
LECTURE NOTES 5 FOR 247A

TERENCE TAO

1. Weighted inequalities

In the previous notes we have taken a linear or sublinear operator T on a measure
space X and established Lp mapping properties, such as

∫

Y

|Tf(y)|p dµY (y) .

∫

X

|f(x)|p dµX(x).

These estimates reveal information about how the height and width of Tf is con-
trolled by the height and width of f . However, these estimates do not indicate
where the support of Tf is located, due to the rearrangement-invariant nature of
the Lp norms. One way to establish this type of control is to start establishing
weighted Lp estimates, such as

∫

Y

|Tf(y)|pw2(y) dµ(y) .

∫

X

|f(x)|pw1(x) dµX(x). (1)

for various pairs of weight functions w1 : X → R+ and w2 : Y → R+. Roughly
speaking, these weighted estimates are a variant of the usual Lp estimates which
assert that if f avoids the regions where w1 is large, then Tf avoids the regions
where w2 is large. If X = Y and one can establish the above type of estimate for
many pairs w1, w2, with w1 “looking similar to” w2, then these estimates begin to
confirm an assertion that T does not significantly change the support of f .

One can view the estimate (1) as an assertion that w1 is at least as large as some
sort of “nonlinear adjoint” of T applied to w2. For instance:

Problem 1.1. Let T = TK be an integral operator with bounded non-negative kernel
K : X × Y → R+, and let w1, w2 be bounded weights. Show that the inequality

∫

Y

|Tf(y)|w2(y) dµY (y) .

∫

X

|f(x)|w1(x) dµX(x)

holds for all simple functions f with finite measure support if and only if one has
the pointwise estimate w1 ≥ T ∗w2.

We know that boundedness properties of an adjoint can be used to establish bound-
edness properties of the original operator. There is a counterpart for weighted
estimates:

Proposition 1.2 (Equivalence of weight bounds and vector-valued Lp estimates).
Let 1 ≤ p < q < ∞, let A > 0, let T : Lp(X) → Lp(Y ) be an arbitrary operator
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(possibly nonlinear!), and let r be such that r′ = q/p. Then the following are
equivalent:

(i) For any sequence (fn)n∈Z in Lp(X), we have

‖(
∑

n

|Tfn|
p)1/p‖Lq(Y ) ≤ A‖(

∑

n

|fn|
p)1/p‖Lq(X).

In particular (setting all but one of the fn equal to zero),

‖Tf‖Lq(Y ) ≤ A‖f‖Lq(X).

(ii) For every non-negative w2 ∈ Lr(Y ) there exists a non-negative w1 ∈ Lr(X)
with ‖w1‖Lr(X) ≤ ‖w2‖Lr(Y ) such that

∫

Y

|Tf(y)|pw2(y) dµY (y) ≤ Ap

∫

X

|f(x)|pw1(x) dµX(x) (2)

for all f ∈ Lp(X).

Proof By dividing T by A we may normalise A = 1. We first show that (ii) implies
(i). From the converse Hölder inequality we have

‖(
∑

n

|Tfn|
p)1/p‖pLq(Y ) := sup{

∫

Y

∑

n

|Tfn(y)|
pw2(y) dµY (y) : ‖w2‖Lr(Y ) = 1, w2 ≥ 0}.

By monotone convergence we may interchange the sum and integral. From (2) and
Hölder inequality we have

∑

n

∫

Y

|Tfn(y)|
pw2(y) dµY (y) ≤

∑

n

∫

Y

|fn(y)|
pw1(y) dµY (y) ≤ ‖(

∑

n

|fn|
p)1/p‖pLq(X)‖w1‖Lr(X)

where ‖w1‖Lr(X) ≤ ‖w2‖Lr(Y ) = 1. The claim follows.

Now we establish that (i) implies (ii). Fix w2; we may normalise ‖w2‖Lr(Y ) = 1.
We need to find a w1 obeying (2). From the above arguments we know that a
necessary condition for w1 is that

∑

n

∫

Y

|Tfn(y)|
pw2(y) dµY (y) ≤

∫

Y

|F (y)|w1(y) dµY (y)

for all fn and F such that
∑

n |fn|
p ≤ |F |. Motivated by this, given any F ∈ Lr′(Y ),

we consider the “capacity”

λ(F ) := sup{
∑

n

∫

Y

|Tfn(y)|
pw2(y) dµY (y) :

∑

n

|fn|
p ≤ |F |},

where (fn)n∈Z ranges over all sequences Lp(X) with
∑

n |fn|
p bounded pointwise

by F . It will suffice to locate w1 ∈ Lr(X) with ‖w1‖Lr(X) ≤ 1 such that

λ(F ) ≤

∫

X

|F |w1 dµX

for all F ∈ Lr′(X), since we may then substitute F = |f |p and observe that
λ(|f |p) ≥

∫

Y |f |pw2 dµY .
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Observe from Hölder that
∑

n

∫

Y

|Tfn(y)|
pw2(y) dµY (y) ≤ ‖(

∑

n

|Tfn|
p)1/p‖pLq(Y )‖w2‖Lr(Y )

≤ ‖(
∑

n

|fn|
p)1/p‖pLq(X)

≤ ‖F‖Lr′(X)

and so we have the boundedness

λ(F ) ≤ ‖F‖Lr′(X).

We also easily verify the superlinearity properties

λ(cF ) = |c|λ(F ); λ(F +G) ≥ λ(F ) + λ(G)

for all non-negative F,G ∈ Lr′(X). Observe that the sets

A := {F ∈ Lr′(X) : ‖F‖Lr′(X) < 1}

and

B := {F ∈ Lr′(X) : F > 0;λ(F ) > 1}

are algebraically open (see appendix), convex, and disjoint. Thus by the geometric

Hahn-Banach theorem1 (see appendix), we can find a linear functional ν : Lr′(X) →
C such that ν < 1 on A and ν > 1 on B. The former implies that ν is a continuous
linear functional with norm at most 1 and thus ν(F ) =

∫

X
Fw1 dµX for some

w1 ∈ Lr(X) with ‖w1‖Lr(X) ≤ 1. The latter implies that ν(F ) ≥ λ(F ) for all
non-negative F , and in particular (setting F := |f |p) that

∫

Y

|Tf |pw2 dµY ≤ λ(|f |p) ≤ ν(|f |p) =

∫

X

|f |pw1 dµX

as desired.

Remark 1.3. By combining this with Q15 from last week’s notes, we obtain a
remarkable fact: if T : L2(X) → L2(Y ) is a linear operator, then there is a unique
continuous linear extension from Lq(X) to Lq(Y ) for q > 2 if and only if for
every w2 ∈ Lr(Y ) there exists w1 ∈ Lr(X) with ‖w1‖Lr(X) .T ‖w2‖Lr(Y ) for
which one has the weighted estimate (1), where r := (q/2)′. Thus in the case of
linear operators there is an equivalence between higher unweighted Lp estimates
and weighted L2 estimates.

We thus see that weighted estimates can be quite powerful; they not only imply
unweighted estimates, but also vector-valued versions of those estimates. Indeed,
more is true: if we have a sequence of operators Tn which obey weighted estimates
with the same set of weights, then we automatically obtain vector-valued estimates

1This is a typical use of the Hahn-Banach theorem: philosophically, this theorem asserts that in

linear or convex programming, any possibility which is not obviously excluded by the constraints
is in fact permissible. Here, it is the vector-valued inequality in (i) which shows that all the
“obvious” obstructions to the estimate (ii) do not exist, and Hahn-Banach tells one that there are
no non-obvious obstructions.
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which involve all the Tn at once. For instance, if p, q, r are as in the above propo-
sition, and for each w2 ∈ Lr(Y ) there was a w1 ∈ Lr(X) (independent of n) with
‖w1‖Lr(X) . ‖w2‖Lr(Y ) such that

∫

Y

|Tnf(y)|
pw2(y) dµY (y) ≤

∫

X

|f(x)|pw1(x) dµX(x)

for all n, then we can conclude the vector-valued estimate

‖(
∑

n

|Tnfn|
p)1/p‖Lq(Y ) ≤ A‖(

∑

n

|fn|
p)1/p‖Lq(X).

It is thus of interest to obtain weighted estimates, preferably those in which the
final weight w2 is given explicitly in terms of w1. A particularly pleasant situation
occurs when X = Y and the weights w1, w2 are in fact equal, although having
estimates with asymmetric weights can still be very useful.

One particularly common (and useful) class of weights are power weights such as
w(x) = 〈x〉α or w(x) = |x|α for Euclidean spacesRd, especially in PDE applications
where such weights tend to appear quite naturally (for instance, via the introduction
of Sobolev spaces). However, we will work here with more abstract weights. Here it
turns out that one can often mimic the proof of an unweighted estimate to deduce
the weighted counterpart.

1.4. Weighted estimates for the Hardy-Littlewood maximal function. To
illustrate weighted estimates, let us establish a basic estimate for the maximal
function.

Proposition 1.5 (Weighted Hardy-Littlewood maximal inequality). Let w : Rd →
R+. Then we have the weak-type estimate

∫

Rd

1|Mf(x)|>λ w(x) dx .d
1

λ

∫

Rd

|f(x)|Mw(x) dx

for all locally integrable f and all λ > 0, and the Lp estimate
∫

Rd

|Mf(x)|p w(x) dx .d,p

∫

Rd

|f(x)|pMw(x) dx

for all locally integrable f and 1 < p <∞.

Proof By monotone convergence we may assume that both w and f are bounded
with compact support. The Stein-Weiss interpolation theorem (and the bounded-
ness of M on L∞ no matter what the weights are) ensure that it suffices to prove
the weak-type (1, 1) estimate. For this we mimic the proof of the unweighted esti-
mate. We normalise λ = 1, and let K be any compact set inside {|Mf(x)| > 1}; it
suffices to show that

∫

K

w(x) dx .d

∫

Rd

|f(x)|Mw(x) dx.

The usual Vitali covering lemma argument lets us locate a finite number of disjoint

open balls B1, . . . , BN such that
⋃N

n=1 3Bn coversK, and such that
∫

−Bn
|f(x)| &d 1
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for each ball Bn. Since
∫

K

w(x) dx ≤

N
∑

n=1

∫

3Bn

w(x) dx

it thus suffices to show that
∫

3Bn

w(x) dx .d

∫

Bn

|f(x)|Mw(x) dx

for each ball Bn. But we observe that

Mw(x) &d
1

|Bn|

∫

3Bn

w(y) dy

for all x ∈ Bn, and the claim follows.

As a corollary we obtain the following useful vector-valued generalisation of the
Hardy-Littlewood maximal inequality.

Theorem 1.6 (Fefferman-Stein vector-valued maximal inequality). If 1 < p, q <∞
and fn : Rd → C are any sequence of locally integrable functions then

‖(
∑

n

|Mfn|
p)1/p‖Lq(Rd) .d,p,q ‖(

∑

n

|fn|
p)1/p‖Lq(Rd)

and the weak-type estimate

|{(
∑

n

|Mfn|
p)1/p ≥ λ}| .d,p

1

λ
‖(
∑

n

|fn|
p)1/p‖L1(Rd)

for all locally integrable fn.

Proof By the usual monotone convergence arguments we may restrict only finitely
many of the fn to be non-zero, and to have all fn bounded and finite measure
support. We can then restrict the supremum in the maximal function M to only
be over finitely many radii.

When p = q the first claim follows from interchanging the norms and using the usual
Hardy-Littlewood maximal inequality. For q > p the claim follows by combining
Proposition 1.5, Proposition 1.2, and the fact that M is bounded on Lr(Rd). For
q < p, it suffices by vector-valued real interpolation to prove the weak-type (1, 1)
estimate. We may take each fn to be non-negative. By linearisation we can replace
Mfn(x) by

∫

−
B(x,rn(x))

fn for some measurable radius function rn(x) (note that we

must permit rn to depend on n), which is one reason why this weak-type estimate
does not immediately follow from the Hardy-Littlewood inequality). Actually it is
more convenient to replace this “rough” average by a smoother average

1

|B(x, rn(x))|

∫

Rd

ψn,x(y)fn(y) dy

where ψn,x is a bump function adapted toB(x, 2rn(x)) which equals one onB(x, rn(x)).
This reduces matters to establishing a vector-valued weak-type (1, 1) operator for
the linear operator

T : (fn)n∈Z(x) 7→ (

∫

Rd

1

|B(x, rn(x))|
ψn,x(y)fn(y))n∈Z.
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This is an integral operator whose kernel K(x, y) is a diagonal matrix whose nth

diagonal entry is 1
|B(x,rn(x))|

ψn,x(y). We observe that this kernel is a one-sided

vector-valued singular kernel; it obeys the required regularity in the y variable
but not the x. However, this is still enough to convert the Lp boundedness of T
(which as observed before, follows from switching norms and using the usual Hardy-
Littlewood maximal inequality) and then using the standard Calderón-Zygmund
argument.

The theory of weighted estimates (and the Ap weight class) has been further devel-
oped intensively, but we will not cover it here; see Stein’s “Harmonic analysis” for
a thorough exposition of the topic.

2. Pseudodifferential operators

In the previous set of notes we established constructed a reasonably large class of
CZOs, namely the Hörmander-Mikhlin multipliers. These multipliers suffice for the
analysis of translation-invariant settings, such as studying operators arising from
constant-coefficient differential operators such as the Laplacian. However they are
not general enough to handle non-translation-invariant situations. For this, we must
turn to the pseudodifferential operators, which generalise the variable-coefficient
differential operators

∑

α cα(x)∂
α
x when the coefficients cα(x) are smooth.

To motivate these operators, we begin with the Fourier inversion formula

f(x) =

∫

Rd

e2πix·ξf̂(ξ) dξ

(for f Schwartz, say) and apply a monomial differential operator ∂αx = ∂α1
x1
. . . ∂αd

xd

for some multiindex α = (α1, . . . , αd) to obtain

∂αx f(x) =

∫

Rd

(2πix)αe2πix·ξf̂(ξ) dξ

where xα := xα1

1 . . . xαd

d . Thus we see that for any (smooth) coefficients cα(x), with
only finitely many cα non-zero, we have

∑

α

cα(x)∂
α
x f(x) =

∫

Rd

a(x, ξ)e2πix·ξ f̂(ξ) dξ

where the symbol a(x, ξ) is given by

a(x, ξ) :=
∑

α

cα(x)(2πiξ)
α.

Inspired by this, we define for any smooth symbol a : Rd×Rd → C of at most poly-
nomial growth, the operator a(X,D) (sometimes also called Op(a)) on Schwartz
functions f ∈ S(Rd) by the formula

a(X,D)f(x) :=

∫

Rd

a(x, ξ)e2πix·ξ f̂(ξ) dξ.
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This operator a(X,D) is sometimes called the Kohn-Nirenberg quantization of the
symbol2 a(x, ξ). By expanding out the Fourier transform and interchanging inte-
grals, we (formally) have

a(X,D)f(x) =

∫

Rd

[

∫

Rd

a(x, ξ)e2πi(x−y)·ξ dξ]f(y) dy; (3)

this formula is rigorous for instance if a is not only smooth but also compactly
supported. As such we see that there is a slight asymmetry between x and y in this
formula; because of this one sometimes uses the Weyl quantization

aw(X,D)f(x) :=

∫

Rd

[

∫

Rd

a(
x+ y

2
, ξ)e2πi(x−y)·ξ dξ]f(y) dy

instead, though we will not use this quantization here.

Remark 2.1. Formally, if we apply a(X,D) to a plane wave f(x) := e2πix·ξ, we see
that

a(X,D)f(x) = a(x, ξ)f(x).

Thus we can (in principle) reconstruct the symbol a from the operator a(X,D) by
testing it against plane waves. This computation also shows that, formally, every
linear operator is of the form a(X,D) for some a; but in practice most operators
will give horrible symbols a which obey no useful estimates.

The operators a(X,D) generalise both spatial multipliers a(X) : f(x) 7→ a(x)f(x)
and Fourier multipliers a(D), at least when the symbol is smooth. The map from
symbol a to operator a(X,D) is linear. However, in contrast to the homomorphism
laws

a(X)b(X) = (ab)(X); a(D)b(D) = (ab)(D)

for smooth multipliers a, b of space or frequency only, it is not quite true that the
quantization operation preserves products:

a(X,D)b(X,D) 6= (ab)(X,D).

Indeed, this would imply in particular that any two operators a(X,D) and b(X,D)
commute, which is untrue (indeed, X and D themselves do not commute with each
other). Roughly speaking, the Kohn-Nirenberg quantization always arranges the
X factors to the “left” of the D factors, whereas the Weyl quantization spreads
them around evenly. One can obtain partial substitutes of the homomorphism law;
for instance, it is still true that a(X,D)b(X,D) = (ab)(X,D) if a(x, ξ) does not
depend on ξ, or b(x, ξ) does not depend on x. Later on we will see that for suitably
smooth a and b, that a(X,D)b(X,D) is equal to (ab)(X,D) modulo “lower order”
terms. These types of observations form the foundation for the pseudodifferential
symbol calculus, which is a very useful tool for analysing variable-coefficient linear
differential operators (especially those with smooth elliptic symbols), although we
will only touch on the foundations of that vast subject here.

2In the theory of semiclassical analysis, it is often customary to introduce a small parameter
~, called Planck’s constant, and replace a(x, ξ) in the above equation by a(x, ξ/~), but we will not
do so here.
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There are two main aspects to the theory of pseudodifferential operators: the ana-
lytic aspects, in which the boundedness properties of operators a(X,D) are anal-
ysed, and the (mainly) algebraic aspects, in which one learns how to compose,
commute, or invert operators a(X,D) (usually modulo lower order terms). We
shall begin with the analytic aspects.

2.2. Symbol classes. Of course, to get any sort of usable bound on the operators
a(X,D), we shall need some quantitative control on the symbol a(x, ξ). This re-
quires placing a in one of the symbol classes. There are quite a variety of symbol
classes to use, which determine the growth and regularity of the symbol a in both
the spatial variable x and the frequency variable ξ. For simplicitly, we shall stick
here with the standard3 symbol class Sk = Sk

0,1, which suffices for the local theory

of elliptic variable coefficient operators with smooth coefficients4.

Definition 2.3 (Standard pseudodifferential operators). A smooth symbol a :
Rd × Rd → C is a (standard) symbol of order k for some k ∈ R if we have the
estimates

|∂αx ∂
β
ξ a(x, ξ)| .α,β,d,k 〈ξ〉k−|β| (4)

for all multi-indices α, β and x, ξ ∈ Rd (in particular, a = O(〈ξ〉k) has at most
polynomial growth), and we write a ∈ Sk = Sk

0,1 in this case. We refer to the
operator a(X,D) as a (standard) pseudo-differential operator (or ΨDO for short)
of order k.

Remark 2.4. Again, this is a quasi-definition rather than a precise definition, due
to the presence of implicit constants; in any conclusion involving these symbols, the
implied constants in the conclusion will almost certainly depend on the constants
in this definition. In practice, one does not need (4) for all multi-indices α, β, but
only for finitely many (e.g. for all α, β with |α|, |β| ≤ 100d), but for notational
reasons we shall assume infinite regularity instead of finite. The indices 0, 1 in Sk

0,1

refer to the fact that each derivative in the x variable reduces the growth in x by 0
orders, whereas each derivative in the ξ variable reduces the growth in ξ by 1 order.

Examples 2.5. If L :=
∑

|α|≤k cα(x)∂
α
x is a variable-coefficient differential operator

with the coefficients cα smooth, and obeying the bounds ∂βx cα(x) = Oβ(1) for all
multi-indices β, then L is a pseudodifferential operator of order k. For any fixed
s ∈ C, a fractional differentiation operator 〈D〉s is a pseudodifferential operator of
order Re(s). A Littlewood-Paley operator ψj(D) is a pseudodifferential operator of
order 0 for any j ≥ 0 (but not as j → −∞ - why?), and if j = O(1) then ψj(D) is
a pseudodifferential operator of any fixed order.

Remark 2.6. By copious application of Lemma 5.2 one can show that pseudodiffer-
ential operators of any order map Schwartz functions to Schwartz functions.

3These are also called the classical symbol classes, but this is confusing, given that the dis-
tinction between classical and quantum mechanics in this subject.

4Each symbol class represents a decomposition of phase space into regions respecting the

Heisenberg uncertainty principle, with the symbol required to be smoothly adapted to each such
region and have a certain upper bound on amplitude. In this case, the relevant regions of phase
space are the regions where the spatial variable x is localised to a ball of radius O(1), and the
frequency variable ξ is localised to a dyadic annulus |ξ| ∼ 2k .
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Remark 2.7 (Classical multiplication of symbols). Numerous applications of the
Leibnitz rule reveal that if a, b are symbols of order k, l respectively, then ab is
a symbol of order k + l. Also, observe that if a is a symbol of order k, it is

automatically a symbol of order k′ for any k′ ≥ k. Also, ∂αx ∂
β
ξ a will be a symbol of

order k − |β|.

The basic estimate here is

Theorem 2.8 (Calderón-Vaillancourt theorem). Every pseudodifferential operator
of order 0 is a CZO. In particular, it is bounded on Lp(Rd) with 1 < p < ∞ with
norm Op,d(1).

Remark 2.9. The theorem of Calderón and Vaillancourt is in fact more general,
allowing other types of symbol classes than that presented here, but we will not
attempt to describe the strongest version of the theorem in these notes.

Proof We shall allow all implied constants to depend on d, and henceforth omit
this dependence explicitly from our notation.

Let a(x, ξ) be a symbol of order 0. We have to check two different things: firstly,
that a(X,D) is bounded on L2(Rd) with operator norm O(1), and secondly that
a(X,D) has a singular kernel.

Observe that if we smoothly truncate a(x, ξ) to be compactly supported in ξ, by
multiplying by some cutoff function χ(|ξ|/R) for some large R ≫ 1, that a remains
a symbol of order 0 (this is a special case of Remark 2.7). Because of this, and
because of various limiting arguments (restricting all functions to the Schwartz class,
of course), we will be able to restrict to the case where a is compactly supported
in ξ, as long as our bounds do not depend on the size of this support.

Let us check the singular kernel property first. If f, g are test functions with disjoint
supports, we observe from Fubini’s theorem (and the compact support of a in ξ)
that

∫

Rd

a(X,D)f(x)g(x) dx =

∫

Rd

∫

Rd

K(x, y)g(x)f(y) dxdy

where

K(x, y) :=

∫

Rd

a(x, ξ)e2πi(x−y)·ξ dξ.

Now notice that for any fixed x, a(x, ξ) is a symbol of order 0, so by Lemma 5.3 we
have

|K(x, y)| . |x− y|−d and |∇yK(x, y)| .d |x− y|−d−1.

However we have to do a little bit more work to get the x derivative, due to the
dependence of a on x. Fortunately, a is so smooth in x that this is not an issue.
Observe that

(∇x +∇y)K(x, y) =

∫

Rd

(∇xa)(x, ξ)e
2πi(x−y)·ξ dξ.
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Now observe from the symbol estimates that for fixed x, ∇xa is still a symbol of
order 0, and so we have

|(∇x +∇y)K(x, y)| .N |x− y|−d〈x− y〉−N

for any N ≥ 0, and the claim follows.

Now we check the L2(Rd) boundedness property, which is harder. We first take
advantage of some additional spatial decay to localise in space. An inspection of
Lemma 5.3 shows that we have the rapid decay

|K(x, y)| . |x− y|−100d

(say). To use this, we cover Rd by finitely overlapping balls B of unit radius, and
write

‖a(X,D)f‖L2(Rd) . (
∑

B

‖1Ba(X,D)f‖2L2(Rd))
1/2 . (

∑

B

‖1Ba(X,D)(f12B)‖
2
L2(Rd))

1/2+(
∑

B

‖1Ba(X,D)(f12Bc

The kernel bound gives the pointwise estimate

1Ba(X,D)(f12Bc) . f ∗ 〈x〉−100d

and so the second term is controlled by ‖f ∗ 〈x〉−100d‖L2(Rd), which is acceptable
by Young’s inequality. Thus it will suffice to show that

(
∑

B

‖1Ba(X,D)(f12B)‖
2
L2(Rd))

1/2 . ‖f‖L2(Rd).

But since

(
∑

B

‖f12B‖
2
L2(Rd))

1/2 ∼ ‖f‖L2(Rd)

we see that it will suffice to show that each 1Ba(X,D) is bounded on L2(Rd)
uniformly in B. We may translate B to be B(0, 1); by applying a smooth cutoff
we may then assume that the symbol a(x, ξ) is supported on the region {|x| ≤ 2}.
The B localisation has served its purpose of localising a, and we now discard it.

By duality, it suffices to show that

|〈a(X,D)f, g〉| . ‖f‖L2(Rd)‖g‖L2(Rd)

for any Schwartz f . Here we shall use the Littlewood-Paley decomposition 1 =
∑

j ψj(D). The intuition is that a(X,D), as it resembles a Fourier multiplier, “al-

most commutes” with these projections ψj(D), and in particular ψj(D)a(X,D)ψk(D)
is expected to be very small when j and k are very different. This type of Fourier lo-
calisation phenomenon can be exploited by Littlewood-Paley decomposition. Specif-
ically, we decompose

a(X,D) =
∑

j,k≥0

ψ̃j(D)ψj(D)a(X,D)ψk(D)ψ̃k(D)

where ψ̃j is a slightly wider variant of ψj such that ψ̃jψj = ψj , where we redefine

ψ0 and ψ̃0 to be one on the ball |ξ| . 1 rather than the annulus |ξ| ∼ 1. Thus by
the triangle inequality and Cauchy-Schwarz

|〈a(X,D)f, g〉| .
∑

j,k≥0

‖ψj(D)a(X,D)ψk(D)‖L2(Rd)→L2(Rd)‖ψ̃k(D)f‖L2(Rd)‖ψ̃j(D)∗g‖L2(Rd).
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But from the Littlewood-Paley inequality (or Plancherel) we have

(
∑

k

‖ψ̃k(D)f‖2L2(Rd))
1/2 ∼ ‖f‖L2(Rd)

and

(
∑

j

‖ψ̃j(D)∗g‖2L2(Rd))
1/2 ∼ ‖g‖L2(Rd)

and so from Schur’s test it will suffice to show that

‖ψj(D)a(X,D)ψk(D)‖L2(Rd)→L2(Rd) . 2−ε|j−k|

for some ε > 0 and all j, k (in fact the argument below allows us to take any ε > 0).

To establish this, let us first look at the operator norm of a(X,D)ψk(D). This is
an integral operator with kernel

Kk(x, y) :=

∫

Rd

a(x, ξ)ψk(ξ)e
2πi(x−y)·ξ dξ.

For any fixed x, a(x, ξ)ψk(ξ) is a bump function adapted to the annulus {|ξ| ∼ 2k}.
Lemma 5.2 then gives

|Kk(x, y)| . 2dk〈2k(x− y)〉−d−1

(say). But then Schur’s test can be applied to conclude

‖a(X,D)ψk(D)‖L2(Rd) . 1.

This gives the claim when j − k = O(1). It remains to establish the cases when
j > k + 10 (say) and when j < k − 10. The cases are not completely symmetric
because our choice of quantization was not symmetric, but it turns out that both
cases can be treated in essentially the same manner. Let us first look at the case
j > k + 10. A little computation shows that a(X,D)ψk(D) is an integral operator
with kernel

Kj,k(x, y) =

∫

Rd

∫

Rd

∫

Rd

ψj(η)a(z, ξ)ψk(ξ)e
2πi(z−y)·ξe2πi(x−z)·η dξdzdη.

One can view this kernel in two ways. Firstly, it is ψj(Dx) applied to Kk(x, y)
(keeping y fixed). Using the prior bounds on Kk(x, y) and the convolution kernel
bounds on ψj(Dx) we establish that

|Kj,k(x, y)| . 2dk〈2k(x− y)〉−d−1.

But this is not enough by itself (it doesn’t get the 2−ε|j−k| decay). We can get
a different bound by using one of the basic heuristics of stationary phase, which
is to locate the variable in which the phase is oscillating in order to fully exploit
integration by parts. In this case, the correct variable to analyse is z. We take
absolute values in the ξ, η integrations to obtain

|Kj,k(x, y)| ≤

∫

Rd

∫

Rd

∣

∣

∣

∣

∫

Rd

e2πiz·(ξ−η)a(z, ξ) dz

∣

∣

∣

∣

|ψj(η)||ψk(ξ)| dξdη.

The support of ψj and ψk forces |ξ − η| ∼ 2j, and then since for fixed ξ, a(z, ξ) is
a bump function adapted to B(0, 2), we see from Lemma 5.2 that

∫

Rd

e2πiz·(ξ−η)a(z, ξ) dz = O(2−100dj)
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(say). We conclude that

|Kj,k(x, y)| . 2−98dj.

Taking a suitable combination of this with the previous kernel bound and then
applying Schur’s test one obtains the desired result (in fact one gets a much better
decay by this type of argument, namely ON (2−Nj) for any N > 0.

The case j < k − 10 is very similar and is left to the reader. This proves the
theorem.

Remark 2.10. It is possible to deduce a weak version of the Hörmander-Mikhlin the-
orem (in which the jth derivatives of the symbol m(ξ) are assumed to be Oj(|ξ|

−j)
for all j ≥ 0, not just 0 ≤ j ≤ d+2) as a consequence of the Calderón-Vaillancourt
theorem and a rescaling argument. Firstly, observe that if m(ξ) was a symbol of
order 0, then m(D) is already a pseudodifferential operator of order 0 and the claim
is immediate. If instead m(ξ) is merely a homogeneous symbol of order 0, we first
truncate m smoothly in an ε-neighbourhood of the origin for some small ε > 0
to create a truncated symbol mε(ξ). Then one checks that mε(εξ) is a symbol of
order 0 and hence mε(εD) is a CZO. Since the class of CZOs is scale-invariant we
conclude that mε(D) is a CZO uniformly in ε. The claim then follows by a limiting
argument taking ε→ 0.

2.11. The pseudodifferential calculus. Now we start performing algebraic ma-
nipulations on these pseudodifferential operators, collectively referred to as the
pseudodifferential calculus. We shall first need a technical lemma.

Lemma 2.12 (Oscillatory integral estimate). Let a(x, y, ξ, η) be a compactly sup-
ported function obeying the estimates

|∂αx ∂
β
y ∂

γ
ξ ∂

δ
ηa(x, y, ξ, η)| .α,β,γ,δ,k,k′,d 〈ξ〉k−|γ|〈η〉k

′−|δ|

for some k, k′ ∈ R, all x, y, ξ, η ∈ Rd, and all multiindices α, β, γ, δ. Then the
function

c(x, ξ) :=

∫

Rd

∫

Rd

a(x, y, ξ, η)e2πi(x−y)·(ξ−η) dydη

is a symbol of order k + k′ (with implied constants depending on k, k′, d).

Proof We begin with some reductions. The main task will be to establish the
zeroth order bound

|c(x, ξ)| .k,k′,d 〈ξ〉k+k′

.

Once one has this, the higher derivatives in x can be dealt with by moving the
derivative inside the integral sign, noting that the x derivatives of e2πi(x−y)·(ξ−η) are
negative the y derivative, and then integrating by parts to move all x, y derivatives
onto the symbol a where they can be harmlessly absorbed. A similar argument lets
one deal with higher derivatives in ξ.

By dividing a by 〈ξ〉k we may take k = 0. By translating a by x we may take x = 0.
Our task is now to show that

|

∫

Rd

∫

Rd

b(y, η)e2πiy·(η−ξ) dydη| .k′,d 〈ξ〉k
′

(5)
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where b(y, η) := a(0, y, ξ, η); note that

|∂βy ∂
δ
ηb(y, η)| .β,δ,k′,d 〈η〉k

′−|δ|

for all y, η ∈ Rd and all multiindices β, δ. Henceforth we omit the dependence of
constants on k′, d.

Let us first deal with the case when b is supported on the region |y| . 1. For fixed

η, we may apply Lemma 5.2 to estimate the y integral by ON (〈η〉k
′

〈ξ − η〉−N ) for

any N , which by the triangle inequality is equal to ON (〈ξ〉k
′

〈ξ−η〉−N ). Integrating
in η we obtain the claim.

By a smooth partition of unity it remains to deal with the case when b is supported
on the region |y| ≫ 1. Here what we do is take a large integer N , write

e2πiy·(η−ξ) = (
y

2πi|y|2
· ∇η)

Ne2πiy·(η−ξ)

and integrate by parts N times to express the left-hand side of (5) as

|

∫

Rd

∫

Rd

[(∇η ·
y

2π|y|2
)N b(y, η)]e2πiy·(η−ξ) dydη|.

For fixed η, one can estimate the y integral using Lemma 5.2 (and a smooth partition

of unity) as ON (〈η〉k
′

〈ξ−η〉−N ), and by repeating the previous argument we obtain
the desired bound.

We now use this lemma to establish that the (formal) adjoint of a pseudodifferential
operator is also a pseudodifferential operator.

Lemma 2.13 (Adjoints of ΨDOs). Let a(X,D) be a pseudodifferential operator of
order k for some k ∈ R. Then a(X,D) has an adjoint a∗(X,D) which is also a
pseudodifferential operator of order k. In fact we have

a∗(x, ξ) = a(x, ξ) mod Sk−1

i.e. a∗ differs from a by a symbol of order k − 1.

Proof We assume that a is compactly supported in frequency; this assumption
can be removed by limiting arguments which we leave as an exercise to the reader
(the point being that our estimates are uniform in the size of this support). Then
the adjoint of a(X,D) is given by

a(X,D)∗f(x) =

∫

Rd

∫

Rd

a(y, ξ)e2πi(x−y)·ξf(y) dξdy.

On the other hand, observe that

a(X,D)f(x) =

∫

Rd

∫

Rd

a(x, ξ)e2πi(x−y)·ξf(y) dξdy.

Writing a(y, ξ) = a(x, ξ) +
∫ 1

0 (x− y) · ax((1− t)x+ ty, ξ), we conclude that

a(X,D)∗f(x) = a(X,D)+

∫ 1

0

∫

Rd

∫

Rd

(x−y)ax((1− t)x+ ty, ξ)e2πi(x−y)·ξf(y) dξdy.
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So it will suffice to show that the operator

Ttf(x) :=

∫

Rd

∫

Rd

(x− y) · ax((1 − t)x+ ty, ξ)e2πi(x−y)·ξf(y) dξdy

is a pseudodifferential operator of order k − 1, uniformly for 0 ≤ t ≤ 1. We can
integrate by parts to eliminate the x− y, writing

Ttf(x) :=
−1

2πi

∫

Rd

∫

Rd

b((1− t)x+ ty, ξ)e2πi(x−y)·ξf(y) dξdy

where b(x, ξ) := ∇ξ ·ax(x, ξ). Observe that b is a symbol of order k−1. Some playing
around with the Fourier inversion formula reveals that we can write Tt = ct(X,D)
where

ct(x, η) :=
−1

2πi

∫

Rd

∫

Rd

b((1− t)x+ ty, ξ)e2πi(x−y)·(ξ−η) dξdy.

But from Lemma 2.12 we have that ct is a symbol of order k − 1, and the claim
follows.

Remark 2.14. A corollary of this lemma is that if a ΨDO of order k has real symbol,
then it is self-adjoint modulo a ΨDO of order k − 1, and conversely if a ΨDO of
order k is self-adjoint, then it has a real symbol modulo a symbol of order k− 1. If
one switches to the Weyl calculus instead of the Kohn-Nirenberg calculus then one
can drop the lower order terms here, and assert simply that a ΨDO is self-adjoint
if and only if it has real symbol.

Next, we study compositions of pseudo-differential operators.

Lemma 2.15 (Composition of ΨDOs). Let a(X,D) and b(X,D) be pseudodifferen-
tial operators of order k, k′ respectively. Then a(X,D)b(X,D) is a pseudodifferen-
tial operator of order k+ k′, and a(X,D)b(X,D)− ab(X,D) is a pseudodifferential
operator of order k + k′ − 1.

Proof We assume a, b are compactly supported; one can remove these hypotheses
by a limiting argument which we omit here. For Schwartz functions f , we expand

a(X,D)b(X,D)f(x) :=

∫

Rd

∫

Rd

a(x, ξ)e2πi(x−y)·ξb(X,D)f(y) dydξ

=

∫

Rd

∫

Rd

∫

Rd

a(x, ξ)b(y, η)e2πi(x−y)·ξe2πiy·ηf̂(η) dηdydξ

= c(X,D)f(x)

where

c(x, η) :=

∫

Rd

∫

Rd

a(x, ξ)b(y, η)e2πi(x−y)·(ξ−η) dydξ.

From Lemma 2.12 we obtain the first claim. To obtain the second claim, observe
from the Fourier inversion formula that

ab(x, η) :=

∫

Rd

∫

Rd

a(x, ξ)b(x, η)e2πi(x−y)·(ξ−η) dydξ

so it suffices to show that
∫

Rd

∫

Rd

a(x, ξ)(b(y, η)− b(x, η))e2πi(x−y)·(ξ−η) dydξ
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is a symbol of order k+k′−1. As in the previous lemma, we exploit the fundamental
theorem of calculus to write

b(y, η)− b(x, η) =

∫ 1

0

(y − x) · bx((1 − t)x+ ty, η) dt

and then use integration by parts to deal with the y − x, eventually reducing one
to showing that

∫

Rd

∫

Rd

∇ξa(x, ξ) · bx((1 − t)x+ ty, η)e2πi(x−y)·(ξ−η) dydξ

is a symbol of order k + k′ − 1. But this follows from Lemma 2.12.

It is instructive to establish the above lemma by hand in the case where a(X,D) and
b(X,D) are variable-coefficient differential operators of order k and k′ respectively.
The defect between a(X,D)b(X,D) and ab(X,D) can be interpreted physically as
the difference between quantum and classical mechanics.

The above lemma implies in particular that the commutator

[a(X,D), b(X,D)] := a(X,D)b(X,D)− b(X,D)a(X,D)

of two pseudodifferential operators of order k and k′ will be an operator of order
k + k′ − 1. In fact we can pin down this commutator more precisely. Define the
Poisson bracket {a, b} of a, b to be the quantity

{a, b} := ∇ξa · ∇xb−∇xa · ∇ξb.

Thus for instance {x, ξ} = −1. One can easily verify that the Poisson bracket of
two symbols of order k, k′ respectively will be a symbol of order k + k′ − 1.

Lemma 2.16 (Commutator of ΨDOs). Let a(X,D) and b(X,D) be pseudodifferen-
tial operators of order k, k′ respectively. Then [a(X,D), b(X,D)]− 1

2πi{a, b}(X,D)
is a pseudodifferential operator of order k + k′ − 2.

Proof From the proof of the previous lemma, we see that [a(X,D), b(X,D)] is a
pseudodifferential operator with symbol

∫

Rd

∫

Rd

[a(x, ξ)b(y, η)− a(y, η)b(x, ξ)]e2πi(x−y)·(ξ−η) dydξ.

We Taylor expand

b(y, η) = b(x, ξ)+(y−x)·∇xb(x, ξ)+(η−ξ)·∇ηb(x, ξ)+

∫ 1

0

∫ 1

0

[(y−x)·∇x][(η−ξ)·∇η ]b((1−t)x+ty, (1−s)ξ+sη) dsdt

and similarly for a(y, η). Expanding this we obtain a variety of terms. Any factor
of (y − x) can be converted into −1

2πi a ξ derivative on e2πi(x−y)·(ξ−η), which can

then by integration by parts be converted to 1
2πi times a ξ derivative somewhere

else. Similarly, any factor of (η − ξ) can be converted to −1
2πi times a y derivative

somewhere else. Because of this, any term which contains two or more factors of
(y−x) ·∇x or (η−ξ) ·∇η can be integrated to an expression which has two or more
derivatives in ξ or η on the symbols a, b, and Lemma 2.12 will show that such terms
give symbols of order k+ k′ − 2. Thus we only need to consider terms with exactly
one factor of (y−x)·∇x or (η−ξ)·∇η (the terms with zero factors cancel each other
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out). In other words, we can replace the expression a(x, ξ)b(y, η) − a(y, η)b(x, ξ)
with

a(x, ξ)(y−x)·∇xb(x, ξ)+a(x, ξ)(η−ξ)·∇ηb(x, ξ)−b(x, ξ)(y−x)·∇xa(x, ξ)+b(x, ξ)(η−ξ)·∇ηa(x, ξ).

Converting the (y − x) and (η − ξ) terms to derivatives by integration by parts, as
outlined above, we can re-express this as

1

2πi
aξ(x, ξ) · bx(x, ξ) −

1

2πi
ax(x, ξ) · bξ(x, ξ) =

1

2πi
{a, b}(x, ξ)

and the claim follows.

We thus see that the algebraic structure of pseudodifferential operators is intimately
connected to the Poisson geometry structure of the phase plane {(x, ξ) : x, ξ ∈ Rd},
which in turn is induced by the symplectic geometry of that plane. There is a rich
theory of how symplectic geometry (which represents Hamiltonian or “classical”
mechanics) interacts with pseudodifferential operators (which represents quantum
mechanics); this is the subject of semiclassical analysis and geometric quantisation.
However, these topics would take us too far afield.

3. Sobolev spaces

With all the various inequalities at our disposal (the Hörmander-Mikhlin multiplier
theorem, the Calderón-Vaillancourt theorem, and the Hardy-Littlewood-Sobolev
inequality) we can now quickly develop some of the classical theory of homoge-
neous and inhomogeneous Sobolev spaces on Euclidean spaces Rd; of course we
will not attempt an exhaustive survey of this vast subject here5. We begin with
the inhomogeneous spaces which contain fewer technicalities.

Definition 3.1 (Inhomogeneous Sobolev norms). Let 1 < p < ∞ and s ∈ R.
If f ∈ S(Rd) is a Schwartz function, we define the inhomogeneous Sobolev norm
‖f‖W s,p(Rd) by the formula

‖f‖W s,p(Rd) := ‖〈∇〉sf‖Lp(Rd).

We let W s,p(Rd) be the closure of the Schwartz functions under this norm.

Remark 3.2. When p = 2, the spacesW s,p(Rd) are often denoted Hs(Rd) (but not
to be confused with the Hardy spaces Hp(Rd)). From the Fourier inversion formula
we see that

‖f‖Hs(Rd) ∼s,d ‖〈ξ〉sf̂‖L2(Rd).

ClearlyW 0,p(Rd) is isometric to Lp(Rd), so Sobolev spaces include Lebesgue spaces
as special cases.

One can easily verify that Sobolev spaces are Banach spaces, and that the dual of
W s,p(Rd) can be identified with W−s,p′

(Rd). We have the following basic embed-
dings.

5In particular, we omit one important analytical aspect of these spaces, namely their local sta-
bility under smooth diffeomorphisms, which allows one to transplant these spaces onto manifolds
and thus have application to various problems in differential geometry.
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Proposition 3.3 (Sobolev embeddings). Let 1 < p < ∞ and s ∈ R and f ∈
W s,p(Rd).

(i) (Monotonicity in s) If s′ < s then f ∈W s′,p(Rd), and

‖f‖W s′,p(Rd) .p,s,s′,d ‖f‖W s,p(Rd). (6)

(ii) (Behaviour with respect to pseudodifferential operators) If a(X,D) is a
pseudodifferential operator of order k for some k ∈ R, then a extends con-
tinuously from W s,p to W s−k,p:

‖a(X,D)f‖W s−k,p(Rd) .p,s,d,k ‖f‖W s,p(Rd).

(iii) (Behaviour with respect to Hörmander-Mikhlin multipliers) If m(D) is a
Hörmander-Mikhlin multiplier, then m(D) extends to a bounded linear op-
erator on W s,p(Rd), with

‖m(D)f‖W s,p(Rd) .p,s,d ‖f‖W s,p(Rd).

(iv) (Characterisation using derivatives) If f,∇kf ∈ W s,p(Rd) for6 some inte-
ger k ≥ 0, then f ∈W s+k,p(Rd) and

‖f‖W s+k,p(Rd) ∼p,s,d,k ‖f‖W s,p(Rd) + ‖∇kf‖W s,p(Rd) ∼p,s,d,k

k
∑

j=0

‖∇jf‖W s,p(Rd).

In particular,

‖f‖Wk,p(Rd) ∼p,d,k ‖f‖Lp(Rd) + ‖∇kf‖Lp(Rd) ∼p,d,k

k
∑

j=0

‖∇jf‖W s,p(Rd).

(v) (Sobolev embedding theorem) If p < q < ∞ is such that d
q ≥ d

p − s, then

f ∈ Lq(Rd) and

‖f‖Lq(Rd) .p,s,q,d ‖f‖W s,p(Rd).

If instead s > d/p, then f is bounded and continuous with

‖f‖L∞(Rd) .p,s,q,d ‖f‖W s,p(Rd).

Proof To prove (i), observe that 〈∇〉s
′−s is certainly a Hörmander-Mikhlin mul-

tiplier (or a pseudodifferential operator of order s′ − s and hence of order 0), and
hence bounded on Lp(Rd). One can then quickly verify (6) for Schwartz functions
and then extend by density.

To prove (ii), observe from the pseudodifferential calculus that 〈∇〉s−ka(X,D)〈∇〉−s

is a pseudodifferential operator of order 0, and hence bounded on Lp(Rd). The
claim then follows as in (i).

To prove (iii), use the Hörmander multiplier theorem coupled with the observation
that m(D) commutes with 〈∇〉s (working in the Schwartz category to begin with).

6Note from (ii) that ∇kf is already well-defined as an element of W s−k,p(Rd) at least.
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To prove (iv), we can use Fourier multiplier calculus to write 〈∇〉k = m0(D) +
m1(D) · ∇k where m0,m1 are Hörmander-Mikhlin multipliers, and hence

〈∇〉s+kf = m0(D)〈∇〉sf +m1(D) · 〈∇〉s∇kf

Taking Lp norms (first for Schwartz functions, and then one can take weak limits)
we establish that

‖f‖W s+k,p(Rd) .p,s,d,k ‖f‖W s,p(Rd) + ‖∇kf‖W s,p(Rd).

The remaining inequalities then follow from (ii).

To prove (v), we may lower s to assume that 0 < s < d. We need to show that
〈∇〉−s maps Lp(Rd) to Lq(Rd) in the first case, or Lp(Rd) to L∞(Rd) in the second
case. But by Lemma 5.3, the convolution kernel K(x) of this Fourier multiplier is

Os,d,N(min(|x|−d+s, |x|−N )) for any N > 0. In particular it is Os,d,q(|x|
−d/p′−d/q),

at which point the first claim follows from the Hardy-Littlewood-Sobolev inequality;
if s > d/p then the kernel lies in Lp′

, at which point we get the second claim (the
continuity follows by starting with Schwartz functions and taking limits).

Next, we establish a Littlewood-Paley characterisation of Sobolev spaces.

Theorem 3.4 (Littlewood-Paley characterisation). Let 1 < p <∞ and s ∈ R. Let
φ0 : Rd → R be a bump function adapted to the ball B(0, 2), and for each j ≥ 1
let ψj : R

d → R be a bump function adapted to the annulus B(0, 2j+1)\B(0, 2j−1),
such that one has the pointwise estimate |φ0|

2 +
∑∞

j=1 |ψj |
2 ∼ 1. Then for any

f ∈ W s,p(Rd) we have

‖f‖W s,p(Rd) ∼s,p,d ‖φ0(D)f‖Lp(Rd) + ‖(
∞
∑

j=1

22js|ψj(D)f |2)1/2‖Lp(Rd).

Proof Let us just prove the upper bound. From Proposition 3.3(ii) we already
know that φ0(D) maps W s,p to Lp, so it suffices to show that

‖(

∞
∑

j=1

22js|ψj(D)f |2)1/2‖Lp(Rd) .s,p,d ‖f‖W s,p(Rd).

It suffices to do this for Schwartz functions. Substituting g := 〈∇〉sf , our task is
to show

‖(

∞
∑

j=1

|2jsψj(D)〈∇〉−sg|2)1/2‖Lp(Rd) .s,p,d ‖f‖Lp(Rd).

But observe that 2jsψj(D)〈∇〉−s is a Fourier multiplier whose symbol is adapted
to the annulus {|ξ| ∼ 2js}, so the claim follows from the upper Littlewood-Paley
inequality.

The lower bound can be proven in a similar manner using the full Littlewood-Paley
inequality, as well as a further frequency decomposition into low frequencies |ξ| . 1
and high frequencies |ξ| & 1, and we leave this as an exercise to the reader.

Sobolev spaces can be interpolated with each other fairly easily using the complex
interpolation method. We present here a sample result to give the flavour.
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Proposition 3.5. Let T : S → S be a linear operator on Schwartz functions
which is bounded on both W s0,p0(Rd) and W s1,p1(Rd) for some 1 < p0, p1 < ∞
and s0, s1 ∈ R. Then T is also bounded on W sθ,pθ(Rd) for 0 ≤ θ ≤ 1, where
1
pθ

= 1−θ
p0

+ θ
p1

and sθ := (1− θ)s0 + θs1.

Proof By hypothesis, the operator 〈∇〉sjT 〈∇〉−sj is bounded on Lpj (Rd) for j =
0, 1. By the Hörmander-Mikhlin multiplier theorem, we also see that 〈∇〉sj+itT 〈∇〉−sj−it

is bounded on Lpj (Rd) for t ∈ R whose operator norm grows at most polynomially
in t. The claim then follows from the Stein interpolation theorem.

We now briefly discuss homogeneous Sobolev spaces Ẇ s,p(Rd), defined using |∇|s

instead of 〈∇〉s; these have the advantage of behaving well under dilations Dilqλ,
although they have some other drawbacks to compensate for this. Here one can run
into some technicalities for the very low regularities (s ≤ −d), because the operator
|∇|s is not well defined distributionally in that case. This problem can be avoided
by restricting the Schwartz functions to avoid the frequency origin:

Definition 3.6 (Homogeneous Sobolev norms). Let 1 < p < ∞ and s ∈ R. If
f ∈ S(Rd) is a Schwartz function whose Fourier transform vanishes near the origin,
we define the homogeneous Sobolev norm ‖f‖Ẇ s,p(Rd) by the formula

‖f‖Ẇ s,p(Rd) := ‖|∇|sf‖Lp(Rd).

We let Ẇ s,p(Rd) be the closure of all such functions under this norm.

Because Ẇ s,p does not always contain all Schwartz functions, one has to sometimes
take a little care with arguments. Nevertheless, one can still establish a reasonable
theory for these spaces. For instance, ∇k is an isomorphism between Ẇ s,p and
Ẇ s−k,p, and we have the homogeneous Sobolev embedding Ẇ s,p(Rd) ⊂ Lq(Rd)
whenever 1 < p < q < ∞ and d/q = d/p − s. For positive s we also have the

relationship W s,p(Rd) = Ẇ s,p(Rd) ∩ Lp(Rd), with

‖f‖W s,p(Rd) ∼s,p,d ‖f‖Lp(Rd) + ‖f‖Ẇ s,p(Rd);

however we caution that this relationship breaks down for negative s. We leave
these facts (which are simple modifications of the arguments given above) to the
reader.

4. Appendix: the geometric Hahn-Banach theorem

Here we give a geometric formulation of the Hahn-Banach theorem, sometimes also
called the Dieudonné hyperplane separation theorem.

Definition 4.1 (Algebraic openness). A set A ⊂ V in a (real) vector space is
algebraically open if the set {t ∈ R : v + tw ∈ A} is open for all v, w ∈ V (i.e. the
intersection of A with any line is an open subset of that line).

Algebraic openness is a very mild property; indeed, the topological vector space
structure given by weak openness is finer than any other topological vector space
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structure. For instance, in a normed vector space, any open set will be algebraically
open.

Theorem 4.2 (Geometric Hahn-Banach theorem). Let A,B be disjoint convex
subsets of a real vector space V , with A algebraically open. Then there exists a
linear functional λ : V → R and c ∈ R such that λ < c on A, and λ ≥ c on B.

Remark 4.3. In finite dimensions, it is not difficult to drop the algebraic openness
hypothesis on A as long as one now replaces the condition λ < c by λ ≤ c. However
in infinite dimensions one cannot do this. Consider for instance the space V =
⋃∞

n=0 R
n of sequences (xn)

∞
n=1 with only finitely many xn non-zero, let A consist

of those sequences whose last non-zero element is strictly positive, and B = −A
consist of those sequences whose last non-zero element is strictly negative. Then
there is no hyperplane separating A from B.

Remark 4.4. If B is algebraically open, and A,B are non-empty, then λ is non-zero,
and it is not hard to see that the condition λ ≥ c can be upgraded to λ > c. If A
contains the origin, then c must be positive, and can then be rescaled to be 1.

Proof We first observe that it suffices to verify the homogeneous case, when A,B
are convex cones and c = 0. Indeed, to then establish the general case, one applies
the homogeneous case to the convex cones A′, B′ ∈ R× V defined by

A′ := {(t, tx) : t > 0, x ∈ A}; B′ := {(t, tx) : t > 0, x ∈ B};

we leave the details to the reader.

Consider all the pairs (A,B) of disjoint convex cones, with A algebraically open.
We can order these pairs by set inclusion, so that (A,B) ≤ (A′, B′) whenever
A ⊆ A′ and B ⊆ B′, and observe that every chain has an upper bound. By Zorn’s
lemma, we thus see that to prove the claim it suffices to do so under the additional
assumption that (A,B) is maximal. (This is the one and only place where we use
(crucially) the axiom of choice.)

We can of course assume that neither A nor B is empty. We now claim that B
is the complement of A. For if not, then there exists v ∈ V which does not lie in
either A or B. By the maximality of (A,B), the convex cone generated by B ∪ {v}
must intersect A at some point, say w. By dilating w if necessary we may assume
that w lies on a line segment between v and some point b in B. By using the
convexity and disjointness of A and B one can then deduce that for any a ∈ A, the
ray {a+ t(w− b) : t > 0} is disjoint from B. Thus one can enlarge A to the convex
cone generated by A and w − b, which is still algebraically open and now strictly
larger than A (because it contains v), a contradiction. Thus B is the complement
of A.

Let us call a line in V monochromatic if it is entirely contained in A or entirely
contained in B. Note that if a line is not monochromatic, then (because A and
B are convex and partition the line, and A is algebraically open), the line splits
into an open ray contained in A, and a closed ray contained in B. From this we
can conclude that if a line is monochromatic, then all parallel lines must also be
monochromatic, because otherwise we look at the ray in the parallel line which
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contains A and use convexity of both A and B to show that this ray is adjacent
to a halfplane contained in B, contradicting algebraic openness. Now let W be the
space of all vectors w for which there exists a monochromatic line in the direction
w (including 0). Then W is easily seen to be a vector space; since A,B are non-
empty, W is a proper subspace of V . On the other hand, if w and w′ are not in W ,
some playing around with the property that A and B are convex sets partitioning
V shows that the plane spanned by w and w′ contains a monochromatic line, and
hence some non-trivial linear combination of w and w′ lies in W . Thus V/W is
precisely one-dimensional. Since every line with direction in w is monochromatic,
A and B also have well-defined quotients A/W and B/W on this one-dimensional
subspace, which remain convex (with A/W still algebraically open). But then it
is clear that A/W and B/W are an open and closed ray from the origin in V/W
respectively. It is then a routine matter to construct a linear functional λ : V → R

(with null space W ) such that A = {λ < 0} and B = {λ ≥ 0}, and the claim
follows.

To illustrate the power of this theorem, let us give a famous consequence:

Corollary 4.5 (Hahn-Banach theorem). Let V be a normed vector space, and let
W be any subspace of V . Then any bounded linear functional λ : W → R has an
extension λ̃ : V → R with the same norm.

Proof We may normalise ‖λ‖W∗ = 1. Then the algebraically open convex sets
{v ∈ V : ‖v‖V < 1} and {w ∈ W : λ(w) > 1} are disjoint, with the former

containing 0, and so by the geometric Hahn-Banach theorem we can find λ̃ such
that λ̃ < 1 on the first set and λ̃ > 1 on the second. The former fact establishes
that λ̃ is bounded on V with norm at most 1, and the latter implies that the null
space of λ̃ contains the null space of λ. Restricting to W we then quickly conclude
that λ̃ when restricted to W equals λ, and the claim follows.

In the converse direction, one can deduce the geometric Hahn-Banach theorem
from its more familiar formulations, but this requires some work. The first key
observation is that to prove the geometric Hahn-Banach theorem it suffices to do
so when B is the origin {0}, since the general case will eventuall follow from the trick
of replacing the pair (A,B) by (A−B, {0}), where A−B := {a− b : a ∈ A, b ∈ B}
is the Minkowski difference of A and B. The remainder of the argument proceeds
either by mimicking the usual proof of the Hahn-Banach theorem or by building a
norm somehow out of A−B.

5. Appendix: Schwartz functions

To facilitate computations we devise some notion regarding bump functions. (Ret-
rospectively, having this appendix in last week’s notes would have helped out with
the proof of the Hörmander-Mikhlin theorem.)
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We already have defined a notion of what it means for a function φ to be a bump
function adapted to a region such as a ball or an annulus; now we modify the notion
to also cover Schwartz functions adapted to similar regions.

Definition 5.1. Let B(x0, r) be a ball and H > 0. We say that a function ψ :
Rd → C is a Schwartz function of height H adapted to the ball B(x0, r) if we have
a representation

ψ(x) = Hφ(
x − x0
r

)

for some φ which is boundedly Schwartz in the sense that

|∇k
xφ(x)| .k,d,N 〈x〉−N−k

for all k,N ≥ 0.

Observe that one may equivalently define a Schwartz function of height H adapted
to B(x0, r) to be a function ψ which obeys the bounds

|∇k
xψ(x)| .k,d,N Hr−k〈

x− x0
r

〉−N−k

for all k,N ≥ 0. Note that any bump function adapted to B(x0, r) (or any region
similar to B(x0, r), such as the annulus {x : |x−x0| ∼ r} is also a Schwartz function
of height 1 adapted to B(x0, r).

For Schwartz functions adapted to balls centred at the origin, one can compute
their Fourier transform easily:

Lemma 5.2. Let φ be a Schwartz function of height H adapted to the ball B(0, r).

Then φ̂ and φ̌ are a Schwartz functions of height Hrd adapted to the ball B(0, 1/r).

Proof We can normalise H = 1; by rescaling we can normalise r = 1. The claim
then follows from the usual proof of the fact that the Fourier transform (or inverse
Fourier transform) of a Schwartz function is Schwartz.

This allows us to take the Fourier transform of symbols:

Lemma 5.3. Let m : Rd → R be a Schwartz function which is also a symbol of
order k for some k > −d, thus

|∂αξ m(ξ)| .α,k,d 〈ξ〉k−|α|

for all ξ ∈ Rd and all multiindices α. Then m̌ obeys the dual symbol estimates

|∂αx m̌(x)| .α,k,d,N |x|−d−k−|α|〈x〉−N (7)

for all x ∈ Rd, all multiindices α, and all N ≥ 0.

Remark 5.4. The qualitative hypothesis that m to be Schwartz is needed to ensure
that the inverse Fourier transform of m makes sense classically. It can be removed,
but at the cost of interpreting m̌ as a distribution rather than as a function (and
excluding the origin x = 0, which may now be singular).
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Proof Using smooth dyadic cutoffs we may split

m = m0 +

∞
∑

j=1

2jkmj

where m0 is a bump function adapted to the ball {|ξ| ≤ 1} and each mj for j ≥ 1 is
a bump function adapted to the annulus {|ξ| ∼ 2j}. In particular, for each j ≥ 0,
mj is a Schwartz function of height 1 adapted to B(0, 2j). Then

m̌ = m̌0 +

∞
∑

j=1

2jkm̌j.

By Lemma 5.2, m̌0 is a Schwartz function of height 1 adapted to B(0, 1), while m̌j

is a Schwartz function of height 2dj adapted to B(0, 2−j). On summing we obtain
the claim.

6. Exercises

• Q1. (Hardy-Littlewood maximal inequality for Ap weights) Let w : Rd →
R+ be strictly positive, and let 1 < p < ∞. Show that the following three
statements are equivalent up to changes in the implied constant:

• (i) For every ball B, we have (
∫

−Bw)(
∫

−Bw
−p′/p)−p′/p .p,d 1.

• (ii) For every ball B, we have (
∫

−Bw)(
∫

−Bw
−p′/p)−p′/p ∼p,d 1.

• (iii) For every locally integrable function f and λ > 0, we have
∫

Rd

1Mf(x)>λw(x) dx .p,d

∫

Rd |f(x)|
pw(x) dx

λp
.

(Note: Weights w with the above properties are known as Ap weights.
Somewhat counter-intuitively, the weighted weak-type (p, p) estimate in
(iii) is in fact equivalent to its strong-type counterpart, due to a certain
“openness” property of Ap weights, but this will not be shown here.)

• Q2. (Calderón-Zygmund theory for power weights) Let T : L2(Rd) →

L2(Rd) be a CZO. Show that for any 1 < p <∞ and −d < α < dp′

p that
∫

Rd

|Tf(x)|p〈x〉α .d,p,α

∫

Rd

|f(x)|p〈x〉α

and
∫

Rd

|Tf(x)|p|x|α .d,p,α

∫

Rd

|f(x)|p|x|α

for all bounded, compactly supported f . (Note that the former can be ob-
tained from the latter by a scaling argument.) Hint: use duality to reduce

matters to establishing a bilinear weighted estimate for
∫

Rd Tf(x)g(x) dx,
and then decompose f and g into dyadic pieces. For the “diagonal” inter-
actions use the fact that T is bounded on Lp, while for the off-diagonal
interactions use something like Q8 from Week 2 notes.

(Note: the above theory works when 〈x〉α or |x|α is replaced with a
general Ap weight, but this is harder to prove.)

• Q3. Establish a partial converse to Lemma 5.3: if m is Schwartz and m̌
obeys (7) with k < 0, then m is a symbol of order k.
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• Q4. Show that if a is a symbol of order k, then aw(X,D) = a(X,D) +
b(X,D) and a(X,D) = aw(X,D)+ cw(X,D), where b and c are symbols of
order k − 1. Thus the Kohn-Nirenberg and Weyl quantisations are equiva-
lent modulo lower order operators.

• Q5. (Endpoint Sobolev embedding) Let 1 < p < ∞ and s = d/p. Show

that if f ∈ Ẇ s,p(Rd), then f ∈ BMO(Rd) with

‖f‖BMO(Rd) .d,p ‖f‖Ẇ s,p(Rd).

In fact, slightly more is true: show that f has vanishing mean oscillation
in the sense that for any x ∈ Rd we have

∫

−
B(x,r)

|f −

∫

−
B(x,r)

f | → 0 as r → 0 or r → ∞.

• Q6. (Hölder-Sobolev embedding) Let Let 1 < p < ∞, 0 < δ < 1, and

s = d/p+ δ. Show that if f ∈ Ẇ s,p(Rd), then we have the Hölder estimate

|f(x)− f(y)| .d,p ‖f‖Ẇ s,p(Rd)|x− y|δ

for all x, y ∈ Rd.
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