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Analytic prime number theory

Analytic prime number theory studies the distribution of,

and patterns in, the prime numbers 2, 3, 5, 7, . . .. There

are two main branches:

• Multiplicative prime number theory (e.g. expressing

a number as the product of prime numbers; the

residue class p mod q when dividing a prime p by a

modulus q);

• Additive prime number theory (e.g. expressing a

number as the sum or difference of prime numbers;

arithmetic progressions of primes).
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Some theorems from multiplicative prime number theory:

A large natural number n has...

• ...a probability about 6
π2 of having no square factors

other than 1. (Euler, ∼ 1730)

• ...close to ln n factors on average. (Dirichlet, ∼ 1830)

• ...a probability about 1
ln n

of being prime.

(Hadamard-de Vallée Poussin 1896)

• ...close to ln ln n prime factors on average.

(Erdős-Turán, 1935)
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Some theorems and conjectures from additive prime

number theory: A large natural number n...

• is the sum of three primes, if it is odd (Vinogradov,

1937)

• can be both prime, and two less than a prime,

infinitely often (twin prime conjecture)

• is both prime, and two less than an almost prime,

infinitely often (Chen, 1973)

• is the sum of two primes, if it is even (Goldbach

conjecture)
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To understand multiplicative problems (e.g. the

distribution of products pq of primes), one needs to

understand the distribution of the powers ps where s is a

complex number and p runs over primes (this is basically

because of identities such as (pq)s = psqs). This leads one

to the study of things such as the Riemann zeta function

ζ(s) :=
∞∑

n=1

1

ns
=

∏
p

(1− 1

ps
)−1

which is of course connected to the famous Riemann

hypothesis.
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To understand additive problems (e.g the distribution of

sums p + q of primes), one needs to understand the

distribution of the exponentials e(αp) := e2πiαp where α is

a real number and p runs over primes (this is basically

because of identities such as e(α(p + q)) = e(αp)e(αq)).

This leads one to the study of things such as the prime

exponential sum ∑
p<N

e(αp)

which leads one to the Hardy-Littlewood-Vinogradov

circle method.
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A typical result in multiplicative prime number theory:

• (Primes in arithmetic progressions) Any infinite

arithmetic progression {n : n = a mod q} with a

coprime to q (i.e. a ∈ (Z/qZ)×) contains infinitely

many primes. (Dirichlet 1837)

A typical result in additive prime number theory:

• (Arithmetic progressions in primes) The primes

contain arbitrarily long arithmetic progressions.

(Green-T. 2004)

Despite several similarities and connections, these two

results are proven using very different types of

mathematics!
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It turns out that to prove the above qualitative results,

one needs to first study their quantitative counterparts.

We introduce the von Mangoldt function

Λ(n) :=

 ln p if n = pj for some prime p and j ≥ 1

0 otherwise.

This is a convenient weight function for counting primes,

and will serve as our quantitative proxy for the primes. It

is also convenient to introduce the averaging notation

E1≤n≤Nf(n) :=
1

N

N∑
n=1

f(n).
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The von Mangoldt function has two nice properties worth

noting here. Firstly, we have the fundamental theorem of

arithmetic

ln n =
∑
d|n

Λ(d) for all n ≥ 1

which gives rise to many important algebraic identities

involving Λ. Secondly, we have the prime number

theorem

E1≤n≤NΛ(n) = 1 + o(1).

This is a fundamental result in number theory; an

equivalent formulation is that the prime numbers from 1

to N have density 1+o(1)
ln N

.
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Quantitative versions of Dirichlet’s theorem (primes in

arithmetic progressions): If a is coprime to q, then

• E1≤n≤N1
n=a mod q

Λ(n) ≥ cq + oq(1) as N →∞ for

some cq > 0. (Dirichlet, 1837)

• E1≤n≤N1
n=a mod q

Λ(n) = 1
φ(q)

+ OA(ln−A N) for all

A > 0. (Siegel-Walfisz, 1936)

• E1≤n≤N1
n=a mod q

Λ(n) = 1
φ(q)

+ Oε(N
−1/2+ε) for any

ε > 0 (Generalised Riemann Hypothesis)
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These quantitative versions of Dirichlet’s theorem give

quite precise information: for instance, it shows that the

number of primes less than a large number N whose last

digit is 3 is roughly 1
4

N
log N

.
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Quantitative versions of the Green-Tao theorem

(arithmetic progressions in primes): If k ≥ 1 and

N →∞, then

• E1≤n,r≤NΛ(n)Λ(n + r) . . . Λ(n + (k− 1)r) ≥ ck + ok(1)

for some ck > 0. (k = 1, 2 Chebyshev 1850; k = 3 van

der Corput, 1939; k > 3 Green-T., 2004)

• E1≤n,r≤NΛ(n)Λ(n+r) . . . Λ(n+(k−1)r) = Gk +ok(1)

(k = 1, 2 Hadamard-de Vallée Poussin 1896; k = 3

van der Corput, 1939; k = 4 Green-T. 2006; k > 4

work in progress)
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The singular series Gk is defined as

Gk :=
∏

p

En,r∈Z/pZΛp(n)Λp(n + r) . . . Λp(n + (k − 1)r)

where for each prime p, Λp is the local von Mangoldt

function at p:

Λp(n) :=
p

φ(p)
1

n6=0 mod p
.

This strange series is predicted by a much more general

conjecture known as the Hardy-Littlewood prime tuples

conjecture. (This conjecture also implies the twin prime

and Goldbach conjectures, among others.)
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G1 = 1

G2 = 1

G3 = 2
∏
p≥3

(
1− 1

(p− 1)2

)
= 1.320 . . .

G4 =
9

2

∏
p≥5

(
1− 3p− 1

(p− 1)3

)
= 2.858 . . .

. . .
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Again, these results give fairly precise information on the

distribution of patterns in primes; for instance we now

know that the number of arithmetic progressions of

primes of length 4 less than N is about 0.476 N2

ln4 N
.
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Results in multiplicative prime number theory tend to

rely on algebraic identities, for instance

1
n=a mod q

Λ(n) =
1

φ(q)

∑
χ mod q

χ(a)Λ(n)χ(n)

∞∑
n=1

Λ(n)χ(n)

ns
= −L′(s, χ)

L(s, χ)

Λ(n)χ(n) ‘ = ′ 1χ=χ0 −
∑

L(ρ,χ)=0

nρ−1 + . . .

L(1, χ) =

 2πh
w
√

q
if χ(−1) = −1

2h ln ε
w
√

q
if χ(−1) = 1
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In contrast, results in additive prime number theory rely

more on analytic correlations or discorrelations between

the primes and other, more additively structured,

objects. A good example are the correlations with linear

phases e(αn), where e(x) := e2πix and α ∈ R:

lim
N→∞

E1≤n≤NΛ(n)e(αn) =

 s(a
q
) if α = a

q

0 if α irrational

where s(a
q
) is the Ramanujan sum

s(
a

q
) := Eb∈(Z/qZ)×e(

ab

q
).
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Notice the dichotomy here between rational α and

irrational α. The dichotomy is ultimately best described

using ergodic theory (the theory of dynamical systems):

the circle shift map x 7→ x + α mod 1 on the unit circle

R/Z is periodic when α is rational, but totally ergodic

when α is irrational.

For instance, if you start at a point on the circle, and

move forward by quarter-rotations, you will simply visit

four points on the circle periodically; but if you instead

move forward by 1
2π

-rotations (one radian at a time) you

will eventually visit nearby every point on the circle in an

evenly distributed manner.
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In the case of quarter-rotations, if you look at what the

prime points of the orbit (i.e. the 2nd point, the 3rd

point, the 5th point, etc. do, they concentrate on two of

the four points of the orbit; but in the case of
1
2π

-rotations, it turns out that the prime points are just

as uniformly distributed as all the other points. Thus the

primes “correlate with” or “conspire with” the

quarter-rotation dynamical system, but do not conspire

with the 1
2π

-rotation dynamical system.
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Philosophy and heuristics

• The primes from 1 to N have density approximately

1/ ln N (the Prime Number Theorem).

• The primes from 1 to N “want” to behave like a

random sequence with this density. If they did, then

many statistics in additive prime number theory

would be easy to compute (e.g. the number of twin

primes p, p + 2 from 1 to N would be roughly

N/ ln2 N).
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• However, there are a number of “patterns” or

“conspiracies” that the primes could have which

would significantly distort the statistics to be

different from the random count. (e.g. most primes

are odd, which drastically reduces the number of

adjacent primes p, p + 1 but presumably increases the

number of twin primes p, p + 2.)

• Thus, one can hope to enumerate all the possible

conspiracies that could affect a given statistic, work

out which of these conspiracies are actually obeyed

by the primes, and use all this information to

compute the statistic to high accuracy.
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• General belief: the only patterns the primes exhibit

are those arising from simple algebraic considerations

(e.g. primes are usually coprime to q for any fixed q).

There should be no other conspiracies of consequence.

• This belief underpins many of the conjectures we

have about the primes (e.g. generalised Riemann

hypothesis, twin-primes and Goldbach conjectures,

etc.). This general belief has been confirmed for

specific types of statistics (particularly those with

lots of “averaging”), and for specific types of

conspiracies (particularly those of an algebraic

nature).
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The circle method

A classic way of implementing the above philosophy is

the Hardy-Littlewood-Vinogradov circle method, based

on Fourier analysis. In this case the “conspiracies” are

the possible correlations that the primes (or whatever

other object is being studied) has with the linear

characters e(αn).

This method is useful for detecting some patterns in

primes but not others - roughly speaking, it can only

count patterns whose statistics can only be distorted by

“linear” conspiracies.

23



For instance, in 1937, Vinogradov used the circle method

to show that every sufficiently large odd number is the

sum of three primes, thus solving (most of) the odd

Goldbach conjecture.

In 1939, van der Corput used the same method to count

the number of arithmetic progressions of primes

p, p + r, p + 2r less than some large number N ; he

computed this number as

1

4
(G3 + o(1))

N2

ln3 N
≈ 0.330 . . .

N2

ln3 N
.

In particular, there are infinitely many arithmetic

progressions of primes of length three.
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What are “linear” conspiracies?

van der Corput’s problem is essentially equivalent to that

of computing the average

E1≤n,r≤NΛ(n)Λ(n + r)Λ(n + 2r).

All other things being equal, given three functions f, g, h

one expects

E1≤n,r≤Nf(n)g(n + r)h(n + 2r) ≈ (Ef)(Eg)(Eh)

where Ef is the mean value of f , etc.
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Unfortunately, because of the identity

αn− 2α(n + r) + α(n + 2r) = 0 mod 1

the above heuristic fails if we have the “linear conspiracy”

f(n) ≈ e(αn); g(n) ≈ e(−2αn); h(n) ≈ e(αn).

To put it another way: if you know the value of a linear

function at two points of an arithmetic progression, you

can extrapolate to find the value at the third point of the

progression. This is why linear phases play a key role in

the theory of such patterns as progressions of length

three.
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The conspiracy has an ergodic theory interpretation

using the circle shift T : x → x + α mod 1. Even if α is

irrational (so that T is totally ergodic), there is enough

algebraic structure in this system that the behaviour of

an arithmetic progression T nx, T n+rx, T n+2rx in this

dynamical system is highly constrained (indeed the

position of the third point can be determined

algebraically from the position of the first two).

The primes will exhibit this conspiracy if the prime orbit

{T px : p prime} is not as uniformly distributed as the full

orbit {T nx : n ∈ Z}.
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Fortunately, one can show in this case that linear

conspiracies are the only conspiracies that can distort

this type of statistic. Indeed, from Fourier analysis we

have (modulo some cheating) the identity

E1≤n,r≤Nf(n)g(n+r)h(n+2r) = N

∫
R/Z

f̂(α)ĝ(−2α)ĥ(α) dα

where f̂(α) := E1≤n≤Nf(n)e(−nα).

Vinogradov and van der Corput established their results

using identities like these, and by computing how the

primes conspire with various linear characters.
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More complex patterns

For arithmetic progressions of length 4, the circle method

(Fourier analysis) is insufficient. This is because new

“quadratic” conspiracies emerge, which are undetectable

by the circle method but still bias the statistic one seeks

to compute.
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For instance, when computing

E1≤n,r≤Nf(n)g(n + r)h(n + 2r)k(n + 3r),

the existence of the identity

αn2 − 3α(n + r)2 + 3α(n + 2r)2 − α(n + 3r)3 = 0 mod 1

means that we have to do something about the possible

conspiracy

f(n) ≈ e(αn2); g(n) ≈ e(−3αn2);

h(n) ≈ e(3αn2); k(n) ≈ e(−αn2).

This conspiracy relates to Lagrange interpolation: the

values of a quadratic at three points of an arithmetic

progression determine the value at a fourth point.
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More generally, a conspiracy can arise from any

dynamical system T : X → X in which there is a

non-trivial constraint between a four-term arithmetic

progression T nx, T n+rx, T n+2rx, T n+3rx in an orbit. (The

previous quadratic example can be essentially associated

to the skew shift T : (x, y) → (x + α, y + x) on the

2-torus (R/Z)2.)
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The space of all such dynamical “conspiracies” has been

classified recently (Host-Kra 2005, Ziegler 2007). For

instance, all the conspiracies which could bias four-term

progressions are ultimately generated by 2-step nilflows,

or more precisely a group action T : x → gx on a 2-step

nilmanifold G/Γ (i.e. a quotient of a 2-step nilpotent Lie

group G by a discrete co-compact subgroup Γ). The

identity

(gnx)(gn+rx)−3(gn+2rx)3(gn+3rx) = id,

which holds for g, x in a 2-step nilpotent group, is

ultimately the reason why these nilflows are an essential

aspect of the theory.
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With a significant amount of effort (combining ideas from

the ergodic theory literature with the “higher order

Fourier analysis” of Gowers, which involves additive

combinatorics, and the transference principle of Green

and myself) one can now compute statistics such as the

number of arithmetic progressions of length four in the

primes less than N (which is (1
6
G4 + o(1)) N2

ln4 N
). The

main number-theoretic ingredient is the correlation

estimates between the prime numbers and 2-step

nilsequences F (gnx), where F : G/Γ → C is a smooth

function.
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Ratner’s theorem

We mentioned earlier that a circle shift x 7→ x + α is

either periodic or totally ergodic. In either case, the

orbits are uniformly distributed inside of closed

(translates of) subgroups of the unit circle. This

phenomenon is in fact rather general:

Ratner-type theorem (Ratner 1991, Shah

1998) Let T be a unipotent action on a com-

pact symmetric space G/Γ. Then every orbit

{T nx : n ∈ Z} is uniformly distributed inside

of some closed sub-symmetric space of G/Γ.
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It turns out that quantitative versions of this theorem are

decisive in establishing the required correlation estimates

between primes and higher-step nilsequences, which in

turn can be used to count many types of additive

patterns in the primes. This is work currently in progress

with Ben Green.

It seems clear, though, that ideas from ergodic theory -

in particular, understanding the distribution of orbits of

dynamical systems - will play an increasingly important

role in the future development of analytic prime number

theory.
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