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1. Representation theory for finite non-abelian groups

In last week’s notes we obtained a satisfactory theory of the Fourier transform on
finite abelian groups, and then more generally for locally compact abelian groups.
Now let’s do it for finite non-abelian groups. (The case of infinite non-abelian
groups is significantly more complicated, and will only be discussed in an ad hoc
manner here.) Thus we let G = (G, ·) be a finite multiplicative group, which we
again give the discrete topology and σ-algebra, and normalised counting measure

∫

G

f(x) dx :=
1

#G

∑

x∈G

f(x).

Thus we have the Hilbert space L2(G) as before.

One might naively hope that the theory of multiplicative characters χ : G → S1,
which worked so well in the abelian case, carries over easily to the non-abelian
case. For instance, it is not hard to adapt the abelian theory to show that any two
multiplicative characters are orthogonal, which is an encouraging start. However,
a basic problem arises: there are just not enough multiplicative characters to go
around. Indeed, if χ : G → S1 is a multiplicative character and x, y ∈ G, and
[x, y] := xyx−1y−1 is the commutator of x and y, then

χ([x, y]) = χ(x)χ(y)χ(x)−1χ(y)−1 = 1.

Thus if [G,G] is the group generated by all the commutators [x, y] (which is easily
verified to be normal), then every multiplicative character annihilates [G,G], and
thus descends to a character on the group G/[G,G] (which is easily verified to be
abelian). Using the abelian theory, we thus see that the number of multiplicative
characters is only #G/#[G,G], which is not enough to span L2(G) in the non-
abelian case. Something more is needed. (For instance, if G = Sn, then [G,G] =
An, and so there are only #Sn/#An = 2 characters - the trivial character 1 and
the signature sgn : Sn → {−1,+1}.)

To obtain a Fourier theory on G we will use the representation theoretic approach
(which seems to be the best approach we currently have in the noncommutative
setting).
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Definition 1.1 (Unitary representations). LetG be a finite multiplicative group. A
(finite dimensional) unitary representation is a finite-dimensional1 complex Hilbert
space V , together with a homomorphism ρ : G → U(V ) from G to the unitary
group of V , thus for each x ∈ G, ρ(x) : V → V is unitary, and ρ(xy) = ρ(x)ρ(y)
for x, y ∈ G. We define the dimension of ρ to be the (complex) dimension of V .
(More generally, one often sees V used to denote the representation instead of ρ,
although strictly speaking both are abuses of notation, it is the pair (ρ, V ) which
is the representation of G.)

(It turns out that all representations of finite groups can be made unitary by ad-
joining an appropriate Hilbert space structure; see Q1.)

We now give some basic examples of representations. There is the trivial repre-
sentation idV , in which V is an arbitrary Hilbert space (in particular, it could
be C) and idV (x) = idV is the identity on V for every x ∈ G. More generally,
given a multiplicative character χ and an arbitrary Hilbert space V , we have the
representation χidV which assigns the constant multiple χ(x)idV of the identity to
each x ∈ G. There is the regular representation Trans, in which V = L2(G) and
Trans(x) is the left translation by x:

Trans(x)f(y) := f(x−1y).

(Note that it is only left -translation which is a representation: why?) Finally, we
note the zero representation 0, in which V = {0}, and 0(x) = 0. (The zero operator
is usually not unitary - except when V is itself zero!)

In the previous notes we focused primarily on the regular representation and its
subrepresentations, but we shall shortly see that in fact once we understand these
special representations, we in fact can understand all other representations rela-
tively easily.

There are two basic binary operations on representations (analogous to natural
number addition and multiplication, which corresponds here to the special case
where G is trivial). Firstly, Given two representations ρ1 : G → U(V1) and ρ2 :
G → U(V2), we can form their direct sum ρ1 ⊕ ρ2 : G → U(V1 ⊕ V2) by ρ1 ⊕
ρ2(x) := ρ1(x)⊕ ρ2(x), where V1 ⊕ V2 is the direct sum (i.e. orthogonal sum) of V1

and V2, and ρ1(x) ⊕ ρ2(x) is the block-diagonal operator ρ1(x) ⊕ ρ2(x)(v1, v2) :=
(ρ1(x)v1, ρ2(x)v2). We can also form the tensor product ρ1 ⊗ ρ2 : G → U(V1 ⊗ V2),
where V1⊗V2 is the tensor product of the Hilbert spaces V1, V2 (with an orthonormal
basis given by e1,i⊗ e2,j, where e1,i and e2,j range independently over orthonormal
bases of V1, V2 respectively), and ρ1 ⊗ ρ2(x) := ρ1(x)⊗ ρ2(x) is the tensor product
map, thus

(ρ1(x) ⊗ ρ2(x))(v1 ⊗ v2) = (ρ1(x)v1)⊗ (ρ2(x)v2)

for any v1 ∈ V1, v2 ∈ V2. Thus for instance the zero representation is (up to
isomorphism) an identity element for direct sum, while the trivial representation on
C is (again up to isomorphism) the identity element for tensor product. The tensor

1One can easily use Zorn’s lemma to express infinite-dimensional representations of finite

groups as the direct sum of finite-dimensional ones, but we will only need the finite-dimensional

theory here.
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product of a character representation χ1idV1
with another χ2idV2

is (χ1χ2)idV1⊗V2
.

The exact relationship between tensor product and direct sum is a very interesting
question - the Clebsch-Gordan problem - but we will not dwell on it here.

Problem 1.2. Verify that direct sum and tensor product are commutative and asso-
ciative up to isomorphism, and that tensor product distributes over direct sum up
to isomorphism; this further reinforces the analogy between these operations and
addition and multiplication.

A representation ρ is faithful when the map ρ : G → U(V ) is injective. Thus
for instance the trivial representation is only faithful when G is trivial; at the
other extreme, the regular representation is always faithful. Informally, a faithful
representation is “big” enough to capture all the behaviour of G, otherwise it is only
really capturing the action of a quotient of G. A representation ρ is free if there
are no fixed points other than the origin; more precisely, for every non-zero v ∈ V ,
there exists x ∈ G such that ρ(x)v 6= v. Observe that the regular representation is
also free. Informally, a free representation contains no trivial component.

Problem 1.3. Let ρ : G → U(V ). Show that there exists a unique normal subgroup
H of G and faithful representation ρ̃ : G/H → U(V ) such that ρ is the composition
of the quotient map from G to G/H and ρ̃. Also, show that ρ can be uniquely
expressed as the direct sum of a free representation and a trivial representation.
Then combine these two reductions, and express an arbitrary representation as the
direct sum of a trivial representation, and a faithful free representation of a quotient
group.

Problem 1.4. Give examples of a representation which is faithful but not free, and
vice versa.

A morphism from one representation ρ1 : G → U(V1) to another ρ2 : G → U(V2) is
a linear map φ : V1 → V2 which intertwines the two representations, thus φ◦ρ1(x) =
ρ2(x) ◦ φ. If φ is invertible, then the inverse is also a morphism, and φ is then said
to be an isomorphism, and ρ1 and ρ2 are isomorphic. This is clearly an equivalence
relation, and so it is meaningful to talk about a representation ρ obeying some
property “up to isomorphism”.

A subrepresentation of a representation ρ : G → U(V ) is a representation ρW :
G → U(W ), where W is an invariant subspace of V (i.e. W is preserved by all the
transformations ρ(x) for x ∈ G), and ρ|W (x) : W → W is the restriction of ρ(x) to
W (which is automatically unitary). From last week we already saw the importance
of invariant subspaces in abstract Fourier analysis. We say that a representation is
irreducible if is non-zero, and it does not contain a proper non-zero subrepresenta-
tion. From the unitary we observe that if W is an invariant subspace in V , then so
is the orthogonal complement W⊥; as a consequence we see that irreducibility for
representations of finite groups is the same concept as indecomposability. Arguing
as in the previous week’s notes we see that every (finite-dimensional) representation
can be expressed as the direct sum of irreducible representations (i.e. all represen-
tations of finite groups are semisimple). This representation is not unique; consider
the identity representation on a Hilbert space V , which has one such decomposition
for each orthonormal basis of V .
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Problem 1.5. Show that a representation G → U(V ) is irreducible if and only if, for
every non-zero v ∈ V , the orbit {ρ(x)v : x ∈ G} of v spans V . Conclude that except
for the trivial representation on a one-dimensional vector space, every irreducible
representation is free.

The following fundamental lemma allows us to analyse representations in terms of
their irreducible components:

Lemma 1.6 (Schur’s lemma). Let φ : V → W be a morphism from one represen-
tation to another.

• If V is irreducible, then φ is either injective or zero.
• If W is irreducible, then φ is either surjective or zero.
• If V and W are both irreducible, then φ is either an isomorphism or zero.
• If V = W is irreducible, then φ is a multiple of the identity.

Proof The range of φ is a subrepresentation of W , and is thus either W or {0}
if W is irreducible. Similarly for the kernel of φ. This gives the first two claims,
which then easily gives the third. For the fourth, observe from the third claim that
φ minus any multiple of the identity is either invertible or zero, i.e. the spectrum
is a single point, and so φ is a multiple of the identity.

As a sample application we have

Corollary 1.7 (Irreducible representations are prime). Suppose that U is an irre-
ducible subrepresentation of V ⊕W . Then U is also isomorphic to a subrepresen-
tation of either V or W .

Proof By Schur’s lemma, the projection of U to V is either isomorphic to V or
zero, and similarly to W . But the projections cannot both be zero, and the claim
follows.

By repeating the proof of the fundamental theorem of arithmetic, we conclude a
unique factorisation property for representations of finite groups:

Corollary 1.8 (Jordan-Hölder theorem). Every representation splits as the direct
sum of irreducibles, and the isomorphism class of these factors is unique up to
permutations. (In particular, there is a well-defined concept of the multiplicity of
any given irreducible representation Vξ inside another representation V .)

Another sample application:

Corollary 1.9. Let V be an irreducible representation. Then V is isomorphic to
a subrepresentation of L2(G).

Proof Let v ∈ V be non-zero, and define a morphism φρ,v : L2(G) → V by

φρ,v(f) :=

∫

G

f(y)ρ(y)v dy;
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one easily checks that this is indeed a morphism. We split L2(G) as the direct sum
of irreducible representations. By Schur’s lemma, each of them is either mapped
isomorphically to V by φρ,v or mapped to zero. Since v 6= 0, the latter case cannot
occur all the time, and the claim follows.

Thus, for instance, we now see from the previous week’s notes that the irreducible
representations of an abelian group are necessarily one-dimensional, and as a corol-
lary that every representation of a funite abelian group factors as the direct sum of
character representations χ1V . For instance, the space of functions on R, with the
Z2 action f(x) 7→ f(−x), splits as the direct sum of the even functions (on which
Z2 acts like the identity character) and odd functions (on which Z2 acts like the
non-identity character).

We now also know that every finite abelian group has only finitely many irreducible
representations, up to isomorphism.

One final application of Schur’s lemma:

Corollary 1.10 (Ergodic theorem). Let ρV : G → U(V ) and ρW : G → U(W ) be
irreducible representations, and let T : V → W be a linear map. Let 〈T 〉 : V → W
be the averaged map

〈T 〉 :=

∫

G

ρW (x)TρV (x)
−1 dx.

• If V and W are not isomorphic, then 〈T 〉 = 0.

• If V = W and ρV = ρW , then 〈T 〉 = trV (T )
dim(V ) idV , where trV (T ) is the trace

of T , defined as

trV (T ) :=

dim(V )∑

j=1

〈Tej, ej〉,

where ej ranges over any orthonormal basis of V ; one easily verifies that
this definition is independent of the choice of such a basis.

Proof One easily verifies that 〈T 〉 is a morphism, so that the first claim follows
immediately from Schur’s lemma. In the second case, Schur’s lemma shows that
〈T 〉 is a multiple of the identity; but then one easily checks that 〈T 〉 has the same
trace as T , and the claim follows.

2. The Fourier transform for finite non-abelian groups

Now that we have the basic machinery of representation theory, we can define the
Fourier transform properly.

First we need the correct notion of the dual group Ĝ. In the abelian case, this
was identifiable with the space of multiplicative characters, or equivalently with
the representations of G on C, which up to isomorphism are also the same thing as
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the irreducible representations. For non-abelian groups, there are not enough mul-
tiplicative characters to go around, but it turns out the irreducible representations
are enough.

Thus, let Ĝ be a set indexing the irreducible representations ofG up to isomorphism,
thus for each ξ ∈ Ĝ we have an irreducible representation ρξ : G → U(Vξ), and
every irreducible representation is isomorphic to exactly one ρξ. This space does
not have an obvious group structure (though we will return to this point a bit later),
but is finite thanks to Corollaries 1.9, 1.8.

Given any ξ ∈ Ĝ and f ∈ L2(G), we define the Fourier coefficient f̂(ξ) : Vξ → Vξ

to be the linear transformation

f̂(ξ) :=

∫

G

f(x)ρξ(x) dx.

Note how the Fourier coefficient is now a transformation rather than a complex
number. To give some indication as to the terminology “Fourier coefficient” observe
that

f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ).

Note also the non-commutativity on both sides, which shows that one cannot hope
for a complex-valued Fourier transform to model convolution a non-abelian group
G.

For reasons which will become clearer later, we let dξ be counting measure on Ĝ
weighted the dimension dim(Vξ) of the representation, thus

∫

Ĝ

F (ξ) dξ :=
∑

ξ∈Ĝ

dim(Vξ)F (ξ).

Let HS(Vξ) be the space of linear transformations on Vξ. We endow this space
with the Hilbert-Schmidt inner product

〈A,B〉HS(Vξ) := trVξ
(AB∗)

where we are using the normalised trace. Thus the Fourier transform is a map from
L2(G) to the direct integral

∫
Ĝ
HS(Vξ) dξ, which is the Hilbert space with inner

product

〈A,B〉∫
Ĝ

HS(Vξ) dξ :=

∫

Ĝ

〈A(ξ), B(ξ)〉HS(Vξ ) dξ.

It turns out the correct inverse Fourier transform is the following. Let F ∈∫
Ĝ
HS(Vξ) dξ, then we define the function F̌ ∈ L2(G) by

F̌ (x) :=

∫

ξ∈Ĝ

〈F (x), ρξ(x)〉 dξ.

This is indeed the inverse Fourier transform:

Proposition 2.1. Let F ∈
∫
Ĝ
HS(Vξ) dξ. Then ̂̌F = F .
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Proof By linearity we may assume that F has only one non-zero component, e.g.
F (ξ) = A1ξ=ξ0 for some ξ0 ∈ Ĝ and A ∈ HS(Vξ0). In fact by linearity again
we may assume that A is a rank one operator Av = 〈v, a〉b for some unit vectors
a, b ∈ Vξ0 . Then

F̌ (x) = dim(Vξ0)trVξ0
(Aρξ0(x)

∗) = dim(Vξ0)〈ρξ0(x)
∗b, a〉

and
̂̌F (ξ) = dim(Vξ0 )

∫

G

〈ρξ0(x)
∗b, a〉ρξ(x) dx

and so for any c, d ∈ Vξ

〈 ̂̌F (ξ)c, d〉 = dim(Vξ0)

∫

G

〈ρξ0(x)
∗b, a〉〈ρξ(x)c, d〉 dx

= dim(Vξ0)〈

∫

G

ρξ(x)Tcaρξ0(x)
∗b, d〉

where Tca(v) := 〈v, a〉c. When ξ 6= ξ0 the right-hand side vanishes thanks to
Corollary 1.10. Thus it will suffice to show that

〈c, a〉〈b, d〉 = dim(Vξ0)〈

∫

G

ρξ0(x)Tcaρξ0(x)
∗b, d〉;

but this follows from Corollary 1.10 and the observation that trVξ0
(Tca) = 〈c, a〉.

Let F ∈
∫
Ĝ
HS(Vξ) dξ. From Fubini’s theorem we have

‖(̌F )‖2L2(G) = 〈F̌ , F̌ 〉L2(G) =

∫

Ĝ

〈 ̂̌F , F 〉HS(Vξ) dξ

and so by the above proposition we have a preliminary Plancherel identity

‖(̌F )‖2L2(G) =

∫

Ĝ

‖F‖2HS(Vξ)
dξ.

As a consequence, we see that the inverse Fourier transform is an isometry from∫
Ĝ
HS(Vξ) dξ to L2(G), thus the forward Fourier transform is a co-isometry - a

projection followed by a unitary transformation. But

Proposition 2.2. The Fourier transform is injective.

Proof Suppose we had f ∈ L2(G) such that f̂ = 0, thus
∫
G f(x)ρ(x) dx = 0

whenever ρ is an irreducible representation. Taking direct sums, we see the same is
true for arbitrary representations, and in particular for the regular representation.
In other words, f ∗ g = 0 for all g ∈ L2(G). Taking g to be a Dirac function we
obtain f = 0, obtaining injectivity.

Thus the Fourier transform must in fact be a unitary transformation from L2(G)
to

∫
Ĝ
HS(Vξ) dξ. In particular we have the Fourier inversion formula

f(x) =

∫

Ĝ

〈f̂(ξ), ρξ(x)〉Vξ
dξ

and the Plancherel identity

‖f‖2L2(G) =

∫

Ĝ

‖f̂(ξ)‖2HS(Vξ)
dξ
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from which one quickly deduces the Parseval identity

〈f, g〉L2(G) =

∫

Ĝ

〈f̂(ξ), ĝ(ξ)〉HS(Vξ) dξ.

The regular representation is an action of G on L2(G), and is thus (via the Fourier
transform) isomorphic to the obvious action of G on

∫
Ĝ
HS(Vξ) dξ. It is not hard to

see that the action of G on HS(Vξ) splits into the direct sum of dim(Vξ) represen-
tations isomorphic to Vξ. Thus the multiplicity of Vξ in the regular representation
is dim(Vξ). Taking dimensions, we also observe the formula

#G =
∑

ξ∈Ĝ

dim(Vξ)
2.

We remark that when G is abelian, this Fourier transform collapses to the pre-
vious one except for an annoying complex conjugation sign, which comes from a
confluence of several mildly inconsistent notational conventions.

2.3. Class functions and characters. It is perhaps a little disconcerting to see
the Fourier transform turn into an operator-valued function rather than a scalar-
valued one. But as we saw, the noncommutativity of convolution leaves us little
choice in this matter. However, things become simpler if one works in a reduced
set of functions in which the effects of non-abelian-ness have been suppressed.

Definition 2.4. A class function is a function f ∈ L2(G) which is conjugation
invariant, thus f(y−1xy) = f(x) for all x, y ∈ G. Equivalently, a class function is a
function which is constant on each of the conjugacy classes of G. The space of all
class functions is denoted L2(G)G.

Problem 2.5. Without using the Fourier transform, show that L2(G)G is closed
under convolution, and furthermore that convolution is commutative in this space.

This leads one to hope that a scalar theory is now possible. And indeed it is:

Lemma 2.6. A function f ∈ L2(G) is a class function if and only if f̂(ξ) is a

multiple of the identity idVξ
for each ξ ∈ Ĝ.

Proof Suppose first that f is a class function, then f(y−1xy) = f(x) for all y.

Taking Fourier transforms in x, we conclude that ρVξ
(y)f̂(ξ)ρVξ

(y)−1 = f̂(ξ) for all

ξ ∈ Ĝ and y ∈ G. Applying Corollary 1.10 we conclude that f̂(ξ) is a multiple of

the identity. Conversely, if f̂(ξ) = cξidVξ
for some complex scalars cξ then by the

inversion formula

f(x) =

∫

G

cξtrVξ
(ρξ(x)) dξ.

Each function trVξ
(ρξ(x)) can be seen to be a class function, and so f is a class

function as desired.
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Note that this lemma immediately implies Problem 2.5. As a corollary, we also see
that the number of conjugacy classes of G (which is the dimension of L2(G)G) is

also equal to #Ĝ.

For each representation ρV : G → U(V ), define the associated character χV (x) :=
trV (ρV (x)); thus for instance χV (0) is the dimension of V . As observed in the proof
of the above lemma, characters are class functions. In fact

Proposition 2.7. The characters {χξ : ξ ∈ Ĝ} form an orthonormal basis of
L2(G)G.

We remark that the basis of characters, written out as a function of the conjugacy
classes, is known as the character table of G, and plays a fundamental role in the
structural theory of finite groups.

Proof From the proof of the previous lemma we see that the characters (or more
precisely, the conjugates of these characters) span L2(G)G. Also, observe that χξ0

is the inverse Fourier transform of 1
dim(Vξ)

idVξ
. The orthonormality then follows

from Parseval.

Observe that χV ⊕W = χV + χW and χV ⊗W = χV χW . Also, isomorphic repre-
sentations have the same character. As a consequence of this, we see that for any
representation V we have χV =

∑
ξ∈Ĝ mξχVξ

, where mξ is the multiplicity of ξ

in V ; by orthonormality we thus conclude that mξ = 〈χV , χVξ
〉. In particular the

isomorphism class of the representation V is determined entirely by the character
V . From the orthonormality we have

∫

G

|χV |
2 dx =

∑

ξ∈Ĝ

m2
ξ . (1)

In particular we see that V is irreducible if and only if
∫
G
|χV |

2 dx = 1; this gives
a convenient way to test for irreducibility.

Let us now illustrate some of this theory with the simplest example of a non-
abelian finite group, namely the permutation group S3 of three elements {1, 2, 3}.
This group has three conjugacy classes: the identity C1 = {id}, the class C2 =
{(12), (23), (31)} of transpositions, and the class C3 = {(123), (231)} of cycles.
Thus we expect three irreducible representations up to isomorphism. One of them
is the trivial representation on C, whose character equals 1 on C1, C2, C3. Another
is the alternating representation on C, using the sign character sgn; this character
equals −1 on C2 and +1 on C1, C3. Finally, we have the standard representation
of S3 on the plane {(x1, x2, x3) ∈ C3 : x1 + x2 + x3 = 0}, on which S3 acts by
coordinate permutation; the character here equals 2 on C1, 0 on C2, and −1 on C3.
One can verify that the character table is indeed orthonormal as claimed.
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3. Expansion in SLn(Fq)

We now use the above theory to demonstrate a certain “quasirandomness” property
of the special linear group G := SLn(Fq), defined as the group of n × n matrices
with determinant 1 and coefficients in a finite field Fq of q elements (where q is a
prime, or a power of a prime). To avoid some technicalities we assume that q as
being odd. We think of n ≥ 2 as being fixed (e.g. n = 2) and q being large. It is

not hard to see that the cardinality of G is ∼n qn
2
−1; more precise formulae are

available but we do not need them here.

Characterising all the irreducible representations of this group is a non-trivial task,
involving a fair amount of combinatorial and number-theoretic ingenuity. We will
however content outselves with the following simple result of Frobenius.

Lemma 3.1. Let V be a non-trivial irreducible representation of G = SLn(Fq).

Then V has dimension at least q−1
2 .

Contrast this with the irreducible representations of an abelian group, which are
always one dimensional. Thus this lemma indicates that the special linear groups
are highly non-abelian in some sense, especially when q is large. The bound q−1

2 is
sharp, but we will not establish that here.

Proof We shall analyse V using one-dimensional abelian subgroup of G, e.g. the
group

H := {gx : x ∈ Fq}

where gx is the matrix

gx :=




1 x 0 . . .
0 1 0 . . .
0 0 1 . . .
...

...
...

. . .


 .

This group is isomorphic to the additive group Fq. As V is a representation of G, it
is also a representation ofH , and we can restrict the character χV : G → C toH and
view it as a character χV |H on H . We can split V into irreducible representations of
H (which are all one-dimensional), and thus split χV |H as the sum of multiplicative
characters on H ; the number of summands is then the dimension of V . Thus it will
suffice to show that the Fourier transform of χV |H has support of size at least q−1

2 .

Now observe that for any non-zero a ∈ Fq, gx and ga2x are conjugate to each
other in SLn(Fq). Thus χV |H , when viewed as a function on Fq, is invariant under
dilations by squares a2; thus the Fourier transform has the same property. Thus
if the Fourier transform is nonzero in even just a single non-zero frequency ξ, it is
automatically non-zero at the q−1

2 frequencies {a−2ξ : a ∈ Fq\{0}}. Thus we are
done unless the Fourier transform vanishes at all non-zero frequencies, i.e. χV |H
is constant. But this implies that ρV (gx) = idV for all gx ∈ H . Conjugating this,
we then conclude that ρV (g) is the identity for any g in any of the conjugates of
H . But these are easily seen to generate all of SLn(Fq) (indeed, it is not hard to
see that they generate both the upper-triangular and lower-triangular unipotent
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matrices, so the group generated is closed under both row and column operators,
which makes it quite easy to generate arbitrary elements of SLn(Fq)). Thus V is
trivial, a contradiction.

Corollary 3.2 (Kunze-Stein type estimate). Let G = SL2(Fq), and let f, g ∈
L2(G). If at least one of f, g has mean zero, then

‖f ∗ g‖L2(G) . q−1/2‖f‖L2(G)‖g‖L2(G).

Of course, the point here is the gain of q−1/2 over what one might expect from
Young’s inequality. Without the mean zero hypothesis, the estimate fails, as can
be seen by taking f = g = 1.

Proof Applying Plancherel’s theorem, the left-hand side is

(
∑

ξ∈Ĝ

dim(Vξ)‖f̂(ξ)ĝ(ξ)‖
2
HS(Vξ)

)1/2

and the right-hand side is

q−1/2(
∑

ξ∈Ĝ

dim(Vξ)‖f̂(ξ)‖
2
HS(Vξ)

)1/2(
∑

ξ∈Ĝ

dim(Vξ)‖ĝ(ξ)‖
2
HS(Vξ)

)1/2.

Since f or g has mean zero, we see that the contribution of the trivial represen-
tation ξ = 0 to the LHS vanishes. Thus we can restrict attention to non-trivial
representations. It thus suffices to show that

dim(Vξ)‖f̂(ξ)ĝ(ξ)‖
2
HS(Vξ)

. q−1 dim(Vξ)‖f̂(ξ)‖
2
HS(Vξ)

dim(Vξ)‖ĝ(ξ)‖
2
HS(Vξ)

for all ξ 6= 0l in view of the previous lemma, it thus suffices to establish the algebra
estimate

‖AB‖HS(V ) ≤ ‖A‖HS(V )‖B‖HS(V ).

This in turn follows from two easy estimates. The first is that the Hilbert-Schmidt
norm controls the operator norm:

‖A‖V→V ≤ ‖A‖HS(V ).

This is easily seen by working in a orthonormal basis and using duality and Cauchy-
Schwarz. The second is that the Hilbert-Schmidt space is an ideal in the space of
bounded operators:

‖AB‖HS(V ) ≤ ‖A‖V→V ‖B‖HS(V ).

This is immediate from the identity

‖B‖HS(V ) = (
∑

i

‖Bei‖
2
V )

1/2

where ei ranges over an arbitrary orthonormal basis of V .

This leads to the following corollary. Let A be any symmetric subset of G (thus
A = A−1) not containing the identity, and consider the Cayley graph (V,E) whose
vertex set V is just the group G, and the edge set consists of all pairs x, y such that
xy−1 ∈ A. Thus each vertex is connected by #A edges to other vertices. Let B,C
be any other subsets of G, and consider the quantity

E(B,C) := {(b, c) ∈ B × C : (b, c) ∈ E},
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i.e. the number of ways B and C are connected together by the Cayley graph.
Since the “edge density” of G is roughly #A/#G, one would expect that E(B,C)
would be roughly #A#B#C/#G if E(B,C) is sufficiently “quasirandom”. This is
indeed the case (an observation of Gowers):

Lemma 3.3. We have

E(B,C) =
#A#B#C

#G
+O(q−1/2(#A#B#C#G)1/2).

Note that the error term is dominated by the main term if A,B,C are fairly dense
subsets ofG. This statement is an assertion that all dense Cayley graphs in SLn(Fq)
are rather quasirandom in nature.

Proof We can write the left-hand side as

(#G)2
∫

G

1A ∗ 1B(x)1C(x) dx.

We write 1B = (1B −
∫
G
1B) + (

∫
G
1B). The contribution of the second term can

easily be computed to be exactly #A#B#C
#G . The contribution of the first term can

be bounded by O(q−1/2(#A#B#C#G)1/2) using the previous lemma and Cauchy-
Schwarz.

Further estimates in this direction have been obtained. One recent (and rather
non-trivial) result of Bourgain and Gamburd is the following: if p is prime, and
S = O(1) is a symmetric set in G of girth & log p (i.e. the smallest non-trivial word
in S which multiplies to the identity has length & log p) then the Cayley graph
associated to S is an expander, i.e. we have |A · S| ≥ (1 + ε)|A| for all |A| ≤ |G|/2
and some ε > 0 depending only on S. This has applications to random number
generation, property T , the Ramanujan conjectures, and a wide variety of other
interesting mathematical topics!

4. A brief discussion of compact Lie groups

It is highly non-trivial to extend the representation theory - especially the infinite
dimensional representation theory - of finite groups to arbitrary infinite groups, even
after restricting to unitary representations of Lie groups. For instance, consider the
Heisenberg group

H = {(x, ξ, t) : x, ξ ∈ R; t ∈ R/Z}

with multiplication law

(x, ξ, t) · (x′, ξ′, t′) := (x+ x′, ξ + ξ′, t+ t′ − xξ′).

This acts on unitarily on the infinite dimensional space L2(R) by the translation-
modulation action

ρ(x, ξ, t)f(y) := e2πite2πiyξf(y − x)

but this action has no finite-dimensional subrepresentations. (The problem here is
that the commutator of the infinitesimal translation (dx, 0, 0) and the infinitesimal
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modulation (0, dt, 0) is a multiple of the identity, but in finite dimensions commu-
tators must have zero trace.)

However, the situation is much more manageable when restricting attention to com-
pact Lie groups, such as the rotation group O(n) or the unitary group U(n). Here,
it turns out that much of the finite theory still applies, for instance every representa-
tion can be viewed as a unitary representation, that indecomposable representations
are irreducible, that irreducible representations can be viewed as subrepresentations
of L2(G), one has a good character theory, and so forth. One particularly nice fea-
ture of compact Lie groups is that they are unimodular - the left-Haar measure
dx is also the right-Haar measure. (This is because right-translates of dx are still
left-invariant, and assign the same total mass to the whole group, and so must equal
dx.)

The main technical difficulty is to ensure that the irreducible representations of
L2(G) are all finite dimensional. One way to do this is to use the Casimir operator
Ω on G, which is an analogue of the Laplacian, but where the metric is replaced
instead by the Killing form B(X,Y ) = tr(ad(X)ad(Y )). The main point is that
the Casimir operator commutes with all the vector fields in the Lie algebra, and
as a consequence the eigenspaces of the Casimir operator are subrepresentations of
the regular representation. On the other hand, the Casimir is a positive-definite
operator with compact resolvents, and standard spectral theory methods show that
the spectrum is purely discrete and that all eigenspaces are finite-dimensional. From
these facts it is possible to split the regular representation into a countable direct
sum of finite-dimensional irreducible representations. We will however not dwell on
these matters here.

5. Exercises

• Q1. Let ρ : G → GL(V ) be a non-unitary finite-dimensional representation
of a finite group G on a vector space V . Show that there exists a Hilbert
space structure on V on which the action becomes unitary. (Hint: start
with an arbitrary Hilbert space structure and average it.)

• Q2. Let ρV : G → U(V ) and ρW : G → U(W ) be two irreducible repre-
sentations of a finite group G, and let Hom(V,W ) be the space of linear
transformations from V to W . The product group G×G acts on this space
by the formula

ρHom(V,W )(g, h)(T ) := ρW (h)TρV (g)
−1.

Show that this representation of G×G is irreducible.
• Q3. Let H be a subgroup of a finite group G, and let V be an irreducible
representation of G. Show that if V is viewed instead as a representation of
H , then V decomposes into at most #G/#H irreducible representations.
(Hint: use (1).)
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