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Additive patterns in the primes

• Many classical questions concerning additive patterns

in the primes remain unsolved, e.g.:

• Twin prime conjecture (?Euclid, circa. 300 BC?):

There exist infinitely many pairs p, p + 2 of primes

that are distance two apart: (3, 5), (5, 7), (11, 13),

(17, 19), . . ..

• Odd Goldbach conjecture (1742): Every odd

number n ≥ 7 is the sum of three primes. 7 =

2 + 2 + 3, 9 = 3 + 3 + 3, 11 = 3 + 3 + 5, etc.

• Even Goldbach conjecture (Euler, 1742): Ev-

ery even number n ≥ 4 is the sum of two primes.

4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, etc.

• But there have been some deep results, such as:

• Chen’s theorem (1966): There exist infinitely many

pairs p, p+2 where p is a prime and p+2 is an almost

prime (product of at most two primes).

• Vinogradov’s theorem (1937): Every sufficiently

large odd number n is the sum of three primes.
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• (Liu-Wang, 2002) Every odd number n > 101346 is

the sum of three primes. [Also known for n < 1020.]

• NB: multiplicative problems in the primes are signif-

icantly easier. For instance, it is obvious that there

are no geometric progressions in the primes of length

three or higher.
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Arithmetic progressions in the primes

2

2, 3

3, 5, 7

5, 11, 17, 23

5, 11, 17, 23, 29

7, 37, 67, 97, 127, 157

7, 157, 307, 457, 607, 757

. . .

5749146449311 + 26004868890n; n = 0, . . . , 20

11410337850553 + 4609098694200n; n = 0, . . . , 21

(Moran, Pritchard, Thyssen, 1995)

56211383760397 + 44546738095860n; n = 0, . . . , 22

(Frind, Underwood, Jobling, 2004)

It was conjectured for at least a century that there are

arbitrarily long arithmetic progressions of primes; a more

precise conjecture was that for any k, there is a progres-

sion of length k of primes less than k! + 1.

In fact, modern heuristics predict one can lower k! + 1

to (ke1−γ/2)k(1
2+o(1)) (Granville 2006). We discuss upper

bounds more at the end of the talk.
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History of results and conjectures

• (Lagrange, Waring, 1770) An arithmetic progression

of primes of length k must have spacing divisible by

all the primes less than k. [In particular, there are

no infinitely long arithmetic progressions of primes.]

• Hardy-Littlewood prime tuples conjecture

(1923) Gives an asymptotic prediction of how often

a given additive prime pattern occur in the primes

from 1 to N ; would imply twin prime, Goldbach (at

least for sufficiently large n), and give arbitrarily long

progressions of primes. Totally open.

• van der Waerden’s theorem (1927) If the inte-

gers are coloured using finitely many colours, then

one of the colour classes must contain arbitrarily

long arithmetic progressions. (For instance, either

the primes or the non-primes contain arbitrarily long

progressions.)

• Erdős-Turán conjecture (1936) Any set of posi-

tive integers whose sum of reciprocals diverges should

contain arbitrarily long arithmetic progressions. [The

sum of reciprocals of primes diverges (Euler, 1737).]

Totally open; not even known if such a set must con-

tain a progression of length three.
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• (Van der Corput, 1939) There exist infinitely many

arithmetic progressions of primes of length three. The

Hardy-Littlewood asymptotic is also correct in this

case.

• Roth’s theorem (1956) Any subset of the inte-

gers of positive density contains infinitely many arith-

metic progressions of length three. [The primes have

density zero (Euler, 1737).]

• (Szemerédi, 1969) Any subset of the integers of posi-

tive density contains infinitely many arithmetic pro-

gressions of length four.

• Szemerédi’s theorem (1975) Any subset of the

integers of positive density contains arbitrarily long

arithmetic progressions. [Implies van der Waerden’s

theorem.]

• (Heath-Brown, 1981) There are infinitely many arith-

metic progressions of length four, where three ele-

ments are prime and one is an almost prime (the

product of two primes).

• (Balog, 1992) For any k, there exist k distinct primes

p1, . . . , pk, all of whose averages
pi+pj

2 are also prime.
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• Green-Tao theorem (2004) The prime numbers

contain arbitrarily long arithmetic progressions.

• (Green, T. 2004) There exist infinitely many progres-

sions of length three of Chen primes (primes p where

p + 2 is almost prime).

• (T., 2005) The Gaussian primes contain arbitrarily

shaped constellations.

• (Green, T., 2006) The Hardy-Littlewood asymptotic

is correct for progressions of length four in the primes,

as well as other additive patterns of similar complex-

ity. (The analogous result for longer progressions is

a work in progress.)

• (T., Ziegler, 2006) Let P1, . . . , Pk be any integer

polynomials with zero constant coefficient. Then the

prime numbers contain infinitely many polynomial

progressions of the form n + P1(r), . . . , n + Pk(r).

• Unfortunately, the twin prime and even Goldbach

conjectures remain wide open (the above methods

all seem to require the patterns to have at least two

independent parameters).
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Prime counting heuristics

• Experience has shown that it is not feasible to try to

find prime patterns (or even individual primes) di-

rectly, for instance by some explicit formula. Instead,

one should count the number of primes or prime pat-

terns in some range (e.g. counting the number of

twin primes from 1 to N). The main task is to get a

non-trivial lower bound on this count.

• While our ability to count patterns in the primes is

still limited in many ways, our ability to conjecture

what this count should be is very good (and uncan-

nily accurate).

• A basic starting point is the prime number theo-

rem (Hadamard, de la Vallée Poussin, 1896), which

says that for large numbers N , the number of primes

between 1 and N is roughly N/ log N (or more ac-

curately
∫ N

2
dx

log x). Another way of thinking about

it is that a number randomly selected from 1 to N

will have a probability approximately 1/ log N of be-

ing prime. [Exactly what “approximately” means is

a good question - closely connected to the famous

Riemann hypothesis - but we won’t discuss it

here.]
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This already gives us a crude heuristic for counting

patterns in primes. Suppose for instance one wants to

prove the twin prime conjecture. One could argue as

follows:

(1) Pick a number n randomly from 1 to N .

(2) The prime number theorem shows that the probabil-

ity that n is prime is roughly 1/ log N .

(3) The prime number theorem also shows that the prob-

ability that n + 2 is prime is also roughly 1/ log N .

(4) Assuming that the events in (2) and (3) are approxi-

mately independent, the probability that n, n+2 are

both prime should be 1/ log2 N .

(5) In other words, the number of twin primes from 1 to

N should be roughly N/ log2 N .

(6) Since N/ log2 N goes to infinity as N → ∞, there

are infinitely many twin primes.
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• Unfortunately, the above argument is incorrect. One

easy way to see this is that the exact same argument

would show that there are also infinitely many pairs

of adjacent primes n, n + 1, which is clearly false!

• The problem is that the assumption of independence

is too naive - one is basically hoping that the primes

from 1 to N are distributed in an utterly random (or

more precisely, a pseudorandom) fashion, with there

being no correlation between the primality of n and

the primality of (say) n+ 2. But this is not the case,

because of a very simple observation:

Odd numbers are much more likely to be prime than

even numbers.

• Intuitively, this means that if n is prime, then n is

most likely odd, and so n+2 is odd also. This should

significantly increase the probability that n + 2 is

prime - so the two events are not independent. (Con-

versely, it dramatically decreases the probability that

n + 1 is prime.)

• While this invalidates our earlier line of reasoning, it

is not hard to modify that argument to accomodate

this new observation about the primes. The idea is to

use conditional probability and independence rather
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than absolute probability and independence. From

the prime number theorem, and the fact that almost

all primes are odd, we have

(a) If n is a random even number from 1 to N , then the

probability that n is prime is negligible.

(b) If n is a random odd number from 1 to N , then the

probability that n is prime is roughly 2/ log N .
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Now we have a revised count for twin primes:

(1) Pick a number n randomly from 1 to N . Approx-

imately 1/2 of the time n will be even; 1/2 of the

time n is odd.

(234a) If n is even, then n and n + 2 have only a negligible

chance of being prime, so the probability that n, n+2

are both prime should also be negligible (in fact it is

zero).

(234b) If n is odd, then n and n + 2 each have a probability

of about 2/ log N of being prime, so (assuming “con-

ditional independence”) the probability that n, n+2

are both prime in this case should be about 4/ log2 N .

(5) Putting this all together (using Bayes’ formula), the

number of twin primes from 1 to N should be roughly

N × [
1

2
× 0 +

1

2
× 4

log2 N
] = 2

N

log2 N
.

(6) This still goes to infinity as N →∞, so there should

still be infinitely many twin primes.
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• Of course, this argument is also incorrect (though it is

“less incorrect” than the previous one). For instance,

it would predict infinitely many prime triples of the

form n, n + 2, n + 4. The reason is that we are not

incorporating some additional structural facts about

the primes, in this case

Numbers equal to 1 or 2 (mod 3) are much more

likely to be prime than numbers equal to 0(mod 3).

• In fact, we have a more precise statement (Dirichlet

1837, Siegel-Walfisz, 1963):

(a) If n is a random number from 1 to N with n =

0(mod 2) or n = 0(mod 3), then n has a negligible

probability of being prime.

(b) If n is a random number from 1 to N with n =

1(mod 2) and n = 1(mod 3), then n has probability

roughly 3/ log N of being prime.

(c) If n is a random number from 1 to N with n =

1(mod 2) and n = 2(mod 3), then n has probability

roughly 3/ log N of being prime.

• Using this new information, we can revise our count

of twin primes from 2 N
log2 N

to 3
2

N
log2 N

.
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• Of course, we can continue adjusting this count us-

ing mod 5 information, mod 7 information, etc. and

obtain the following sequence of heuristics:

Information used Predicted # twins

Prime number theorem ≈ N
log2 N

# primes mod 2 ≈ 2 N
log2 N

# primes mod 2, 3 ≈ 1.5 N
log2 N

# primes mod 2, 3, 5 ≈ 1.41 N
log2 N

# primes mod 2, 3, 5, 7 ≈ 1.37 N
log2 N

# primes mod 2, 3, . . . , 97 ≈ 1.32 N
log2 N

• One quickly observes that each new modulus is caus-

ing less and less of an adjustment, and the prediction

for the number of twin primes less than N in fact

converges to 2Π2
N

log2 N
, where Π2 is the twin prime

constant

Π2 =
∏

p odd prime

(1− 1

(p− 1)2
) = 0.660161858 . . . .

• (Technical point) Actually 2Π2

∫ N

2
dx

log2 x
is a slightly

better prediction, as it uses the additional fact that

small numbers are a bit more likely to be prime than

large numbers. But this is a relatively minor correc-

tion.
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This prediction is surprisingly good:

N 2Π2
N

log2 N
2Π2

∫ N

2
dx

log2 x
Actual # twins ≤ N

106 6917 8248 8168

108 389107 440368 440312

1010 2490284 27411417 27412679

1012 1.72936× 109 1.87061× 109 1.87059× 109

Our heuristic analysis hinges on the presumption that,

apart from the obvious structure in the primes (that the

primes are mostly odd, mostly coprime to three, etc.),

that the primes behave as if they were randomly dis-

tributed; in other words, there is no additional “secret”

or “exotic” structure in the primes that would signifi-

cantly affect such counts as the number of twin primes

less than N .

There is a way to make this presumption rigorous; this

is known as the Hardy-Littlewood prime tuples

conjecture. This very strong conjecture would allow

us to count virtually any type of arithmetic pattern in

the primes, settling many open questions; but we have

no way of attacking this conjecture with current technol-

ogy. (How could one disprove a “conspiracy” among the

primes?)
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Almost primes

• While we cannot settle many questions about the

primes, we have a much better understanding of the

almost primes - numbers which are the product of

only a small number of primes. Roughly speaking,

the analogue of the Hardy-Littlewood prime tuples

conjecture is known for almost primes (this fact is

known as the fundamental lemma of sieve the-

ory).

• To explain why almost primes are easier to control

than genuine primes, let us recall the classical sieve of

Eratosthenes. This sieve lets us locate all the primes

between, say, N/2 and N for some large number N ,

by the following procedure.

(0) Start with all the numbers from N/2 to N .

(2) Eliminate (or “sieve out”) all multiples of 2.

(3) Eliminate all multiples of 3.

(5) Eliminate all multiples of 5. . . .

(
√

N) After all multiples of primes less than
√

N are sieved

out, one is left with the primes from N/2 to N .
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• One can think of this sieve as “sculpting” the primes

out of a big block (the integers from N/2 to N). At

the beginning of the process, one removes very large

and “smooth” pieces from this block (the multiples

of 2, multiples of 3, etc.), and it is easy to see what is

going on. For instance, we initially have roughly N
2

elements; after removing the even numbers we should

have roughly 1
2 ·

N
2 elements; after then removing the

multiples of 3 we should have roughly 2
3 ·

1
2 ·

N
2 elements

(by the Chinese remainder theorem) and so

forth. It is also easy to count the number of twins,

arithmetic progressions, etc. at the very early stages

of this process.

• However, at later stages of the sieve (e.g. at the steps

between
√

N/2 and
√

N) one is performing a very

large number of tiny modifications to the sculpture,

removing small amounts of non-primes at a time in

what appears to be a rather random process. At

this stage we tend to lose all control of what is hap-

pening to this sculpture - for instance, nobody has

figured out how to use sieve ideas to give a proof of

the prime number theorem, let alone anything more

sophisticated such as count twin primes.

• If however one stops the sieve before going all the
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way up to
√

N - say if one only sieves up to level

N 1/100 instead - then we have been able to keep con-

trol of everything. (Actually we have to make the

sieve more fancy to do so, but let us ignore this tech-

nicality.) The catch, of course, is that the sieve now

contains almost primes in addition to genuine primes

- in this case, we still have numbers with up to 100

prime factors. However, it turns out that the set of

almost primes are only mildly larger than the set of

actual primes; whereas the number of actual primes

from 1 to N is roughly N/ log N , the number of al-

most primes obtained by sieving up to level N 1/100

is something like 100N/ log N .

• Recent work of Goldston and Yıldırım has made these

heuristics quite precise; as one striking application,

it is now known that the gap pn+1 − pn between ad-

jacent primes can be as small as o(log pn) infinitely

often (Goldston, Yıldırım, Pintz, 2005)
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To summarise so far:

• Prime numbers have some obvious structure (they

are mostly odd, coprime to 3, etc.) We don’t know

if they also have some additional exotic structure.

Because of this, we have been unable to settle many

questions about primes.

• Almost primes (such as those generated by a partial

sieve of Eratosthenes) have the same obvious struc-

ture as the primes, but are known to be otherwise

randomly distributed (in the sense that things like

the number of almost twin primes matches the natu-

ral heuristics). The number of almost primes exceeds

the number of actual primes by a constant factor

(such as 100, depending on one’s precise definition of

“almost prime”).

• In general, nobody has figured out how to use this

information on almost primes to deduce information

on actual primes. However, it turns out that for a few

special types of patterns - most notably arithmetic

progressions - it is possible to pull this off. This is

because of a deep and powerful theorem known as

Szemerédi’s theorem.
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• Szemerédi’s theorem (1975) Let A be a subset

of the integers Z of positive (upper) density. Then

A contains arbitrarily long arithmetic progressions.

• This result was conjectured by Erdős and Turán in

1936. The remarkable thing about this theorem is

that one is given almost no information on A other

than that it is large, and yet this is still enough to

force A to contain arbitrarily long progressions. In

contrast, patterns such as twins n, n + 2 do not have

this property; for instance, the multiples of 3 has a

density of 1/3 but contains no twins.

• This important theorem now has many different proofs:

a combinatorial proof (Szemerédi, 1975), an ergodic

theory proof (Furstenberg, 1977), a Fourier-analytic

proof (Gowers, 1998), and a hypergraph proof (Nagle-

Rödl-Schacht-Skokan/Gowers 2005). All the proofs

are non-trivial. This is ultimately because there are

two extreme cases for what a set A can look like

(structured and pseudorandom), and in each case the

arithmetic progressions must be obtained in different

ways.
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Progressions in the primes

• Now we can sketch how one finds progressions in the

primes.

• It is convenient to work with the von Mangoldt func-

tion Λ : N → R, defined by setting Λ(n) := log p

when n is a power of a prime p, and zero otherwise.

This function can be thought of as a weight function

for the primes; it is natural because of the identity∑
d|n

Λ(d) = log n for all n = 1, 2, 3, . . .

(this is basically the fundamental theorem of arith-

metic in disguise).

• To find progressions of length k in the primes, one is

basically led to try to obtain lower bounds for aver-

ages such as

1

N 2

N∑
n=1

N∑
r=1

Λ(n)Λ(n + r) . . . Λ(n + (k − 1)r).

In contrast, Szemerédi’s theorem allows us to lower-

bound quantities such as

1

N 2

N∑
n=1

N∑
r=1

f (n)f (n + r) . . . f (n + (k − 1)r)
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but only when f is bounded, non-negative, and has

large mean. Λ is non-negative with large mean, but

is unfortunately not bounded.

• However, using a structure theorem (motivated by

arguments in ergodic theory and combinatorics) one

can split Λ into a structured component ΛU⊥, and a

pseudorandom component ΛU (the definition of these

terms was motivated by arguments in Fourier anal-

ysis). The pseudorandom component ΛU turns out

to be negligible (motivated by arguments in hyper-

graph theory). The task is then to understand the

structured component ΛU⊥.

• Now we use the information about the almost primes.

There is an analogue of the von Mangoldt function

for the almost primes, which we call ν; it is a little bit

bigger than Λ. ν also splits into a structured part νU⊥

and a pseudorandom part νU , but because the almost

primes are so pseudorandomly distributed (except for

some obvious irregularities due to mod 2, mod 3, etc.

which can be easily dealt with), the structured part

νU⊥ of ν turns out to be very simple - in fact, it

is basically constant. There is then a comparison

principle that implies that the structured part ΛU⊥

of Λ is bounded - which lets one apply Szemerédi’s
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theorem.
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Quantitative bounds

• All the arguments here can be made quantitative,

and we in fact know that the first progression of

primes of length k has entries less than

2222222100k

.

• Recall that the conjectured upper bound is in fact

k! + 1 (or (ke1−γ/2)k(1
2+o(1))).

• This is a tower of seven exponentials. Two of them

come from the number-theoretic pseudorandomness

bounds on the almost primes. Four come from the

best known bounds on Szemerédi’s theorem (from

work of Gowers). The last one comes from the struc-

ture theorem.
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• If the Riemann hypothesis is true, we can remove one

exponential.
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