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Prime numbers

A prime number is a natural number larger than 1 which

cannot be expressed as the product of two smaller

natural numbers.

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,

41, 43, 47, 53, 59, 61, 67, 71, 73, 79, . . .
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They are the “atomic elements” of natural number

multiplication:

Fundamental theorem of arithmetic:

(Euclid, ≈ 300BCE) Every natural number

larger than 1 can be expressed as a product

of one or more primes. This product is unique

up to rearrangement.

For instance, 50 can be expressed as 2× 5× 5 (or

5× 5× 2, etc.).

[It is because of this theorem that we do not consider 1

to be prime.]
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Prime numbers were first studied rigorously by the

ancient Greeks. One of the first theorems they proved

was

Euclid’s theorem (≈ 300 BCE) There are

infinitely many prime numbers.
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Euclid’s proof is the classic example of reductio ad

absurdum:

• Suppose, for sake of contradiction, that there were

only finitely many prime numbers p1, p2, . . . , pn (e.g.

suppose 2, 3, 5 were the only primes).

• Multiply all the primes together and add (or

subtract) 1: P = p1p2 . . . pn ± 1. (e.g.

P = 2× 3× 5± 1 = 29 or 31.)

• Then P is a natural number larger than 1, but P is

not divisible by any of the prime numbers.

• This contradicts the fundamental theorem of

arithmetic. Hence there are infinitely many primes.
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While there are more direct proofs of Euclid’s theorem

known today, none are as short or as elegant as this

indirect proof.

Euclid’s theorem tells us that there are infinitely many

primes, but doesn’t give us a good recipe for finding

them all. The largest explicitly known prime is

232,582,657 − 1

which is 9, 808, 358 digits long and was shown to be

prime in 2006 by the GIMPS distributed internet project.

6



Twin primes

Euclid’s proof suggests the following concept. Define a

pair of twin primes to be a pair p, p + 2 of numbers which

are both prime. The first few twin primes are

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), . . .

Twin prime conjecture: (≈ 300BCE?)

There are infinitely many pairs of twin primes.

7



Despite over two millenia of research into the prime

numbers, this conjecture is still unsolved! (Euclid’s

argument suggests that we look for twin primes of the

form p1p2 . . . pn ± 1, but this doesn’t always work, e.g.

2× 3× 5× 7− 1 = 209 = 11× 19 is not prime.)

The largest known pair of twin primes is

2, 003, 663, 613× 2195,000 ± 1;

these twins are 58, 711 digits long and were discovered

this Monday (Jan 15, 2007) by Eric Vautier.
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The basic difficulty here is that the sequence of primes

2, 3, 5, 7, 11, 13, 17, 19, 23, . . .

behaves much more “unpredictably” or “randomly” than,

say, the square numbers

1, 4, 9, 16, 25, 36, 49, 64, 81, . . .

For instance, we have an exact formula for the nth square

number - it is n2 - but we do not have a (useful) exact

formula for the nth prime number pn!

God may not play dice with the universe, but something

strange is going on with the prime numbers. (Paul Erdős,

1913-1996)
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Despite not having a good exact formula for the sequence

of primes, we do have a fairly good inexact formula:

Prime number theorem (Hadamard, de

la Vallée Poussin, 1896) pn is approximately

equal to n ln n. (More precisely: pn

n ln n
con-

verges to 1 as n →∞.)

ln n is the logarithm of n to the natural base

e = 2.71828 . . ..

This result (first conjectured by Gauss and Legendre in

1798) is one of the landmark achievements of number

theory. The proof of this result uses much more advanced

mathematics than Euclid’s proof, and is quite remarkable:
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Very informal sketch of proof:

• Create a “sound wave” (or more precisely, the von

Mangoldt function) which is noisy at prime number

times, and quiet at other times.

. ∗ ∗. ∗ . ∗ ... ∗ . ∗ ... ∗ . ∗ ... ∗ .....∗

• “Listen” (or take Fourier transforms) to this wave

and record the notes that you hear (the zeroes of the

Riemann zeta function, or the “music of the

primes”). Each such note corresponds to a hidden

pattern in the distribution of the primes.
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• Show that certain types of notes do not appear in

this music. (This is tricky.)

• From this (and tools such as Fourier analysis) one

can prove the prime number theorem.

n pn n ln n Error

103 7,919 6,907 −13%

106 15,485,863 13,815,510 −10%

109 22,801,763,489 20,723,265,836 −9%

1012 29,996,224,275,833 27,631,021,115,928 −8%
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The techniques used to prove the prime number theorem

can be used to establish several more facts about the

primes, e.g.

• All large primes have a last digit of 1, 3, 7, or 9, with

a 25% proportion of primes having each of these

digits. (Dirichlet, 1837; Siegel-Walfisz, 1963)

Similarly for other bases than base 10.

• All large odd numbers can be expressed as the sum

of three primes. (Vinogradov, 1937)
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The odd Goldbach conjecture (1742) asserts that in

fact all odd numbers n larger than 5 are the sum of three

primes.

This is known for n > 101346 (Liu-Wang, 2002) and for

n < 1020 (Saouter, 1998).

The even Goldbach conjecture (Euler, 1742) asserts

that all even numbers larger than 2 are the sum of two

primes. This remains unsolved.
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The prime number theorem asserts that pn ≈ n ln n.

The infamous Riemann hypothesis (1859) predicts a

more precise formula for pn, which should be accurate to

an error of about
√

n:∫ pn

2

dt

ln t
= n + O(

√
n ln3 n).

The Clay Mathematics Institute offers a $ 1 million prize

for the proof of this hypothesis!

“The music of the primes is a chord”
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n pn RH prediction Error

103 7,919 7,773 −1.8%

106 15,485,863 15,479,084 −.04%

109 22,801,763,489 22,801,627,440 −.0006%

1012 29,996,224,275,833 29,996,219,470,277 −.00002%
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Interestingly, the error O(
√

n ln3 n) predicted by the

Riemann hypothesis is essentially the same type of error

one would have expected if the primes were distributed

randomly. (The law of large numbers.)

Thus the Riemann hypothesis asserts (in some sense)

that the primes are pseudorandom - they behave

randomly, even though they are actually deterministic.

But there could be some sort of “conspiracy” between

members of the sequence to secretly behave in a highly

“biased” or “non-random” manner. How does one

disprove a conspiracy?
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Diffie-Hellman key exchange

Our belief in the pseudorandomness of various operations

connected to prime numbers is not purely academic.

One real-world application is Diffie-Hellman key exchange

(1976), which is a secure way to allow two strangers (call

them Alice and Bob) to share a secret, even when their

communication is completely open to eavesdroppers. It,

together with closely related algorithms such as RSA, are

used routinely in modern internet security protocols.
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As an analogy, consider the problem of Alice sending a

secret message g by physical mail to Bob, when she

suspects that someone is reading both incoming and

outgoing mail, and she has no other means of

communication with Bob.
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Alice can solve this problem as follows.

• Alice writes g on a piece of paper and puts it in a

box. She then puts a padlock on that box (keeping

the key to herself) and mails the locked box to Bob.

• Bob cannot open the box, of course, but he puts his

own padlock on the box and mails the doubly locked

box back to Alice.

• Alice then unlocks her padlock and mails the locked

box back to Bob. Bob then unlocks his own padlock

and retrieves the message g.
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The (oversimplified) Diffie-Hellman protocol to send a

secret number g:

• Alice and Bob agree (over the insecure network) on a

large prime p.

• Alice picks a key a, “locks” g by computing

ga mod p, and sends ga mod p to Bob.

• Bob picks a key b, “double locks” ga mod p by

computing (ga)b = gab mod p, and sends gab mod p

back to Alice.

• Alice takes the ath root of gab to create gb mod p, to

send back to Bob.

• Bob takes the bth root of gb mod p to recover g.
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It is not yet known whether this algorithm is truly

secure. (This issue is related to another $ 1 million prize

problem: P 6= NP .)

However, it was recently shown that the data that an

eavesdropper intercepts via this protocol (i.e.

ga, gb, gab mod p) is “uniformly distributed”, which

means that the most significant digits look like random

noise (Bourgain, 2004). This is evidence towards the

security of this algorithm.
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• Disclaimer 1: The procedure described above is only

an oversimplified version of the Diffie-Hellman

protocol. The true protocol works slightly differently,

generating a “shared secret” gab for Alice and Bob

(and no-one else) only after the exchange (in

contrast to the secret g used here, which was initially

known to Alice but not Bob). This shared secret can

then be used as a key to communicate with each

other via a standard cipher (such as AES).

23



• Disclaimer 2: The type of pseudorandomness

properties which underlie cryptographic protocols are

not the same as the type of pseudorandomness

properties which underlie conjectures such as the

Riemann hypothesis; thus for instance a solution to

the Riemann hypothesis would be a dramatic event

in pure mathematics, but would not directly impact

cryptographic security.
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Sieve theory

The primes are not completely random in their behaviour

- they do obey some obvious patterns. For instance, they

are all odd (with one exception). They are all adjacent to

a multiple of six (with two exceptions). And so forth.

Sieve theory is an efficient way to capture these

structures in the primes, and is one of our fundamental

tools for understanding the primes.
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Sieves study the set of primes in aggregate, rather than

trying to focus on each prime individually.

They try to “sift out” or “sculpt” the primes by starting

with the set of integers and adding or subtracting various

components, starting with a few crude and obvious

changes, and following up with a many smaller and more

subtle changes.
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The classic example of a sieve is the Sieve of

Eratosthenes (≈ 240BCE), which lets one capture all the

primes between
√

N and N for any given N as follows.

• Start with all the integers between
√

N and N .

• Throw out (or “sift out”) all the multiples of 2.

• Throw out all the multiples of 3.

• . . .

• After throwing out all multiples of any prime less

than
√

N , the remaining set forms the primes from√
N to N .
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Modern sieves are more sophisticated, assigning each

integer a “score” or “weight” which is upgraded or

downgraded depending on what it is a multiple of.

The initial stages of such sieves are easy to understand; it

is not hard to compute, for instance, how many numbers,

or how many twins, remain after throwing out the

multiples of 2 or 3. But the late stages of the sieve are

very complicated to deal with.
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However, if one terminates the sieve a little earlier (e.g.

only throwing out multiples of primes less than N1/4

instead of
√

N) then it turns out that it is still possible

to keep an accurate count of everything. The catch is

that the sieve now captures not only primes, but also

almost primes - numbers with very few prime factors.

This can be used to give some “near misses” on old

conjectures, for instance

Chen’s theorem (1966): There exist in-

finitely many pairs p, p + 2 where p is a prime

and p+2 is the product of at most two primes.
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Arithmetic progressions of primes

As we mentioned earlier, we are still unable to detect

several types of patterns in the primes. However, we have

made recent progress on one type of pattern, namely an

arithmetic progression a, a + r, . . . , a + (k − 1)r.

Green-Tao theorem (2004): The primes

contain arbitrarily long arithmetic progres-

sions.
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In particular, for any given k, the primes contain

infinitely many arithmetic progressions of length k.

This result builds upon a number of existing results; for

instance, in 1939, van der Corput showed that the primes

contained infinitely many arithmetic progressions

a, a + r, a + 2r of length three.
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2

2, 3

3, 5, 7

5, 11, 17, 23

5, 11, 17, 23, 29

7, 37, 67, 97, 127, 157

7, 157, 307, 457, 607, 757

. . .
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The longest explicitly known arithmetic progression of

primes contains twenty-three primes and was discovered

by Frind, Jobling, and Underwood in 2004:

56, 211, 383, 760, 397 + 44, 546, 738, 095, 860n;

n = 0, . . . , 22
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Ultra-short, oversimplified sketch of proof

• Using sieve theory one can already show that the

almost primes contain long progressions.

• The primes are a subset of the almost primes, but

they could be distributed within the almost primes

either in a pseudorandom manner or in a structured

manner (we don’t know which yet).
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• However, it is possible to show that in either case, the

primes capture a significant fraction of the arithmetic

progressions that the almost primes possess.

• (This is a special property of arithmetic progressions,

not shared by most other patterns - the property of

having lots of these progressions appears to be

somewhat “hereditary” and can be passed down to

subsets.)
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There is still much work to be done. For instance, our

theorem shows that the first arithmetic progression of

primes of length k has all entries less than

2222
22

2100k

.

(The true size is conjectured to be more like kk.)
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If the Riemann hypothesis is true, we can remove one

exponential.
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