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Abstract

Suppose we wish to transmit a vector f ∈ Rn reliably. A
frequently discussed approach consists in encoding f with
an m by n coding matrix A. Assume now that a fraction
of the entries of Af are corrupted in a completely arbitrary
fashion by an error e. We do not know which entries are
affected nor do we know how they are affected. Is it possi-
ble to recover f exactly from the corrupted m-dimensional
vector y′ = Af + e?

This paper proves that under suitable conditions on the
coding matrix A, the input f is the unique solution to the
`1-minimization problem (‖x‖`1 :=

∑
i |xi|)

min
f̃∈Rn

‖y′ −Af̃‖`1

provided that the fraction of corrupted entries is not too
large, i.e. does not exceed some strictly positive constant
ρ∗ ( numerical values for ρ∗ are actually given). In other
words, f can be recovered exactly by solving a simple
convex optimization problem; in fact, a linear program.
We report on numerical experiments suggesting that `1-
minimization is amazingly effective; f is recovered exactly
even in situations where a very significant fraction of the
output is corrupted.

In the case when the measurement matrix A is Gaus-
sian, the problem is equivalent to that of counting low-
dimensional facets of a convex polytope, and in particular
of a random section of the unit cube. In this case we can
strengthen the results somewhat by using a geometric func-
tional analysis approach.

Keywords. Linear codes, decoding of (random) lin-

ear codes, sparse solutions to underdetermined systems, `1-
minimization, linear programming, restricted orthonormal-
ity, Gaussian random matrices.

1 Introduction

1.1 The error correction problem

This paper considers the model problem of recovering
an input vector f ∈ Rn from corrupted measurements
y′ = Af + e. Here, A is an m by n matrix (we will as-
sume throughout the paper that m > n), and e ∈ Rm is
an unknown vector of errors. We will assume that at most
r entries are corrupted, thus at most r entries of e are non-
zero, but apart from this restriction e will be arbitrary. The
problem we consider is whether it is possible to recover f
exactly from the data y. And if so, how?

In its abstract form, our problem is of course equivalent
to the classical error correcting problem which arises in cod-
ing theory as we may think of A as a linear code; a linear
code is a given collection of codewords which are vectors
a1, . . . , an ∈ Rm—the columns of the matrix A. Given a
vector f ∈ Rn (the “plaintext”) we can then generate a vec-
tor Af in Rm (the “ciphertext”); if A has full rank, then one
can clearly recover the plaintext f from the ciphertext Af .
But now we suppose that the ciphertext Af is corrupted by
an arbitrary vector e ∈ Rm with at most r non-zero entries
so that the corrupted ciphertext is of the form Af + e. The
question is then: given the coding matrix A and Af +e, can
one recover f exactly?

Let us say that the linear code A is a (m,n, r)-error cor-
recting code if one can recover f from Af + e whenever



e has at most r non-zero coefficients. As is well-known,
if the number r of corrupted entries is too large, then of
course we have no hope of having a (m,n, r)-error correct-
ing code. For instance, if n + 2r > m then elementary
linear algebra shows that there exist plaintexts f, f ′ ∈ Rn

and errors e, e′ ∈ Rm with at most r non-zero coefficients
each such that Af + e = Af ′ + e′, and so one cannot dis-
tinguish f from f ′ in this case. In particular, if the fraction
ρ := r

m of corrupted entries exceeds 1/2 then an (m,n, r)-
error correcting code is impossible regardless of how large
one makes m with respect to n.

This situation raises an important question: for which
fraction ρ of the corrupted entries is accurate decoding pos-
sible with practical algorithms? That is, with algorithms
whose complexity is at most polynomial in the length m of
the codewords?

Setting y := Af , and letting Y ⊂ Rm be the image
of A, we can rephrase the problem more geometrically as
follows: how to reconstruct a vector y in an n-dimensional
subspace Y of Rm from a vector y′ ∈ Rm that differs from
y in at most r coordinates?

If the matrix A is chosen randomly, for instance by the
Gaussian ensemble, then it is easy to show that with prob-
ability one that all the plaintexts can be distinguished in an
information-theoretic sense as soon as n + 2r ≤ m. How-
ever, this result provides no algorithm for recovering the
plaintext f from the corrupted ciphertext Af +e, other than
brute force search, which has exponential complexity in m.
Based on analogy with discrete (e.g. finite field) analogues
of this problem, to obtain a polynomial-time recovery algo-
rithm it is more reasonable to expect as a necessary condi-
tion the Gilbert-Varshamov bound

n/m ≥ 1−H(Cr/n) (1.1)

which is fundamental in coding theory (see [34]); here
H(x) is the entropy function, and C, c, c1, etc. will be used
to denote various positive absolute constants. This heuris-
tic can be made rigorous if one requires a certain stability
property for the recovery algorithm; see Section 6.

One can instead consider a mean square approach, based
on the minimization problem

(P2) min
f̃∈Rn

‖y′ −Af̃‖`2

or equivalently

(P ′
2) min

ỹ∈Y
‖y′ − ỹ‖`2

but the minimizer f? (resp. y?) may be arbitrarily far away
from the plaintext f (resp. y) since we have no size control
on the error e.

1.2 Solution via `1-minimization

To recover f accurately from corrupted data y′ = Af +
e, we consider solving the following `1-minimization (or
Basis Pursuit) problem

(P1) min
f̃∈Rn

‖y′ −Af̃‖`1 (1.2)

or equivalently

(P ′
1) min

ỹ∈Rn
‖y′ − y‖`1

Thus the minimizer y? to (P ′
1) is the metric projection of y′

onto the vector space Y with respect to the `1 norm. This
is a convex program which can be classically reformulated
as a linear program. Indeed, the `1-minimization problem
(P1) is equivalent to

min
m∑

i=1

ti, −t ≤ y′ −Af̃ ≤ t,

where the optimization variables are t ∈ Rm and f̃ ∈ Rn

(as is standard, the generalized vector inequality x ≤ y
means that xi ≤ yi for every coordinate i). Hence, (P1)
is an LP with inequality constraints and can be solved ef-
ficiently using standard or specialized optimization algo-
rithms, see [4], [5].

The main claim of this paper is that for suitable coding
matrices A, the solution f? to our linear program is actually
exact; f? = f ! (Equivalently, y? = y.)

y’

(BP)(MLS)

Y Y

u
y y’ y=u

The potential of Basis Pursuit for exact re-
construction is illustrated by the following
heuristics, essentially due to [18]. The minimizer u
to (P ′

2) is the contact point where the smallest Euclidean
ball centered at y′ meets the subspace Y . That contact
point is in general different from y. The situation is much
better in (P ′

1): typically the solution coincides with y.
The minimizer u to (P ′

1) is the contact point where the
smallest octahedron centered at y′ (the ball with respect
to the 1-norm) meets Y . Because the vector y − y′ lies
in a low-dimensional coordinate subspace, the octahedron
has a wedge at y. Thus, many subspaces Y through y will



miss the octahedron of radius y − y′ (as opposed to the
Euclidean ball). This forces the solution u to (P ′

1), which
is the contact point of the octahedron, to coincide with y.

The idea of using the 1-norm instead of the 2-norm for
better data recovery has been explored since mid-seventies
in various applied areas, in particular geophysics and statis-
tics (early history can be found in [47]). With the subse-
quent development of fast interior point methods in Linear
Programming, (P1) turned into an effectively solvable prob-
lem, and was put forward more recently by Donoho and his
collaborators, triggering massive experimental and theoret-
ical work [5, 7, 8, 10, 14, 15, 17–21, 23, 27, 33, 45–47].

We shall rigorously validate the above heuristics in two
slightly different ways. First we present a deterministic and
axiomatic approach, in which we assume a certain restricted
isometry condition on the measurement matrix A, and de-
duce that the minimizer f? to (P1) equals f exactly. Then
we present a more geometric functional analysis approach,
in which A is a random Gaussian matrix, and establish the
claim as a consequence of geometric facts about the facets
of random sections of the unit cube.

1.3 Restricted isometry matrices

We begin by introducing the restricted isometry condi-
tion. Consider a fixed p by m matrix B and let BT , T ⊂
{1, . . . ,m} be the p × |T | submatrix obtained by extract-
ing the columns of B corresponding to the indices in T .
Then [11] defines the S-restricted isometry constant δS of
B which is the smallest quantity such that

(1− δS) ‖c‖2
`2 ≤ ‖BT c‖2

`2 ≤ (1 + δS) ‖c‖2
`2 (1.3)

for all subsets T with |T | ≤ S and coefficient sequences
(cj)j∈T . This property essentially requires that every set of
columns with cardinality less than S approximately behaves
like an orthonormal system.

Let us return to our error correction problem, and con-
sider a matrix B whose kernel equals the range of A, so in
particular BA = 0 (B is any (m − n) × n matrix whose
kernel is the range of A in Rm). Apply B on both sides of
the equation y′ = Af + e, and obtain

By′ = B(Af + e) = Be (1.4)

since BA = 0. Therefore, the decoding problem is reduced
to that of recovering the error vector e from the known vec-
tor Be = By′. Once e is known, Af = y′ − e is known
and, therefore, f is also known since A has full rank.

To solve the underdetermined system of linear equations
Be = By′, we search among all vector ẽ ∈ Rm obeying
Bẽ = By′ for that with minimum `1-norm

(P ′′
1 ) min

ẽ∈Rm
‖ẽ‖`1 , Bẽ = By′, (1.5)

This convex program (P ′′
1 ) is easily seen to be equivalent to

(P1) or (P ′
1), and may be recast as an LP.

We now state the first main result of this paper, which we
prove in Section 2.

Theorem 1.1. Let f ∈ Rn, let A be an m × n matrix, let
e have at most r non-zero entries, let y′ = Af + e, and let
B be a matrix whose kernel equals the range of A. Suppose
we also have the condition

δ3r + 3δ4r < 2, (1.6)

and let e ∈ Rm have at most r entries non-zero. Then the
solution to (P ′′

1 ) (resp. (P1), (P ′
1)) is unique and equal to e

(resp. f , y). In particular, A is a (m,n, r) error-correcting
code, with (P1) as exact recovery algorithm.

This last theorem claims, perhaps, a rather surprising re-
sult. In effect, it says that minimizing `1 recovers all input
signals f ∈ Rn regardless of the corruption patterns, pro-
vided of course that the support of the error vector is not
too large. In particular, one can introduce errors of arbitrary
large sizes and still recover the input vector f exactly, by
solving a convenient linear program; in other words, as long
as the fraction of corrupted entries is not too large, there is
nothing a malevolent adversary can do to corrupt Af as to
fool the simple decoding strategy (1.2).

1.4 The Gaussian ensemble

For Theorem 1.1 to be of real interest, one should use
matrices B with good restricted isometry constants δS ; that
is, such that the condition of Theorem 1.1 holds with large
values of S. How to design such matrices is a delicate ques-
tion, and we do not know of any matrix which provably
obeys (1.6) for interesting values of S. However, if we sim-
ply sample a matrix B with i.i.d. entries, it will obey (1.6)
for large values of S with overwhelming probability. For in-
stance, by using concentration of measure inequalities and
the Marchenko-Pastur law [39] as in [11, Theorem 1.6] (see
also [22, 35, 44] for some relevant results) one can establish

Theorem 1.2. Assume n < m, let p := m−n, and let B be
a p by m matrix whose entries are i.i.d. Gaussian with mean
zero and variance 1/p. Then the condition of Theorem 1.1
holds with probability at least 1−O(e−αm) for some fixed
constant α > 0, provided that r ≤ ρ∗m, where ρ∗ depends
only on the ratio n/m. For large values of n and m, one can
show that ρ∗ ≥ 1/3, 000 for m = 2n, and ρ∗ ≥ 1/2, 000
for m = 4n.

In particular, we see that a n by m Gaussian matrix will
be a (m,n, r)-error correcting code with high probability,
as long as the fraction ρ = r

m of corrupted entries is less
than a constant ρ∗ depending only on n/m. This is because



the annihilator B of a random Gaussian matrix can be cho-
sen to be another random Gaussian matrix.

Similar statements with different constants hold for other
types of ensembles, e.g. for binary matrices with i.i.d. en-
tries taking values ±1/

√
p with probability 1/2. It is in-

teresting that our methods actually give numerical values,
instead of the traditional “for some positive constant ρ.”
However, the numerical bounds we derived in this paper are
overly pessimistic. We are confident that finer arguments
and perhaps new ideas will allow to derive versions of The-
orem 1.2 with better bounds. Numerical experiments actu-
ally suggests that the threshold is indeed much higher, see
Section 5.

Returning to the Gaussian case, it turns out that when r is
somewhat small then we can come close to the theoretical
limit n + 2r ≤ m. More precisely, in Section 3 we will
prove

Theorem 1.3. Let m, n and r < cm be positive integers
such that

m = n + R, where R ≥ Cr log(m/r). (1.7)

Let G be an m × n matrix whose entries are independent
N(0, 1) normal random variables. Then, with probability at
least 1−e−cR, the matrix G is an (m,n, r) error-correcting
code with exact recovery algorithm (P ′

1).

The assymption (1.7) meets, up to a constant, the
Gilbert-Varshamov bound (1.1), and can be rephrased in
terms of the corruption rate ρ = r/m as m ≥ (1 +
Cρ log 1

ρ )n. Theorem 1.3 then asserts that m × n Gaus-
sian matrices will be an (m,n, r)-error correcting code with
high probability once this condition is attained.

In the signal processing, linear codes are known as trans-
form codes. The general paradigm about transform codes
is that the redundancies in the coefficients of y that come
from the excess of the dimension m > n should guarantee
a stability of the signal with respect to noise, quantization,
erasures, etc. This is confirmed by an extensive experimen-
tal and some theoretical work, see e.g. [3, 6, 13, 29–32, 36]
and the bibliography contained therein. Theorem 1.3 thus
states that most orthogonal transform codes are good error-
correcting codes.

Acknowledgements.

E. C. is partially supported in part by a National Science
Foundation grant DMS 01-40698 (FRG) and by an Alfred P.
Sloan Fellowship. M. R. is partially supported by the NSF
grant DMS 0245380. T. T. is supported by a grant from
the Packard Foundation. R. V. is an Alfred P. Sloan Re-
search Fellow He was also partially supported by the NSF
grant DMS 0401032 and by the Miller Scholarship from the

University of Missouri-Columbia. R. V. is grateful to Uni-
versity of Missouri for their hospitality during this period,
when part of this research was started. E. C. and T. T. would
like to thank Rafail Ostrovsky for pointing out possible con-
nections between their earlier work and the error correction
problem. Parts of this paper are an abridged version of [11]
and [43].

2 Proof of Theorem 1.1

The proof of the theorem makes use of two geomet-
rical special facts about the solution d? to (P ′

1). First,
Bd? = By′ which geometrically says that d? belongs to
a known plane of co-dimension p where p. Second, because
e is feasible, we must have ‖d?‖`1 ≤ ‖e‖`1 . Decompose d?

as d? = e + h, thus Bh = 0. As observed in [19]

‖e‖`1 − ‖hT0‖`1 + ‖hT c
0
‖`1 ≤ ‖e + h‖`1 ≤ ‖e‖`1 ,

where T0 is the support of e, and hT0(t) = h(t) for t ∈ T0

and zero elsewhere (similarly for hT c
0

). Hence, h obeys the
cone constraint

‖hT c
0
‖`1 ≤ ‖hT0‖`1 (2.1)

which expresses the geometric idea that h must lie in the
cone of descent of the `1-norm at e. Exact recovery occurs
provided that the null vector is the only point in the inter-
section between {h : Bh = 0} and the set of h obeying
(2.1).

We begin by dividing T c
0 into subsets of size M (we will

choose M later) and enumerate T c
0 as

n1, n2, . . . , nm−|T0|

in decreasing order of magnitude of hT c
0

. Set Tj = {n`, (j−
1)M + 1 ≤ ` ≤ jM}. That is, T1 contains the indices of
the M largest coefficients of hT c

0
, T2 contains the indices of

the next M largest coefficients, and so on.
With this decomposition, the `2-norm of h is concen-

trated on T01 = T0 ∪ T1. Indeed, the kth largest value of
hT c

0
obeys

|hT c
0
|(k) ≤ ‖hT c

0
‖`1/k

and, therefore,

‖hT c
01
‖2

`2 ≤ ‖hT c
0
‖2

`1

m∑
k=M+1

1/k2 ≤ ‖hT c
0
‖2

`1/M.

Further, the `1-cone constraint gives

‖hT c
01
‖2

`2 ≤ ‖hT0‖2
`1/M ≤ ‖hT0‖2

`2 · |T0|/M

and thus

‖h‖2
`2 = ‖hT01‖2

`2 + ‖hT c
01
‖2

`2

≤ (1 + |T0|/M) · ‖hT01‖2
`2 .

(2.2)



Observe now that

‖Bh‖`2 = ‖BT01hT01 +
∑
j≥2

BTj hTj‖`2

≥ ‖BT01hT01‖`2 − ‖
∑
j≥2

BTj
hTj

‖`2

≥ ‖BT01hT01‖`2 −
∑
j≥2

‖BTj hTj‖`2

≥
√

1− δM+|T0| ‖hT01‖`2−√
1 + δM

∑
j≥2

‖hTj‖`2 .

Set ρM = |T0|/M . As we shall see later,∑
j≥2

‖hTj
‖`2 ≤

√
ρM · ‖hT0‖`2 , (2.3)

and since Bh = 0, this gives

[
√

1− δM+|T0| −
√

ρM

√
1 + δM ] · ‖hT01‖`2 ≤ 0. (2.4)

It then follows from (2.2) that h = 0 provided that the
quantity

√
1− δM+|T0| −

√
ρM

√
1 + δM is positive. Take

M = 3|T0| for example. Then this quantity is positive if
δ3|T0| + 3δ4|T0| < 2. Since |T0| ≤ r, this follows from
(1.6).

It remains to argue about (2.3). Observe that by con-
struction, the magnitude of each coefficient in Tj+1 is less
than the average of the magnitudes in Tj :

|hTj+1(t)| ≤ ‖hTj‖`1/M.

Then
‖hTj+1‖2

`2 ≤ ‖hTj‖2
`1/M

and (2.3) follows from∑
j≥2

‖hTj
‖`2 ≤

∑
j≥1

‖hTj
‖`1/

√
M

≤ ‖hT0‖`1/
√

M ≤
√
|T0|/M · ‖hT0‖`2 .

3 Proof of Theorem 1.3

3.1 Low-dimensional facets of polytopes.

Theorem 1.3 turns out to be equivaent to a problem of
counting lower-dimensional facets of polytopes. Let Bm

1

denote the unit ball with respect to the 1-norm; it is some-
times called the unit octahedron. The polar body is the unit
cube Bm

∞ := [−1, 1]m. Note that the range of the matrix
G is an n-dimensional subspace uniformly distributed over
the Grassmannian. Thus the conclusion of Theorem 1.3 can

be reformulated as follows. Let y ∈ Y be an unknown vec-
tor, and we are given a vector y′ in Rm that differs from
y on at most r coordinates. Then y can be exactly recon-
structed from y′ as the solution to the minimization problem
(P ′

1). This means that the affine subspace z + Y is tangent
to the unit octahedron at point z, where z = y′ − y. This
should happen for all z from the coordinate subspaces RI

with |I| = r. By the duality, this means that the subspace
Y ⊥ intersects all (m − r)-dimensional facets of the unit
cube. The section of the cube by the subspace Y ⊥ forms
an origin-symmetric polytope of dimension R and with 2m
facets.

Our problem can thus be stated as a problem of count-
ing lower-dimensional facets of polytopes. Consider an
R-dimensional origin symmetric polytope with 2m facets.
How many (R− r)-dimensional facets can it have?

Clearly1, no more than 2r
(
m
r

)
. Does there exist a poly-

tope with that many facets? Our ability to construct such a
polytope is equivalent to the existence of the efficient error
correcting code. Indeed, looking at the canonical realiza-
tion of such a polytope as a section of the unit cube by a
subspace Y ⊥, we see that Y ⊥ intersects all the (m − r)-
dimensional facets of the cube. Thus Y satisfies the conclu-
sion of Theorem 1.3. We can thus state Theorem 1.3 in the
following form:

Theorem 3.1. There exists an R-dimensional symmetric
polytope with m facets and with the maximal number of
(R − r)-dimensional facets (which is 2r

(
m
r

)
), provided

R ≥ Cr log(m/r). A random section of the cube forms
such a polytope with probability 1− e−cR.

3.2 Notation.

The p-norm (1 ≤ p < ∞) on Rm is defined by ‖x‖p
p =∑

i |xi|p, and for p = ∞ it is ‖x‖∞ = maxi |xi|. The
unit ball with respect to the p-norm on Rn is denoted by
Bm

p . When the p-norm is considered on a coordinate sub-
space RI , I ⊂ {1, . . . ,m}, the corresponding unit ball is
denoted by BI

p . The unit Euclidean sphere in a subspace
E is denoted by S(E). The normalized rotational invariant
Lebesgue measure on S(E) is denoted by σE . The orthog-
onal projection in onto a subspace E is denoted by PE . The
standard Gaussian measure on E (with the identity covari-
ance matrix) is denoted by γH . When E = Rd, we write
σd−1 for σE and γd for γE .

3.3 Duality.

The proof of Theorem 1.3 begins with a typical duality
argument, leading to the same reformulation of the prob-

1Any such facet is the intersection of some r facets of the polytope of
full dimension R−1; there are m facets to choose from, each coming with
its opposite by the symmetry.



lem as in [10]. The conclusion of Theorem 1.3 is actually
equivalent to the fact that Y forms a tangent space to the
unit octahedron at all points whose support size is r (see the
picture on p.2):

(z + Y ) ∩ interior (Bm
1 ) = ∅ for all z ∈

⋃
|I|=r

BI
1 .

By Hahn-Banach theorem, this separation is equivalent to
the following (denoting E = Y ⊥):

A random R-dimensional subspace E in Rm intersects
all the (m − r)-dimensional facets of the unit cube with
probability at least 1− e−cR.

It will be enough to show that E intersects one fixed
facet with the probability 1 − e−cR. Indeed, since the to-
tal number of the facets is N = 2r

(
m
r

)
, the probability that

E misses some facet would be at most Ne−cR ≤ e−c1R

with an appropriate choice of the absolute constant in (1.7).

3.4 Realizing a random subspace.

We are to show that a random R-dimensional subspace
E intersects one fixed (m−r)-dimensional facet of the unit
cube Bm

∞ with high probability. Without loss of generality,
we can assume that our facet is

F = {(w1, . . . , wm−r, 1, . . . , 1), all |wj | ≤ 1},

whose center is θ = (0, . . . , 0, 1, . . . , 1) (with m−r zeroes).
We are interested in is

P := P{E ∩ F 6= ∅}.

We shall restrict our attention to the linear span of F ,

lin(F ) :={(w1, . . . , wm−r, t, . . . , t) : t, w1, . . . , wm−r∈R},

and even to its the affine span

aff(F ) :={(w1, . . . , wm−r, 1, . . . , 1) : w1, . . . , wm−r ∈R}.

Only the random affine subspace E ∩aff(F ) matters for us,
because

P = P
{

(E ∩ aff(F )) ∩ F 6= ∅
}

.

The dimension of that affine subspace is almost surely

l := dim(E ∩ aff(F )) = R− r.

We can realize the random affine subspace E ∩ aff(F )
(or rather a random subspace with the same law) by the fol-
lowing algorithm:

1. Select a random variable D with the same law as
dist(θ, E ∩ aff(F )).

2. Select a random subspace L0 in the
Grassmanian Gm−r,l. It will realize the “direc-
tion” of E ∩ aff(F ) in aff(F ).

3. Select a random point z on the Euclidean sphere D ·
S(L⊥0 ) of radius D, according to the uniform distribu-
tion on the sphere. Here L⊥0 is the orthogonal com-
plement of L0 in Rm−r. The vector z will realize the
distance from the affine subspace E ∩ aff(F ) to the
center θ of F .

4. Set L = θ + z + L0. Thus the random affine subspace
L has the same law as E ∩ aff(F ).

!

F

0
Laff(F)EE 

z

Hence

P = P{L ∩ F 6= ∅} = P{(z + L0) ∩Bm−r
∞ 6= ∅}

= P{z ∈ PL⊥0
Bm−r
∞ }.

H := L⊥0 is a random subspace in Gm−r,m−r−l =
Gm−r,m−R. By the rotational invariance of z ∈ D · S(H),

P =
∫

R+

∫
Gm−r,m−R

σH(D−1PHBm−r
∞ ) dν(H) dµ(D)

(3.1)
where ν is the normalized Haar measure on Gm−r,m−R and
µ is the law of D. We shall bound P in two steps:

1. Prove that the distance D is small with high probabil-
ity;

2. Prove that a suitable multiple of the random projec-
tion PHBm−r

∞ has an almost full Gaussian (thus also
spherical) measure.

3.5 The distance D from the center of the facet to
a random subspace

We shall first relate D, the distance to the affine subspace
E∩aff(F ), to the distance to the linear subspace E∩lin(F ).
Equivalently, we compute the length of the projection onto
E ∩ lin(F ).

Lemma 3.2.

‖PE∩lin(F )θ‖2 =
√

r

r + D2
‖θ‖2.



Proof. Let f be the multiple of the vector PE∩lin(F )θ such
that f − θ is orthogonal to θ. Such a multiple exists and is
unique, as this is a two-dimensional problem.

PE  lin(F)!

0

f

!

Then f ∈ E ∩ aff(F ). Notice that D = ‖f −
θ‖2. By the similarity of the triangles with the vertices
(0, θ, PE∩lin(F )θ) and (0, f, θ), we conclude that

‖PE∩lin(F )θ‖2 =
r√

r + D2
=

√
r

r + D2
‖θ‖2

because ‖θ‖2 =
√

r. This completes the proof.

The length of the projection of a fixed vector onto a ran-
dom subspace in Lemma 3.2 is well known. The asymptot-
ically sharp estimate was computed by S. Artstein [1], but
we will be satisfied with a much weaker elementary esti-
mate, see e.g. [40, Theorem 15.2.2].

Lemma 3.3. Let θ ∈ Rd−1 and let G be a random subspace
in Gd,k. Then

P
{

c

√
k

d
‖θ‖2 ≤ ‖PGθ‖2 ≤ C

√
k

d
‖θ‖2

}
≥ 1− 2e−ck.

We apply this lemma for G = E ∩ lin(F ), which is a
random subspace in the Grassmanian of (l+1)-dimensional
subspaces of lin(F ). Since dim lin(F ) = m − r + 1, we
have

P
{
‖PE∩lin(F )θ‖2 ≥ c

√
l + 1

m− r + 1
‖θ‖2

}
≥ 1− 2e−cl.

Together with Lemma 3.2 this gives

P
{

D ≤ c
√

m− r

√
r

l

}
≥ 1− 2e−cl. (3.2)

Note that
√

m− r is the radius of the Euclidean ball cir-
cumscribed on the facet F . The statement D ≤

√
m− r

would only tell us that the random subspace E intersects the
circumscribed ball, not yet the facet itself. The ratio r/l in
(3.2) will be chosen logarithmically small, which will force
E intersect also the facet F .

3.6 Gaussian measure of random projections of
the cube

By (3.1) and (3.2),

P ≥
∫

Gm−r,m−R

σH

( c√
m− r

√
l

r
PHBm−r

∞

)
dν(H)

− 2e−cl.

We can replace the spherical measure σH by the Gaussian
measure γH via a simple lemma:

Lemma 3.4. Let K be a star-shaped set in Rd. Then

γd(c
√

d ·K)− e−d ≤ σd−1(K)

≤ γd(C
√

d ·K) · (1 + e−d).

Proof. Passing to polar coordinates, by the rotational in-
variance of the Gaussian measure we see that there exists
a probability measure µ on R+ so that the Gaussian mea-
sure of every set A can be computed as

∫
R+ σt(A) dµ(t),

where σt denotes the normalized Lebesgue measure on the
Euclidean sphere of radius t in Rd. Since K is star-shaped,
σt(K) is a non-increasing function of t. Hence

γd(K) ≥
∫ C

√
d

0

σt(K) dµ(t) ≥ σC
√

d(K) · γd(C
√

dBd
2 )

and

γd(K) ≤
∫ c

√
d

0

dµ(t) + σc
√

d(K)
∫ ∞

c
√

d

dµ(t)

≤ γd(c
√

d ·Bd
2 ) + σc

√
d(K).

The classical large deviation inequalities imply γd(c
√

d ·
Bd

2 ) ≤ e−d and γd(C
√

dBd
2 ) ≥ 1 − e−d/2. Using the

above argument for c
√

d · K, we conclude that γd(c
√

d ·
K) ≤ e−d +σd−1(K) and γd(C

√
d ·K) ≥ σd−1(K) · (1−

e−d/2).

Using Lemma 3.4 in the space H of dimension d = m−
R, we obtain

P ≥
∫

Gm−r,m−R

γH

(
c

√
m−R

m− r

√
l

r
PHBm−r

∞

)
dν(H)

− 2e−cl − em−R.

By choosing the absolute constant c in the assumption r <
cm appropriately small, we can assume that 2r < R <
m/2. Thus

P ≥
∫

Gm−r,m−R

γH

(
c

√
R

r
PHBm−r

∞

)
dν(H)− 2e−cR.

(3.3)



We now compute the Gaussian measure of random projec-
tions of the cube.

Proposition 3.5. Let H be a random subspace in Gn,n−k,
k < n/2. Then the inequality

γH

(
C

√
log

n

k
PHBn

∞

)
≥ 1− e−ck

holds with probability at least 1−e−ck in the Grassmanian.

The proof of this estimate will follow from the concen-
tration of Gaussian measure, combined with the existence
of a big Euclidean ball inside a random projection of the
cube.

Lemma 3.6 (Concentration of Gaussian measure). Let ε >
0 and let A ⊂ Rn be a measurable set such that γn(A) ≥
e−ε2n. Then

γn(A + Cε
√

nBn
2 ) ≥ 1− e−ε2n.

With the stronger assumption γ(A) ≥ 1/2, this lemma is
the classical concentration inequality, see [37] 1.1. The fact
that the concentration holds also for exponentially small
sets follows formally by a simple extension argument that
was first noticed by D. Amir and V. Milman in [2], see [37]
Lemma 1.1.

The optimal result on random projections of the cube is
due to Garnaev and Gluskin [28].

Theorem 3.7 (Euclidean projections of the cube [28]). Let
H be a random subspace in Gn,n−k, where k = αn < n/2.
Then with probability at least 1−e−ck in the Grassmanian,
we have

c(α) PH(
√

nBn
2 ) ⊆ PH(Bn

∞) ⊆ PH(
√

nBn
2 )

where

c(α) = c

√
α

log(1/α)
.

Proof of Proposition 3.5. Let g1, g2, . . . be independent
standard Gaussian random variables. Then for a suitable
positive absolute constant c and for every 0 < ε < 1/2,

γn

(
C

√
log

1
ε

Bn
∞

)
= P

{
max

1≤j≤n
|gi| ≤ C

√
log

1
ε

}
≥ (1− ε2/10)n ≥ e−ε2n.

Since for every measurable set A and every subspace H one
has γH(PHA) ≥ γ(A), we conclude that

γH

(
C

√
log

1
ε

PHBn
∞

)
≥ e−ε2n for 0 < ε < 1/2.

Then by Lemma 3.6,

γH

(
C

√
log

1
ε

PHBn
∞ + Cε

√
n PHBn

2

)
≥ 1− e−ε2n

(3.4)
for 0 < ε < 1/2. Theorem 3.7 tells us that for a random
subspace H , if ε = c

√
α = c

√
k/n, then Euclidean ball is

absorbed by the projection of the cube in (3.4):

ε
√

n PHBn
2 ⊂ C

√
log

1
ε

PHBn
∞.

Hence for a random subspace H and for ε as above we have

γH

(
C

√
log

1
ε

PHBn
∞

)
≥ 1− e−ε2n,

which completes the proof.

Coming back to (3.3), we shall use Lemma 3.5 for a ran-
dom subspace H in the Grassmanian Gm−r,m−R. We con-
clude that if

c

√
R

r
≥ C

√
log

m− r

R− r
, (3.5)

then with probability at least 1− e−cR in the Grassmanian,

γH

(
c

√
R

r
PHBm−r

∞

)
≥ 1− e−cR.

Since m−r
R−r ≤

m
r , the choice of R in (1.7) satisfies condition

(3.5). Thus (3.3) implies

P ≥ 1− 3e−cR.

This completes the proof.

3.7 Optimality

The logarithmic term in Theorems 1.3 and 4.1 is nec-
essary, at least in the case of small r. Indeed, combining
formula (3.1) and Lemmas 3.2, 3.3, 3.4, we obtain

P ≤
∫

Gm−r,m−R

γH

(
c

√
R

r
PHBm−r

∞

)
dν(H) + 2e−cR.

(3.6)
To estimate the Gaussian measure we need the following

Lemma 3.8. Let x1, . . . xs be vectors in Rs. Then

γs

 s∑
j=1

[−xj , xj ]

 ≤ γs(M ·Bs
∞),

where M = maxj=1,...s ‖xj‖2.



The sum in the Lemma is understood as the Minkowski
sum of sets of vectors, A + B = {a + b | a ∈ A, b ∈ B}.

Proof. Let F = span(x1, . . . xs−1) and let V = F⊥. Let
v ∈ V be a unit vector. Set Z =

∑s−1
j=1[−xj , xj ]. Then

γs

( s∑
j=1

[−xj , xj ]
)

=
∫

V

γF

(( s∑
j=1

[−xj , xj ]− tv
)
∩ F

)
dγV (t)

=
∫

[−PV xs,PV xs]

γF (Z + tPF xs)dγV (t).

By Anderson’s Lemma (see [38]), γF (Z + tPF xs) ≤
γF (Z). Thus,

γs

( s∑
j=1

[−xj , xj ]
)
≤ γV ([−PV xs, PV xs]) · γF (Z)

≤ γ1([−M,M ]) · γF (Z).

The proof of the Lemma is completed by induction.

The Gaussian measure of a projection of the cube can be
estimated as follows.

Proposition 3.9. Let H be any subspace in Gn,n−k, k <
n/2. Then

γH

( c√
k

√
log

n

k
PHBn

∞

)
≤ e−cn/k. (3.7)

Proof. Decompose I into the disjoint union of the sets
J1, . . . Js+1, so that each of the sets J1, . . . Js contains k+1
elements and (k+1)s < n ≤ (k+1)(s+1). Let 1 ≤ j ≤ s.
Let Uj = H∩(PHei, i ∈ {1, . . . n}\Jj)⊥, where e1, . . . en

is the standard basis of Rn. Then Uj is a one-dimensional
subspace of H . Set

xj =
∑
i∈Jj

εiPHei,

where the signs εi ∈ {−1, 1} are chosen to maximize
‖PUj xj‖2. Let E = span(x1, . . . xs−1). Since PUj B

n
∞ =

[−xj , xj ], we get

PHBn
∞ ∩ E =

s∑
j=1

[−xj , xj ],

where the sum is understood in the sense of Minkowski ad-
dition. Since ‖PUJ

‖ = 1, ‖xj‖2 ≤ C
√

k and by Lemma
3.8,

γE

 c̄
√

log s√
k

s∑
j=1

[−xj , xj ]

 ≤ γE(c′
√

log s ·BE
∞)

≤ e−cs

for some appropriately chosen constant c̄. Finally, log-
concavity of the Gaussian measure implies that for any con-
vex symmetric body K ⊂ H

γH(K) ≤ γE(K ∩ E).

Combining (3.6) and (3.7) we obtain P ≤ 2e−cR, when-
ever R ≤ c log(m/r).

4 Reconstruction of signals from linear mea-
surements.

The heuristic idea that guides Statistical Learning The-
ory is that a function f from a small class should be deter-
mined by few linear measurements. Linear measurements
are generally given by some linear functionals Xk in the
dual space, which are fixed (in particular are independent of
f ). Most common measurements are point evaluation func-
tionals; the problem there is to interpolate f between known
values while keeping f in the known (small) class. When
the evaluation points are chosen at random, this becomes the
‘proper learning’ problem of the Statistical Learning The-
ory (see [41]).

We shall however be interested in general linear mea-
surements. The proposal to learn f from general linear mea-
surements (‘sensing’) has been originated recently from a
criticism of the current methodology of signal compression.
Most of real life signals seem to belong to small classes,
as they carry much of unwanted information that can be
discarded. Donoho [16] then questions the conventional
scheme of signal processing, where the whole signal must
first be acquired and only then compressed. Instead, can
one directly acquire (‘sense’) the essential part of the sig-
nal, via few linear measurements? Similar issues are raised
in [10]. We shall operate under the assumption that some
technology allows us to take linear measurements in certain
fixed ‘directions’ Xk.

We will assume that our signal f is discrete, so we view
it as a vector in Rm. Suppose we can take linear measure-
ments 〈f,Xk〉 with some fixed vectors X1, X2, . . . , XR in
Rm. The discussion in the introduction suggests to recon-
struct f as a solution to the Basis Pursuit minimization
problem

(BP ) min ‖g‖1 subject to 〈g,Xk〉 = 〈f,Xk〉 ∀k.

4.1 Functions with small support

In the class of functions with small support, one can
hope for exact reconstruction. In previous work [10], two
of the authors showed that every fixed function f with sup-
port |suppf | ≤ r can indeed be recovered by (BP), cor-
rectly with the polynomial probability 1−m−const, from the



R = Cr log m Gaussian measurements. However, the poly-
nomial probability is clearly not sufficient to deduce that
there is one set vectors Xk that can be used to reconstruct
all functions f of small support. The following equivalent
form of Theorem 1.3 does yield a uniform exact reconstruc-
tion. It provides us with one set of linear measurements
from from which we can effectively reconstruct every sig-
nal of small support.

Theorem 4.1 (Uniform Exact Reconstruction). Let m, r <
cm and R be positive integers satisfying R ≥ Cr log(m/r).
The independent standard Gaussian vectors Xk in Rm sat-
isfy the following with probability at least 1−e−cR. Let f ∈
Rm be an unknown function of small support, |suppf | ≤ r,
and we are given R measurements 〈f,Xk〉. Then f can be
exactly reconstructed from these measurements as a solu-
tion to the Basis Pursuit problem (BP).

This theorem gives uniformity in [10], improves the
polynomial probability to an exponential probability, and
improves upon the number R of measurements (which was
R ≥ Cr log m in [10]). Donoho [16] proved a weaker form
of Theorem 4.1 with R/r bounded below by some function
of m/r.

Proof. Write g = f − u for some u ∈ Rm. Then (BP′)
reads as

min ‖u− f‖1 subject to 〈u, Xk〉 = 0, ∀k.

The constraints here define a random (n = m − R)-
dimensional subspace Y of Rm. Now apply Theorem 1.3
with y = 0 and y′ = f . It states that the unique solution to
the minimization problem above is u = 0. Therefore, the
unique solution to (BP′) is f .

4.2 Compressible functions

In a larger class of compressible functions [16], we can
only hope for an approximate reconstruction. This is a class
of functions f that are well compressible by a known or-
thogonal transform, such as Fourier or wavelet. This means
that the coefficients of f with respect to a certain known
orthogonal basis have a power decay:

f∗(s) ≤ s−1/p, s = 1, . . . ,m (4.1)

where f∗ denotes a nonincreasing rearrangement of f .
Many natural signals are compressible for some 0 < p < 1,
such as smooth signals and signals with bounded variations
(see [10]), Theorem 4.1 implies, by the argument of [10],
that functions compressible in some basis can be approxi-
mately reconstructed from few fixed linear measurements.
This is an improvement of a result of Donoho [16].

Corollary 4.2 (Uniform Approximate Reconstruction). Let
m and r be positive integers. The independent standard
Gaussian vectors Xk in Rm satisfy the following with prob-
ability at least 1 − e−cR. Assume that an unknown func-
tion f ∈ Rm satisfies either (4.1) for some 0 < p < 1 or
‖f‖1 ≤ 1 for p = 1. Suppose that we are given R measure-
ments 〈f,Xk〉. Then f can be approximately reconstructed
from these measurements: a unique solution g to the Basis
Pursuit problem (BP) satisfies

‖f − g‖2 ≤ Cp

( log(m/R)
R

) 1
p−

1
2

where Cp depends on p only.

Corollary 4.2 was proved by Donoho [16] un-
der an additional assumption that m ∼ CRα

for some α > 1. Notice that in this case
log(m/R) ∼ log m. Now this assumption is removed.
In [10] Corollary 4.2 was proven without the uniformity
in f due to a weaker (polynomial) probability. Finally,
Corollary 4.2 also improves upon the approximation error
(there is now the ratio m/r instead of m in the logarithm).

5 Numerical Experiments

In this section, we empirically investigates the perfor-
mance of our decoding strategy. Of special interest is the
location of the breakpoint beyond which `1 fails to decode
accurately. To study this issue, we performed a first series
of experiments as follows:

1. select n (the size of the input signal) and m so that with
the same notations as before, A is an m by n matrix;
sample A with independent Gaussian entries and select
the plaintext f at random;

2. select S as a percentage of m;

3. select a support set T of size |T | = S uniformly at
random, and sample a vector e on T with independent
and identically distributed Gaussian entries, and with
standard deviation about that of the coordinates of the
output (Af) (the errors are then quite large compared
to the “clean” coordinates of Af )2;

4. make ỹ = Af + e, solve (P1) and obtain f?; compare
f to f?;

5. repeat 100 times for each S, and for various sizes of n
and m.

2The results presented here do not seem to depend on the actual distri-
bution used to sample the errors.



The results are presented in Figure 1. In these experi-
ments, we choose n = 128, and set m = 2n (Figure 1(a))
or m = 4n (Figure 1(b)). Our experiments show that the
linear program recovers the input vector all the time as long
as the fraction of the corrupted entries is less or equal to
15% in the case where m = 2n and less or equal to 35%
in the case where m = 4n. We repeated these experiments
for different values of n, e.g. n = 256 and obtained very
similar recovery curves.
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Figure 1. `1-recovery of an input signal from
y′ = Af + e with A an m by n matrix with in-
dependent Gaussian entries. In these experi-
ments, we set n = 128. (Top) Success rate of
(P1) for m = 2n. (Bottom) Success rate of (P1)
for m = 4n. On top, exact recovery occurs as
long as the corruption rate does not exceed
15%. The bottom breakdown is near 35%.

It is clear that versions of Theorem 1.2 exist for other
type of random matrices, e.g. binary matrices. In the next
experiment, we take the plaintext f as a binary sequence of
zeros and ones (which is generated at random), and sample
A with i.i.d entries taking on values in {±1}, each with
probability 1/2. To recover f , we solve the linear program

min
g∈Rn

‖y −Ag‖`1 subject to 0 ≤ g ≤ 1, (5.1)

and round up the coordinates of the solution to the near-
est integer. We follow the same procedure as before except
that now, we select S locations of Af at random (the cor-
ruption rate is again S/m) and flip the sign of the selected
coordinates. We are again interested in the location of the
breakpoint.
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Figure 2. `1-recovery of a binary sequence
from corrupted data y′; A an m by n matrix
with independent binary entries and the vec-
tor of errors is obtained by randomly select-
ing coordinates of Af and flipping their sign.
In these experiments, we set n = 128. (Top)
Success rate for m = 2n. (Bottom) Success
rate for m = 4n. On top, exact recovery oc-
curs as long as the corruption rate does not
exceed 22.5%. The bottom breakdown is near
35%.

The results are presented in Figure 2. In these exper-
iments, we choose n = 128 as before, and set m = 2n
(Figure 2(a)) or m = 4n (Figure 2(b)). Our experiments
show that the linear program recovers the input vector all
the time as long as the fraction of the corrupted entries is
less or equal to 22.5% in the case where m = 2n and less
than about 35% in the case where m = 4n. We repeated
these experiments for different values of n, e.g. n = 256



and obtained similar recovery curves.
In conclusion, our error correcting strategy seems to en-

joy a wide range of effectiveness.

6 Discussion

A first impulse to find the sparsest solution to an under-
determined system of linear equations might be to solve the
combinatorial problem

(P ′′
0 ) min

d∈Rm
‖d‖`0 subject to Bd = Be.

To the best of our knowledge, solving this problem es-
sentially require exhaustive searches over all subsets of
columns of B and is NP-hard [42]. Our results, however,
establish a formal equivalence between (P ′′

0 ) and (P ′′
1 ) pro-

vided that the unknown vector e is sufficiently sparse. In
this direction, we would like to mention a series of papers
[17, 19, 33, 46] showing the exact equivalence between the
two programs (P ′′

0 ) and (P ′′
1 ) for special matrices obtained

by concatenation of two orthonormal bases. In this liter-
ature, equivalence holds if e has fewer than ρ ·

√
m en-

tries; compare with Theorem 1.2 which tolerates a fraction
of nonzero entries proportional to m.

For Gaussian random matrices, however, [14] proved
that the equivalence holds when the number of nonzero en-
tries may be as large as ρ · m, where ρ > 0 is some very
small and unspecified positive constant independent of m.
This finding is of course similar to ours but the ideas in
this paper go much further. First, the paper establishes de-
terministic results showing that exact decoding occurs pro-
vided the coding matrix A obeys the conditions of Theorem
1.1. It is of interest because our own work [8, 10] shows
that the condition of Theorem 1.1 with large values of r for
many other types of matrices, and especially matrices ob-
tained by sampling rows or columns of larger Fourier ma-
trices. These alternatives might be of great practical interest
because they would come with fast algorithms for apply-
ing A or A∗ to an arbitrary vector g and, hence, speed up
the computations to find the `1-minimizer. And second, the
paper of course links solutions to sparse underdetermined
systems to a linear programming problem for error correc-
tion, which we believe is new.

An natural feature of our error correction code is its ro-
bustness. Simple linear algebra yields that the solution to
(P ′

1) is stable with respect to the 1-norm – in the same way
as the solution to (P ′

2) is stable with respect to the 2-norm,
see [10]. Indeed, it is not hard to show that, once Theorem
1.3 holds, the unknown vector y in Theorem 1.3 can be ap-
proximately recovered from y′′ = y′ + h, where h ∈ Rm

is any additional error vector of small 1-norm (see [10]).
Namely, the solution u to the Basis Pursuit problem

min
u∈Y

‖u− y′′‖1

satisfies ‖u− y‖1 ≤ 4‖h‖1.
This implies a possibility of quantization of the coeffi-

cients in the process of encoding and yields robust error
correcting codes over alphabets of polynomial size, with
a Gilbert-Varshamov type bound, and with quadratic time
encoders and polynomial time decoders. Indeed, we can
now describe an (m,n, r)-error correcting code under the
Gilbert-Varshamov type assumption (1.7), with input words
x of length n over the alphabet {1, . . . , p} and the encoded
words y of length m over the alphabet {1, . . . , Cpn3/2}.
The encoder takes x ∈ {1, . . . , p}n, computes y = Qx
where Q is the orthogonal projection onto Y = range(A),
and outputs the ŷ whose coefficients are the quantized
coefficients of y with step 1

10m . Then ŷ ∈ 1
10mZm ∩

[−p
√

m, p
√

m]m, which by rescaling can be identified with
{1, . . . , Cpn3/2}, because we can assume that m ≤ 2n.
The decoder takes y′ ∈ 1

10mZm, finds the minimizer u to
(P ′

1), inverts to x′ = QT u and outputs x̂′ whose coefficients
are the quantized coefficients of x′ with step 1.

This is indeed an (m,n, r)-error correcting code. If
y′ differs from ŷ on at most r coordinates, this and the
condition ‖ŷ − y‖1 ≤ 1

10 implies by the robustness that
‖u − y‖1 ≤ 0.4. Hence ‖x′ − x‖2 = ‖QT (u − y)‖2 =
‖u − y‖2 ≤ ‖u − y‖1 ≤ 0.4. Thus x̂′ = x, so the decoder
recovers x from y′ correctly.

The robustness also implies a “continuity” of our error
correcting codes. If the number of corrupted coordinates in
the received message y′ is bigger than r but is still a small
fraction, then the (m,n, r)-error correcting code above can
still recover y up to some small fraction of the coordinates.
See [9] for some further discussion of stability of basis pur-
suit methods.

In our linear programming model, the plaintext and ci-
phertext had real-valued components. Another intensively
studied model occurs when the plaintext and ciphertext take
values in the finite field F2 := {0, 1}, and the transforma-
tion x 7→ Ax is linear with respect to F2 rather than R
(note that these are not the same as the quantized linear
transformations discussed previously). In recent work of
Feldman et al. [24], [25], [26], linear programming meth-
ods (based on relaxing the space of codewords to a convex
polytope) were developed to establish a polynomial-time
decoder which can correct a constant fraction of errors, and
also achieve the information-theoretic capacity of the code.
There is thus some intriguing parallels between those works
and the results in this paper, however there appears to be no
direct overlap as our methods are restricted to real-valued
texts, and the work cited above requires texts in F2. Also,
our error analysis is deterministic (assuming the isometry
condition) and is thus guaranteed to correct arbitrary errors
provided that they are sufficiently sparse.

We would like to close this paper by pointing out that for
Gaussian matrices, say, there is a critical point ρc (depend-



ing on n and m) such that accurate decoding occurs for all
plaintexts and corrupted patterns (in the sense of Theorem
1.1) as long as the fraction of corrupted entries does not ex-
ceed ρc. It would be of theoretical interest to identify this
critical threshold, at least in the limit of large m and n, with
perhaps n/m converging to a fixed ratio. From a different
viewpoint, this is asking about how far does the equivalence
between a combinatorial and a related convex problem hold.
We pose this as an interesting challenge.

References

[1] S. Artstein. Proportional concentration phenomena on the
sphere. Israel J. Math. 132: 337–358, 2002.

[2] D. Amir, and V. D. Milman. Unconditional and symmetric
sets in n-dimensional normed spaces. Israel J. Math. 37: 3–
20, 1980.

[3] B. Beferull-Lozano, and A. Ortega. Efficient quantization
for overcomplete expansions in Rn. IEEE Trans. Inform.
Theory 49: 129–150, 2003.

[4] S. Boyd, and L. Vandenberghe. Convex Optimization. Cam-
bridge University Press, 2004.

[5] P. G. Casazza, and J. Kovacević. Equal-norm tight frames
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