fε, such that fε

converges in some suitable sense to f and (the coefficients of) Lε converge to (the
coefficents of) L. The mathematical task is then to extract some limit u out of
uε and establish what properties it has; typically it will solve the original equation
Lu = f not in the classical sense (because u might not be smooth), but in some
weaker sense, for instance in the sense of distributions or away from a singular
set. In some situations, these notions of solutions enjoy uniqueness and existence
(for the given data f , there is a unique u which solves the equation in this sense),
which is a good test to indicate that this is a workable notion of solution. A good
example is the inviscid Burgers equation ∂tu + u∂xu = 0, for which uniqueness of
solutions breaks down once discontinuities appear; however, by working first with
the viscous Burgers equation ∂tu − ε∂xxu + u∂xu = 0 and then taking limits as
ε → 0 we retain uniqueness of solutions even after the first singularity develops.
However, in other situations, the convergence of uε to u is only in some very weak
sense (e.g. in the sense of distributions), and this can cause undesirable and non-
physical consequences (e.g. the mass or energy of u may disappear into a singularity,
and then violate a physical conservation law). Sometimes one has to add such
conservation laws as an additional hypothesis in order to obtain uniqueness and
existence; similarly for the other notions of generalized solution we discuss below.

A related way to obtain a good concept of generalized solution is not to view
the partial differential equation Lu = f as the fundamental object generating the

2There are certain classes of equations, notably elliptic equations, in which singularities are

automatically guaranteed to not be present; a famous example is Laplace’s equation ∆u = 0,

whose solutions are harmonic and hence smooth. In such cases the notions of weak solution and
strong solution usually co-incide.
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model, but rely instead on some other characterization. One common characteri-
zation is a variational characterization; for instance, a solution u might be defined
as a minimizer (or at least a critical point) of a Lagrangian functional such as

L(u) :=
∫

Ω

F (u,∇u, . . . ,∇ku, f)

for some explicit function F of the data f , and of u and its first few derivatives;
often one also constrains u and its derivatives to obey various physical conditions
(e.g. a field which is supposed to represent mass density might be constrained to
be non-negative). When u and f are smooth, calculus of variations allows one to
rewrite this variational problem as an Euler-Lagrange equation, which is usually a
partial differential equation. However, the rigorous justification of this equation is
not automatic if u or f has singularities. Instead, what one can do is add a penalty
term to the Lagrangian L(u), creating a new Lagrangian Lε(u). Typically, this
penalty term is designed to “penalize” any severe oscillation or singularity of u by
making Lε(u) extremely large when u exceeds certain thresholds, for instance if the
size of u exceeds 1/ε. This usually is enough to ensure that the minimizers uε of
the Lagrangian exist, are unique, and are smooth. One then takes limits as ε → 0;
usually one designs the penalized Lagrangians such that Lε converges (formally, at
least) to L, but often to pass from this to a statement that uε converges to some
suitable u requires a non-trivial amount of analysis.

The above approaches to defining generalized solutions were based on approximat-
ing the rough putative solution by smoother objects which were already known to
be solutions, or at least to be approximate solutions. Another approach is simply
to accept that the solution u contains singularities, and make sense of the partial
differential equation such as Lu = f (or the variational characterization) in a way
which does not require u to be smooth. For instance, one might only require Lu to
equal f in the sense of distributions, which means that

〈u, L∗φ〉 = 〈f, φ〉 for all test functions φ

where L∗ is the adjoint operator to φ (so 〈u, L∗φ〉 = 〈Lu, φ〉 for smooth functions
u at least). Another possibility is to rewrite Lu = f in a form which involves
smoother operations, such as3 u = L−1f . For instance, the simplest differential
equation,

d

dx
u(x) = f(x),

ostensibly only makes sense if u is differentiable. However, if we rewrite this differ-
ential equation (using t he fundamental theorem of calculus) as an integral equation

u(x) = u(0) +
∫ x

0

f(y) dy

then this weaker notion of a solution to d
dxu = f does not necessarily require

u to be differentiable, instead merely requiring u to be continuous and f to be

3In many cases the inverse of L is not well understood (otherwise solving Lu = f would

not be so difficult in the first place!). Instead, one often approximates L by a simpler operator
L0 whose inverse is well understood, and rewrite Lu = f as L0u = (L0 − L)u + f and hence

u = L−1
0 ((L0 − L)u + f). Clearly many further variations on this theme are possible; the idea

of learning about the PDE theory of L through the PDE theory of an approximant L0 is part of
perturbation theory, which is an important component of analysis in PDE.



4 TERENCE TAO

conditionally integrable, and thus allows for more general notions of solutions (e.g.
u(x) = |x| and f(x) = sgn(x)). This trick of converting a differential equation into
an integral equation (which usually requires much less regularity) is a very common
and powerful way of defining a workable notion of generalized solution. Sometimes
there is a difficulty in that the operator L−1 is not uniquely defined; for instance,
if L is self-adjoint, then usually one can define inverses (L + iε)−1 and (L − iε)−1

for any ε > 0, but the two families of operators can converge to different limits as
ε → 0. Such subtleties often require a great deal of care and analysis.

Similarly, we can often use the Lagrangian formulation to define solutions even
in the presence of singularities. For instance, if u has a singular set S, we can
sometimes still define the Lagrangian simply by excluding S, thus

L(u, S) :=
∫

Ω\S

F (u,∇u, . . . ,∇ku, f).

Then there are two notions of a minimizer or critical point of L; either one fixes
S and only allows u to vary (and be smooth) outside of S, or one allows both
u and S to vary (e.g. by applying a smooth deformation of the domain to move
S). The distinction between the two concepts of solutions (sometimes denoted
critical points and stationary solutions respectively) can be quite subtle, and is
especially important in certain geometric PDE such as harmonic maps and Yang-
Mills equations.
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