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Astrometry

An important subfield of astronomy is astrometry, the study of
positions and movements of celestial bodies (sun, moon, planets,

stars, etc.). Typical questions in astrometry are:

e How far is it from the Earth to the Moon?
From the Earth to the Sun?
From the Sun to other planets?
From the Sun to nearby stars?

From the Sun to distant stars?




Of course, these distances are far too vast to be measured
directly.

Nevertheless we have many indirect ways of computing these

distances.

These methods are often very clever, relying not on technology
but rather on observation and high-school mathematics.

Usually, the indirect methods control large distances in terms
of smaller distances. One then needs more methods to control
these distances in terms of even smaller distances, until one

gets down to distances that one can measure directly. This is

the cosmic distance ladder.




First rung: the radius of the earth

e Nowadays, we know that the earth is approximately spherical,
with radius 6378 kilometres at the equator and 6356 kilometres
at the poles. These values have now been verified to great

precision by many means, including modern satellites.

But suppose we had no advanced technology such as
spaceflight, ocean and air travel, or even telescopes and
sextants. Would it still be possible to convincingly argue that

the earth must be (approximately) a sphere, and to compute

its radius?




The answer is yes - if one knows geometry!

e Aristotle (384-322 BCE) gave a simple argument
demonstrating why the Earth is a sphere (which was first
asserted by Parmenides (515-450 BCE)).

e Fratosthenes (276-194 BCE) computed the radius of the Earth
at 40,000 stadia (about 6800 kilometres). As the true radius of
the earth is 6356—6378 kilometres, this is only off by eight

percent!




Aristotle’s argument

e Aristotle reasoned that lunar eclipses were caused by the
Earth’s shadow falling on the moon. This was because at the
time of a lunar eclipse, the sun was always diametrically
opposite the earth (this could be measured by timing the sun’s
motion, or by using the constellations (“fixed stars”) as

reference).

Aristotle also observed that the terminator (boundary) of this

shadow on the moon was always a circular arc, no matter what
the positions of the Earth, Moon, and Sun were. Thus every
projection of the Earth was a circle, which meant that the
Earth was most likely a sphere. For instance, Earth could not
be a disk, because the shadows would usually be elliptical arcs

rather than circular ones.




Eratosthenes’ argument

e Aristotle also argued that the Earth’s radius could not be
incredibly large, because it was known that some stars could be
seen in Egypt but not in Greece, or vice versa. But this did not

give a very accurate estimate on the Earth’s radius.

Eratosthenes gave a more precise argument. He had read of a
well in Syene, which lay to the south of his home in Alexandria,
of a deep well which at noon on the summer solstice (June 21)
would reflect the sun overhead. (This is because Syene happens

to lie almost exactly on the tropic of Cancer.)

Eratosthenes then observed a well in Alexandria at June 21,
but found that the sun did not reflect off the well at noon;
using a gnomon (a measuring stick) and some elementary
trigonometry, he found instead that the sun was at an angle of

about 7° from the vertical.




e Information from trade caravans and other sources established
the distance between Alexandria and Syene to be about 5000
stadia (about 740 kilometres). This is the only direct
measurement used here, and can be thought of as the “zeroth

rung’ on the cosmic distance ladder.

Eratosthenes also assumed the sun was very far away compared

to the radius of the earth (more on this in the “third rung”

section).

High school trigonometry then suffices to establish an estimate
for the radius of the earth.




Second rung: shape, size, and location of the moon

e What is the shape of the moon?
e What is the radius of the moon?

e How far is the moon from the earth?




Again, these questions were answered with remarkable accuracy by

the ancient Greeks.

e Aristotle argued that the moon was a sphere (rather than a
disk) because the terminator (the boundary of the sun’s light

on the moon) was always a circular arc.

Aristarchus (310-230 BCE) computed the distance of the
Earth to the Moon as about 60 Earth radii. (Indeed, the
distance varies between 57 and 63 Earth radii due to

eccentricity of the orbit.)

Aristarchus also estimated the radius of the moon as one third
the radius of the earth. (The true radius is 0.273 Earth radii.)

The radius of the earth is of course known from the preceding
rung of the ladder.




How did Aristarchus do it?

e Aristarchus knew that lunar eclipses were caused by the
shadow of the Earth, which would be roughly two Earth radii

in diameter. (This assumes the sun is very far away from the

earth; more on this in the “third rung” section.)

From many observations it was known that lunar eclipses last a

maximum of three hours.

It was also known that the moon takes one month to make a
full rotation of the earth.

From this and basic algebra Aristarchus concluded that the
distance of the Earth to the Moon was about 60 Earth radii.
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e The moon takes about a 2 minutes (1/720 of a day) to set.
Thus the angular width of the moon is 1/720 of a full angle, or

O
about % i

Since Aristarchus knew the moon was 60 Earth radii away,
basic trigonometry then gives the radius of the moon as about
1/3 Earth radii. (Aristarchus was handicapped, among other
things, by not possessing an accurate value for 7, which had to
wait until Archimedes (287-212 BCE) some decades later!)




Third rung: size and location of the sun

e What is the radius of the sun?

e How far is the the sun from the earth?




Once again, the ancient Greeks could answer this question!

e Aristarchus already knew that the radius of the moon was
about 1/180 of the distance to the moon. Since the sun and
moon have about the same angular width (most dramatically
seen during a solar eclipse), he concluded that the radius of the

sun is 1/180 of the distance to the sun. (The true answer is
1/215.)

Aristarchus estimated the sun as roughly 20 times further than
the moon. This turned out to be inaccurate (the true factor is
roughly 390), because the mathematical method, while

technically correct, was very unstable. Hipparchus (190-120
BCE) and Ptolemy (90-168 CE) obtained the slightly more
accurate ratio of 42.

Nevertheless, these results were enough to establish that the
important fact that the Sun was much larger than the Earth.




Because of this Aristarchus proposed the heliocentric model
more than 1700 years before Copernicus! (Copernicus credits

Aristarchus for this in his own, more famous work.)

Ironically, Aristarchus’s heliocentric model was dismissed by

later Greek thinkers, for reasons related to the sixth rung of
the ladder (see below).

Since the distance to the moon was established on the

preceding rung of the ladder, we now know the size and

distance to the sun. (The latter is known as the Astronomical

Unit (AU), and will be fundamental for the next three rungs of
the ladder).




How did this work?

e Aristarchus knew that each new moon was one lunar month

after the previous one.

e By careful observation, Aristarchus also knew that a half-moon
occured slightly earlier than the midpoint between a new moon
and full moon; he measured this discrepancy as 12 hours.

(Alas, it is difficult to measure a half-moon perfectly, and the

true discrepancy is 1/2 an hour.)

e Elementary trigonometry then gives the distance to the sun as

roughly 20 times the distance to the moon.




Fourth rung: distances from the sun to the planets

Now we consider other planets, such as Mars. The ancient
astrologers already knew that the sun and planets stayed within

the Zodiac, which implied that the solar system essentially lay on a

two-dimensional plane (the ecliptic). But there are many further

questions:
e How long does Mars take to orbit the sun?

e What shape is the orbit?

e How far is Mars from the sun?




e These questions were attempted by Ptolemy, but with
extremely inaccurate answers (in part due to the use of the
Ptolemaic model of the solar system rather than the

heliocentric one).

Copernicus (1473-1543) estimated the (sidereal) period of Mars
as 687 days and its distance to the sun as 1.5 AU. Both

measures are accurate to two decimal places. (Ptolemy

obtained 15 years (!) and 4.1 AU.)

It required the accurate astronomical observations of Tycho
Brahe (1546-1601) and the mathematical genius of Johannes
Kepler (1571-1630) to find that Earth and Mars did not in fact
orbit in perfect circles, but in ellipses. This and further data
led to Kepler’s laws of motion, which in turn inspired Newton’s
theory of gravity.




How did Copernicus do it?

e The Babylonians already knew that the apparent motion of
Mars repeated itself every 780 days (the synodic period of
Mars).

The Copernican model asserts that the earth revolves around

the sun once every solar year (365 days).

Subtracting the two implied angular velocities yields the true

(sidereal) Martian period of 687 days.

The angle between the sun and Mars from the Earth can be
computed using the stars as reference. Using several
measurements of this angle at different dates, together with the
above angular velocities, and basic trigonometry, Copernicus

computed the distance of the Mars to the sun as approximately

1.5 AU.




Kepler’s problem

e Copernicus’s argument assumed that Earth and Mars moved in
perfect circles. Kepler suspected this was not the case - it did
not quite fit Brahe’s observations - but how to then find the
correct orbit of Mars?

Brahe’s observations gave the angle between the sun and Mars
from Earth very accurately. But the Earth is not stationary,

and might not move in a perfect circle. Also, the distance from

Earth to Mars remained unknown. Computing the orbit of
Mars precisely from this data seems hopeless - not enough

information!




To solve this problem, Kepler came up with two extremely clever
ideas.

e To compute the orbit of Mars accurately, first compute
the orbit of Earth accurately. If you know exactly where
the Earth is at any given time, the fact that the Earth is

moving can be compensated for by mathematical calculation.

To compute the orbit of Earth, use Mars itself as a
fixed point of reference! To pin down the location of the

Earth at any given moment, one needs two measurements

(because the plane of the solar system is two dimensional). The

direction of the sun (against the stars) is one measurement; the

direction of Mars is another. But Mars moves!




Kepler’s breakthrough was to take measurements spaced 687
days apart, when Mars returns to its original location and thus
serves as a fixed point. Then one can triangulate between the
Sun and Mars to locate the Earth. Once the Earth’s orbit is
computed, one can invert this trick to then compute Mars’
orbit also.

Albert Einstein (1879-1955) referred this idea of Kepler’s as

“an idea of pure genius”.

Similar ideas work for the other planets. Since the AU is

already deducible from previous rungs of the ladder, we now

have distances to all the planets.

Around 1900, when travel across the Earth became relatively
easy, parallax methods could compute these distances more
directly and accurately, confirming and strengthening all the

rungs so far of the distance ladder.




Fifth rung: the speed of light I

e Technically, the speed of light is not a distance. However, one
of the first accurate measurements of this speed came from the
fourth rung of the ladder, and knowing the value of this speed

is important for later rungs.

Ole Rgmer (1644-1710) and Christiaan Huygens (1629-1695)

obtained a value of 220,000 km /sec, close to but somewhat less

than the modern value of 299, 792 km /sec, using Io’s orbit
around Jupiter.




How did they do it?

e Rgmer observed that Io rotated around Jupiter every 42.5
hours, by timing when Io entered and exited Jupiter’s shadow.

But the period was not uniform; when the Earth moved from
being aligned with Jupiter to being opposed to Jupiter, the
period had lagged by about 20 minutes. He concluded that
light takes 20 minutes to travel 2 AU. (It actually takes about
17 minutes.)

Huygens combined this with a precise (for its time)

computation of the AU to obtain the speed of light.

Nowadays, the most accurate measurements of distances to
planets are obtained by radar, which requires precise values of
the speed of light. This speed can now be computed very
accurately by terrestrial means, thus giving more external
support to the distance ladder.




The data collected from these rungs of the ladder have also been
decisive in the further development of physics and in ascending
higher rungs of the ladder.

e The accurate value of the speed of light (as well as those of the

permittivity and permeability of space) was crucial in leading
James Clerk Maxwell to realise that light was a form of
electromagnetic radiation. From this and Maxwell’s equations,
this implied that the speed of light in vacuum was a universal
constant c¢ in every reference frame for which Maxwell’s

equations held.

Albert Einstein reasoned that Maxwell’s equations, being a
fundamental law of physics, should hold in every inertial
reference frame. The above two hypotheses lead inevitably to
the special theory of relativity. This theory becomes important
in the ninth rung of the ladder (see below) in order to relate
red shifts with velocities accurately.




e Accurate measurements of the orbit of Mercury revealed a
slight precession in its elliptical orbit, suggesting that a
refinement was needed to the theories of Kepler and Newton.
This provided one of the very first experimental confirmations
of Einstein’s general theory of relativity. This theory is also
crucial at the ninth rung of the ladder.

Maxwell’s theory that light is a form of electromagnetic
radiation also helped develop the important astronomical tool

of spectroscopy, which becomes important in the seventh and

ninth rungs of the ladder (see below).




Sixth rung: distances to nearby stars

e By taking measurements of the same star six months apart and
comparing the angular deviation, one obtains the distance to
that star as a multiple of the Astronomical Unit. This parallax

idea, which requires fairly accurate telescopy, was first carried
out successfully by Friedrich Bessel (1784-1846) in 1838.

It is accurate up to distances of about 100 light years (&~ 30
parsecs). This is enough to locate several thousand nearby
stars.

Ironically, the ancient Greeks dismissed Aristarchus’s estimate
of the AU and the heliocentric model that it suggested, because
it would have implied via parallax that the stars were an

inconceivably enormous distance away. (Well... they are.)




Seventh rung: distances to moderately distant stars

e Twentieth-century telescopy could easily compute the apparent
brightness of stars. Combined with the distances to nearby
stars from the previous ladder and the inverse square law, one

could then infer the absolute brightness of nearby stars.

Ejnar Hertzsprung (1873-1967) and Henry Russell (1877-1957)

plotted this absolute brightness against colour in 1905-1915,
leading to the famous Hertzsprung-Russell diagram relating the
two. Now one could measure the colour of distant stars, hence
infer absolute brightness; since apparent brightness could also

be measured, one can solve for distance.

This method works up to 300,000 light years! Beyond that, the
stars in the HR diagram are too faint to be measured
accurately.




Eighth rung: distances to very distant stars

e Henrietta Swan Leavitt (1868-1921) observed a certain class of
stars (the Cepheids) oscillated in brightness periodically;

plotting the absolute brightness against the periodicity she
observed a precise relationship. This gave yet another way to
obtain absolute brightness, and hence observed distances.

Because Cepheids are so bright, this method works up to
13,000, 000 light years! Most galaxies are fortunate enough to
have at least one Cepheid in them, so we know the distances to
all galaxies out to a reasonably large distance.

Beyond that scale, only ad hoc methods of measuring distances
are known (e.g. relying on supernovae measurements, which
are one of the few events that can still be detected at such
distances).




Ninth rung: the shape of the universe

e Combining all the above data against more precise red-shift
measurements, together with the known speed of light (see fifth
rung) Edwin Hubble (1889-1953) formulated the famous
Hubble’s law relating velocity (as observed by redshift) with
distance, which led in turn to the famous “Big Bang” model of
the expanding universe. This law can be then used to give
another measurement of distance at the largest scales (though
one which is subject to a number of other distorting effects).

These measurements have led to accurate maps of the universe
at large scales, which have led in turn to many discoveries of
very large-scale structures which would not have been possible

without such good astrometry (the Great Wall, Great

Attractor, etc.) For instance, our best estimate of the current




diameter of the observable universe is now about 78 billion

light-years.

The mathematics becomes more advanced at this point, as the
effects of general relativity become very important. Conversely,
the development of general relativity has been highly
influenced by the data we have at this scale of the universe.
Cutting-edge technology (such as the Hubble space telescope)
has also been vital to this effort.

Climbing this rung of the ladder (i.e. mapping the universe at

its very largest scales) is still a very active area in astronomy

today!
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