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Well-conditioned matrices

Suppose one wants to solve the matrix equation Mx = b, where M

is an n× n matrix and the vector b is given.

In theory, this problem is solvable quickly (e.g. by Gaussian
elimination) whenever M is non-singular.

In practice, computers can only represent a finite subset of the real
numbers, and so one must take into account roundoff error. The
effect of this error is controlled by the condition number

κ(M) := ‖M‖‖M−1‖

where ‖‖ is the spectral norm. (We adopt the convention
κ(M) := ∞ when M is singular.)
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Let εmachine which is half of the distance from 1 to the nearest
represented number in one’s machine (a typical value is 10−30).
Then we have the following fundamental result in numerical linear
algebra:

Theorem. If x̃ is the numerical solution to Mx = b,
then

‖x̃− x‖
‖x‖

= O
(
κ(M)εmachine

)
.

Thus upper bounds on the condition number implies numerical
stability in linear algebra. (It also affects the running time of
numerical linear algebra algorithms.)

Definition. A matrix M is polynomially well-
conditioned if κ(M) = O(nO(1)).
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Suppose M is polynomial size (thus each entry of M is O(nO(1))).
Then we clearly have ‖M‖ = O(nO(1)). So, being polynomially
well-conditioned is usually equivalent to the bound

‖M−1‖ = O(nO(1)),

or equivalently, a lower bound

σn � n−O(1)

on the least singular value of M .
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In theory, ill-conditioned matrices exist:

Theorem. (Alon-Vu, 1996) There exists an invert-
ible matrix M with coefficients ±1 with ‖M−1‖ �
n( 1

2+o(1))n. In particular, κ(M) � n( 1
2+o(1))n.

But in practice, they only seem to arise very rarely.

In fact, linear algebraic algorithms (e.g. the simplex method)
frequently run faster (and gives higher accuracy) than the worst
case analysis predicts.

Why should this be the case?
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The positive effect of noise

Spielman and Teng (2002) proposed the following general
explanation:

(P) Let M be an arbitrary n × n matrix of polyno-
mial size and Nn a non-trivial random n × n matrix.
Then with high probability M + Nn is polynomially
well conditioned.

Thus, the inherent measurement or roundoff error in the matrix M

itself should cause one to avoid the highly ill-conditioned matrices.

The crucial point here is that M itself may have a large condition
number, or even be singular (e.g. M = 0).

6



Continuous and discrete noise

Demmel (1988) established (P) when M = 0 and Nn is a Gaussian
random matrix. Spielman and Terng (2002) established (P) for
arbitrary M of polynomial size and Gaussian random Mn.

In applications to numerical linear algebra, it is more realistic to
consider discrete models for the random matrix Nn. In particular
we have the Bernoulli random matrix model in which each entry of
Nn is ±1 with independent uniform probability.

With Van Vu, we were able to establish (P) for arbitrary M of
polynomial size and for Bernoulli random Mn. More precisely:
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Theorem. (T.-Vu, 2007) Let M be polynomial size
with integer coefficients, let Nn be a random Bernoulli
matrix, and let A > 0. Then we have

P(‖(M + Nn)−1‖ ≥ nB) � n−A

if B is sufficiently large depending on A (and on the
polynomial size of M).

In particular, by making B a bit bigger, we have
κ(M + Nn) = O(nB) with probability 1−O(n−A).

For Gaussian noise, the above theorem was proven by Spielman
and Terng with B = A− 1/2.
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The theorem generalises to some other discrete models, where each
coordinate ajk of Nn is an independent integer-valued random
variable of polynomial size. One needs a large fraction of these
random variables to be non-degenerate, e.g. the ajk are symmetric
and P(ajk = +1) ≥ ε for all but n0.01 of the coordinates ajk (thus
Nn is allowed to have some “frozen” entries). There are more
general versions of these results but they get a bit technical to
state. One can also allow M to have complex entries instead of
integer (this is a work in progress; some results in this direction
were obtained recently by Pan and Zhou).
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Some ingredients of the proof

Let Mn := M + Nn be the noisy matrix. The goal is to show that
‖M−1

n ‖ � nB with probability 1−O(n−A)), for some sufficiently
large B. Thus we would like to upper bound the

P(‖Mnv‖ � n−Bfor some bounded vector v)

by O(n−A).

There are infinitely many unit vectors v, but one can use rounding
and only have to deal with those v whose coefficients are a multiple
of n−B−2 (say).

Some vectors v will be singular (most of the coordinates are rather
small). These can be easily dealt with by standard
concentration-of-measure, union bound, and ε-net arguments. (This
idea was borrowed from Litvak-Pajor-Rudelson-Vershynin (2005).)
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Some vectors v will be poor, in the sense that the rows of Mn have
only a low probability (e.g. at most n−A−4) of being close to
orthogonal to v. These can be dealt with by a conditioning
argument of Komlós (1960s), fixing n− 1 of the rows and looking
at the remaining row (which is chosen carefully).

The most difficult case to handle is when v is rich (so the rows of
Mn are often close to orthogonal to v) and non-singular.
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Inverse Littlewood-Offord theory

To handle this case, we need to understand what vectors v are rich.
In the model case when M = 0 and Nn is Bernoulli, this question is
equivalent to asking for which numbers v1, . . . , vn and a is the
concentration probability

P(±v1 ± v2 . . .± vn = a)

large, where the ± are n iid Bernoulli signs. This is the inverse
Littlewood-Offord problem. (The forward Littlewood-Offord
problem specifies v1, . . . , vn and a and asks to bound the
concentration probability.
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If the numbers v1, . . . , vn obey many arithmetic relations (e.g. if
they are all equal), then the concentration probability tends to be
large. But if the v1, . . . , vn are arithmetically “independent” then
the concentration probability tends to be low.

There are inverse Littlewood-Offord theorems which quantify this
relationship; roughly speaking, they assert that the concentration
probability is large if and only if the v1, . . . , vn are mostly
concentrated in an arithmetic progression, or a generalised
arithmetic progression. These results are inspired by techniques
from additive combinatorics, in particular using Fourier analysis
and geometry of numbers.
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Discretisation of progressions

A key technical lemma is that a generalised arithmetic progression
can be “rounded off” to another arithmetic progression, whose
elements are well separated from each other. For instance, consider
the two-dimensional generalised arithmetic progression

P = {4a + (3 + 10−10)b : −10−3 ≤ a, b ≤ 103}.

This progression contains some very small spacings - as small as
10−10. But one can round this progression off to a one-dimensional
arithmetic progression

Q = {n : −7× 10−3 ≤ n ≤ 7× 10−3}

in the sense that every element of the former is within O(10−7) of
an element of the latter.
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The significance of this rounding operation is that it can convert
approximate relations in P to exact relations in Q. For instance, if
x, y, z ∈ P are such that x + y = z + O(10−1), and x′, y′, z′ ∈ Q are
their rounded counterparts, then x′ + y′ is exactly equal to z′.

In practice, this allows us to round off a statement such as “Mv is
small” to the statement “Mv′ is zero”. Ultimately, this reduces the
task of controlling condition numbers to the simpler task of
controlling the probability that M is invertible. There is some
substantial technology (dating back to Kahn, Komlos, and
Szemerédi (1995)) to deal with this.
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