
LECTURE NOTES 1 FOR 247A

TERENCE TAO

1. Introduction

The aim of this course is to introduce the basic tools and theory of real-variable
harmonic analysis - very roughly speaking, the art of estimating the size of an
output function in terms of the size of an input function, when a known transfor-
mation (linear, multilinear, or nonlinear) is applied. In particular we shall focus on
the classical Calderón-Zygmund-Stein theory, in which we study such operations as
singular integrals, maximal functions, fractional integrals, pseudodifferential oper-
ators, and so forth. This subject is intimately tied together with Fourier analysis,
and to a lesser extent real, functional, and complex analysis; see for instance the
printed supplement to these notes for some discussion. There are many applications
of harmonic analysis, for instance to ergodic theory, analytic number theory, PDE,
complex analysis, and geometric measure theory, although we shall only give some
very few selected applications in this course. In the sequel 247B to this course we
shall focus more on the Fourier-analytic side of things, for instance the connection
with representation theory.

2. What is harmonic analysis?

Harmonic analysis is, roughly speaking, the quantitative study of functions on
domains (e.g. a function f : Rd → R) and similar objects (e.g. measures, distri-
butions, subsets of domains, or maps from one domain to another). For sake of
discussion let us restrict attention to functions. One either studies a function in
isolation (for instance, asking what is the most efficient way to decompose it in a
certain manner, or how the size of a function in one norm is related to the size
in another), or else one considers operators or transforms that take one or more
functions as input and returns another as output, and one tries to understand how
the size of the output (as measured in various norms) relates to the size of the
input. Note that in many applications, the input is not given in a usefully explicit
fashion (e.g. it might be the solution to a very nonlinear PDE, or perhaps it is the
accumulated “noise” in some real-life system); the only information we have on the
input is some bounds on its size, as measured in various norms. So it is generally
hopeless to try to compute things exactly; the best we can hope for are estimates
on the size of things.

A very typical problem is the following. Suppose we are given an explicit linear
operator T from one Banach space V of functions to anotherW ; this linear operator
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might initially not be defined for all functions in V , but only in some dense sub-
class, such as test functions. A typical example would be the Hilbert transform H ,
defined on test functions on R by the formula

Hf(x) := p.v.
1

π

∫
R

f(y)

x− y
dy = lim

ε→0

1

π

∫
|x−y|>ε

f(y)

x− y
dy.

This transform comes up in several places, most notably in complex analysis and
the theory of Fourier summation, but let us not discuss these matters in detail
here. The 1

π normalisation factor is natural (for instance, it implies that H2 = −1)
but can be easily omitted for the sake of this present discussion. It is not hard to
show that the limit here is well-defined when f is very nice (for instance, if it lies
in C0

c (R), the space of continuous and compactly supported functions). But on a
larger space such as L2(R), it is not obvious initially that H is well-defined.

Given such a densely defined operator T from V toW , a natural question is whether
this operator can be continuously extended to the entire domain V ; the density of
the initial domain implies that such a continuous extension, if it exists, is unique,
and so would give a canonical extension of T to this larger domain. If T is linear,
it turns out that this is true if and only if T is bounded on its dense class, i.e. there
exists a constant C > 0 for which we have the estimate

‖Tf‖W ≤ C‖f‖V

for all f in the dense class. For instance, we shall eventually show that the Hilbert
transform is bounded on Lp(R) for any 1 < p < ∞, thus there exists Cp such that

‖Hf‖Lp(R) ≤ Cp‖f‖Lp(R)

for all f ∈ C0
c (R). Thus there is a canonical extension of the Hilbert transform

which applies to any Lp function. On the other hand, we shall show that this esti-
mate fails at p = 1 or p = ∞, and so the Hilbert transform cannot be meaningfully
extended as a map from L1(R) to itself, or from L∞(R) to itself. (We will however
show that it maps L1(R) to another space, namely L1,∞(R) (weak L1), and that
it maps L∞(R) to another space, BMO(R).)

Thus we see that a qualitative question (existence of a continuous extension) can be
equivalent to a quantitative question (existence of a concrete estimate). Indeed, a
major purpose of harmonic analysis is to provide the quantitative estimates needed
to obtain qualitative properties of functions and operators (e.g. continuity, integra-
bility, convergence, etc.), which in turn are often needed to justify various formal
manipulations for many applications (most notably in PDE). However, quantitative
estimates are of interest in their own right. For instance, they often demonstrate
the robustness of various operations to the presence of unpredictable noise. For in-
stance, once we know that the Hilbert transform H is bounded on Lp, this assures
us that small perturbations of the input f (as measured in Lp norm) are guaranteed
to only cause small perturbations of the output Hf (again measured in Lp norm).
This is important for rigorously justifying numerical simulations of operators such
as the Hilbert transform, as one always expects to have small errors (arising from
measurement error, roundoff error, or other sources). More intangibly, estimates
help convey intuition on what transforms such as the Hilbert transform actually do:
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for instance, can they transform shallow broad functions into spiky narrow func-
tions or vice versa? These are questions which are often difficult to read off from the
explicit formula defining these operators, but can instead be seen via the estimates.
(For instance, the boundedness of H for high values of p basically prevents shallow
broad functions from being transformed into spiky narrow functions, whereas the
boundedness for small values of p basically prevents the reverse phenomenon.)

Despite the close partnership between the qualitative and quantitative aspects of
analysis, they differ in some key respects. Qualitative analysis is often concerned
with very rough functions (or even objects that are not functions at all, such as
measures or distributions), and a large part of the difficulty lies in actually justi-
fying various formal calculations (e.g. swapping limits, sums, and integrals with
each other). In contrast, with quantitative analysis, one can often restrict to very
nice functions (e.g. the continuous compactly supported functions, or perhaps the
Schwartz class) in which every formal manipulation is easy to justify; however, the
goal is different, namely to obtain an explicit estimate rather than existence or
convergence of an expression. Despite these superficial differences, however, there
are still many similarities in the two different styles of analysis. For instance, in
the qualitative world, a key issue is whether convergence in one topology implies
convergence in another; in the quantitative world, the analogous issue is whether
control of some norm (or norm-like quantity) implies control of another norm.

Harmonic analysis has long been intertwined with Fourier analysis, which is the
study of how general functions on symmetric domains (such as Euclidean space,
the torus, or the sphere) are decomposed into more symmetric objects (such as
plane waves, characters, spherical harmonics, or eigenfunctions). In one direction,
in order to justify many of the identities arising in Fourier analysis, one needs the
quantitative estimates arising from harmonic analysis. In the converse direction,
the Fourier transform enables one to view functions and operators in frequency
space rather than physical space, which can greatly clarify some features of these
objects (while greatly obscuring others). More recently, a combined phase space
viewpoint has proven to be very useful, in which one views all objects in the physical
and frequency domain simultaneously, subject of course to the limits given by the
uncertainty principle. We will return to these issues much later in this course,
and in the next quarter also. However for most of this quarter we shall focus on
harmonic analysis (and in particular the art of the estimate) rather than on Fourier
analysis.

Historically, both harmonic and Fourier analysis - particularly on the real line R

or circle S1 - were closely tied to complex analysis, which is the study of complex
analytic functions and other objects in complex geometry. Complex analysis (and
its generalisation to several variables) continues to have a mutually profitable inter-
action with harmonic analysis today, however the subjects have now moved quite
far apart, in that one can now learn much of harmonic analysis without ever having
to deal with complex analytic functions (though one always deals with complex
numbers, via the fundamental character x 7→ e2πix). Perhaps the key event that
separated the two fields was the widespread adoption of the bump function (and
related cutoff functions) in harmonic analysis, which allowed one to localise many
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objects in physical space, frequency space, or both. Such functions do not have a
fully satisfactory analogue in the complex analytic (or even real analytic) world, as
they are incompatible with analytic continuation. Furthermore, the real-variable
harmonic analysis methods turned out to extend to higher dimensions much more
easily than the complex-variable ones. We shall therefore adopt a modern perspec-
tive on harmonic analysis rather than a historical one, and so complex analytic
functions will only play a minor role in our presentation.

3. Hardy, Landau, and Vinogradov notation

As we have seen in the above discussion, harmonic analysis will often be concerned
with obtaining estimates of the form X ≤ CY , where X is some quantity measuring
size of output, Y is some quantity measuring size of input, and C is a constant. In
many cases, the precise value of C is either not important, not interesting, or too
difficult to compute exactly1. It thus makes great practical sense to adopt notation2

which allows one to tolerate multiplicative losses of constants without having to do a
great deal of book-keeping to track what these constants are exactly. The three main
notations for doing this all arose from analytic number theory (which encountered
the need for such notation somewhat sooner than the harmonic analysts, who at
least had the option of working instead in the qualitative world). They are the
Hardy notation, the Landau notation, and the Vinogradov notation. All three are
extensively used in the literature; they are essentially equivalent but each has some
slight advantages and disadvantages.

In Hardy notation, the letter C is used to denote various positive constants between
0 and ∞ (which are typically quite large); the C stands of course3 for “constant”.
Generally speaking, these constants C could be evaluated numerically if absolutely
necessary4 but one chooses not to in order not to get bogged down in distractions.
The key point to remember is that each different appearance of the letter C can
represent a different constant (unless one explictly uses a subscript such as C1, C2,

1The study of exact inequalities with sharp constants (which typically involve π) is of great
interest, and there are important cases in which knowing the sharp inequality can assist with prov-
ing the estimate with unspecified constant, particularly when one needs to iterate the inequality
repeatedly. For instance, given a sequence of positive numbers x1, x2, . . . , a precise inequality
xn ≤ xn−1 lets one bound xn uniformly via iteration, whereas an imprecise inequality xn . xn−1

will not. However, in most cases it is too difficult to obtain sharp constants and so we shall content
ourselves with unspecified constants in order to be able to prove more results.

2In general, the purpose of good notation is to conceal or deprecate the less important features
of a mathematical expression, in order to focus as much attention as possible on the crucial or
key features. Of course, the decision as to which features are important and which are not is a
subjective one, and depends heavily on the application. Hence it makes sense to adapt notation to
a specific field of study, rather than to try to force a uniform one-size-fits-all notational standard
across all of mathematics.

3In Hardy’s original papers, the letter A was used instead.
4In number theory there is an interesting phenomenon that some constants are ineffective -

they are known to be finite, but are not computable with present technology, due for instance to
the unknown status of the Riemann hypothesis. This rarely happens in harmonic analysis, except
occasionally when using qualitative methods to prove a quantitative result.
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etc. to override5 this convention). Sometimes one needs the constants C to depend
on certain parameters, in which case this is denoted by subscripts. For instance,
in order for a collection of functions fn : Ω → R to be uniformly bounded, we
need fn(x) ≤ C for all n and all x ∈ Ω, but to be individually bounded we need
fn(x) ≤ Cn for all n and all x ∈ Ω. If a parameter stays fixed throughout the
entire argument (e.g. the ambient dimension d) then one often omits the explicit
dependence of constants C on that parameter, although one should then state this
convention explicitly at the start of the argument.

In Landau notation6 the expressionO(X) (read: “big-O ofX”) is used to denote any
quantity bounded in magnitude by CX for some finite constant X ; thus Y = O(X)
is equivalent to the Hardy notation |Y | ≤ CX , and the constant C is then called
the implied constant or implicit constant in the O() notation. For instance we have
sinx = O(1), sin(x) = O(|x|), and sin(x) = x + O(|x|3) for any real number x.
Note that the use of parentheses in the O() notation does not denote a functional
relationship: O(X) need not be a function of X . This notation is very convenient
(especially in describing expressions such as X+O(Y ) with a main term X and an
error term O(Y )) but there is one major caveat: the notation breaks the symmetry
in the equality relation. Basically, when a O() appears on the right of an equality
(or any other binary relation), it asserts that the equality is true for some choice of
function in that class, whereas when it appears on the left, it asserts the equality is
true for all choices of function in that class. Thus for instance, when n is a positive
integer parameter, then O(n) = O(n2) (i.e. every quantity which is of the form
O(n), is automatically also of the form O(n2)), but O(n2) 6= O(n) (thus a quantity
which is of the form O(n2), is not necessarily of the form O(n)). Because of this
asymmetry, one generally tries to only place O() notation on the right-hand side
of an expression to avoid confusion. Finally, if one wants the implied constant to
depend on parameters, this can be done via subscripting; for instance, X = Ok(Y )
denotes the estimate |X | ≤ CkY for some constant Ck depending on a parameter
k.

In (modified) Vinogradov notation7, the notation X . Y (read: X is less than or
comparable to Y ) or Y . X is used synonymously with |X | ≤ CY or X = O(Y ).
We also use X ∼ Y to denote X . Y . X , thus for instance x+ y ∼ max(x, y) for
all x, y > 0. Again, we subscript this to denote dependence on parameters, thus
X .k Y is synonymous with X = Ok(Y ) or |X | ≤ CkY . Note that this notation
is transitive if used finitely many times - which is one of the key advantages of this
notation - though care should be taken with using it inductively. For instance, we

5Of course, an even more unambiguous way to override the convention is simply to use a letter
other than C.

6Landau notation also includes some other symbols, most notably o(), but also the rarer Ω(),
ω(), and Θ(); these are useful in analytic number theory, but are not sufficiently relevant in
harmonic analysis to be in widespread use.

7In the original Vinogradov notation, still in use in analytic number theory, X ≪ Y is used
for X = O(Y ), while X . Y denotes |X| ≤ (1 + o(1))Y (thus X is less than or asymptotic to

Y ). Asymptotics are not so useful in harmonic analysis and so this notation is not in wide use.
Instead, X ≪ Y is sometimes used (rather informally) to denote the assertion X ≤ cY for a
sufficiently small constant c, although care should be taken with this notation as it is not fully
rigorous.
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have 2x . x for any x > 0, but one cannot iterate this inductively to conclude that
2nx . x uniformly in n. Instead, we have 2nx .n x; the length of the induction
depends on n, and so the implied constant will do so also.

Let us use Vinogradov notation for now. A very typical objective is then to upper
bound8 a complicated expression X by a known expression Y , i.e. to establish the
bound X . Y . For instance, to prove that a linear operator T : V → W is bounded
one needs to show that ‖Tf‖W . ‖f‖V for all f in V (or a dense class thereof). One
of the most basic techniques in doing so is divide and conquer - split X up into two
or more pieces, bound each piece separately, and then sum up. For instance, observe
that if X = X1+X2 for some non-negativeX1, X2, then X . Y is true if and only if
X1 . Y and X2 . Y are both true. If the number of pieces is not too large, and one
doesn’t care about the precise value of the implied constant, then this technique is
essentially a “free” reduction, allowing one to replace the task of bounding a large
quantity by the easier tasks of bounding several smaller quantities. Besides making
the quantity to estimate smaller, the divide-and-conquer technique has the effect
of localising and thus isolating the difficulties of the problem. Suppose for instance
one is estimating a quantity Q which contains both an oscillatory component and a
singular component; a useful tactic is then to try to cleverly decompose the object
Q = Qo + Qs into a component Qo which only has oscillation, and a component
which only has singularity Qs, which will then be easier to estimate9.

4. Rearrangement-invariant theory - introduction

For the remainder of this week’s notes, we shall review the basic theory (in partic-
ular, the interpolation theory) of Lebesgue spaces Lp, as well as their cousins such
as weak Lebesgue spaces (Lp,∞), Lorentz spaces (Lp,q), and Orlicz spaces (such
as L logL and eL); this entire family of spaces are collectively referred to as the
monotone rearrangement-invariant spaces. You will already have seen much of this
material in 245AB, but since we shall rely on it so much throughout the course,
it deserves a thorough review here. As stated above, our emphasis shall be on the
quantitative aspects of this theory (in particular, on norms and estimates) as op-
posed to qualitative aspects (such as measurability, convergence, or integrability).
Thus for instance the norms will be more important to us than the function spaces.
Also for simplicity we shall restrict attention to real or complex-valued functions;
there are important generalisations of the theory here to vector-valued functions,

8Lower bounds and asymptotics are of course also desirable, but tend to be significantly harder
to prove, requiring tools outside of harmonic analysis. A typical strategy when lower bounding X

is to split X into a main term Z, which can be computed by some other means (e.g. by algebraic
methods), plus an error E, which one then upper bounds. As long as the upper bound for the
magnitude for E is less than the main term Z, one obtains a non-trivial lower bound; if it is
significantly less, one can obtain an asymptotic.

9More commonly, one performs a dyadic decomposition into a countable number of components
Q =

∑
n Qn, each of which has some oscillation and some singularity, for instance with Qn

oscillating with wavelength 2n, but only having amplitude 2−n, so that for large positive n one has
little singularity and for large negative n one has little oscillation. By exploiting these quantitative
bounds one can hope to obtain bounds on Qn which decay geometrically as n → ±∞, allowing
one to easily sum via the triangle inequality.
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but rather than develop them here explicitly, it is better to instead present the tech-
niques of proof in the theory, so that you can simply apply the techniques yourself
whenever one needs to work in a more general setting.

The purpose of rearrangement-invariant norms is to usefully quantify two basic
aspects of functions, namely their height (i.e. their typical amplitude) and width
(i.e. the measure of the bulk of their support). The point of using the norms rather
than to try to define (the rather fuzzy concepts of) height and width directly is
that norms are convex (essentially by definition) and hence stable under many
operations.

Throughout the rest of the paper, we fix a measure space (X,B, µ), thus X is a
set, B is a σ-algebra of sets in X , and µ is a non-negative measure on X . To avoid
irrelevant technicalities we always take µ to be σ-finite. Important examples to keep
in mind are the Euclidean space X = Rd (with B equal to the Borel or Lebesgue
σ-algebra, and Lebesgue measure dµ = dx), the lattice X = Zd (with counting
measure dµ = d# and the discrete σ-algebra), and the torus X = Rd/Zd (with
the Borel or Lebesgue σ-algebra, and Lebesgue measure dµ = dx). We should
also mention that the finite set X = {1, . . . , N} is also an important example,
with µ either equal to counting measure dµ = d# or normalised counting measure
dµ = 1

N d#).

Unlike these highly structured examples, however, in this week’s notes we will not
assume any further structures are present on X ; thus X will have no topology, no
metric, no geometry, and no group structure. (We will of course see these structures
in later notes.) On the one hand, this severely limits what we can do with our space
X - basically, we can integrate functions and measure sets, and that’s about it; thus
any result which genuinely exploits more structure than just the measure-theoretic
structure will not be provable purely by Lp theory. On the other hand, it will
automatically make all of the theory here rearrangement-invariant : if we have
some measure-isomorphism Φ : X → X (i.e. a bijection which is bimeasurable,
thus Φ(B) = B and Φ−1(B) = B, and measure preserving, thus µ(Φ(E)) = µ(E) for
all E ∈ B) then we can apply this isomorphism to X (thus mapping sets E to φ(E)
and functions f to f ◦Φ−1) without affecting any of the norms or other operations
that we shall describe here. Another way of saying this is that, in these notes, the
only feature of a set E which is important is its measure; a long thin set and a short
round set are viewed equally so long as they have the same measure. Similarly it
is the distribution of a function which is relevant, not its precise location in space.

Our norms will also be monotone: if |f | ≤ |g| pointwise almost everywhere, then
g will have a larger norm than f . This means in particular that it is only the
magnitude |f | of a function f which will be relevant for all our norms, not the sign.

When we refer here to a set, we always mean a measurable subset of X (i.e. an
element of B); when we refer here to a function, we mean a B-measurable complex-
valued function f : X → C (of course, the theory for real-valued functions will
emerge as a special case). Important examples of functions, in increasing order of
generality, are
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• Indicator functions10 f = 1E for some set E, defined by setting 1E(x) = 1
when x ∈ E and 1E(x) = 0 otherwise. (If P (x) is a property depending
on a point x, we write 1P (x) or 1P (x) for 1{x∈X:P (x)}. Thus for instance
1E(x) = 1x∈E.)

• Step functions f = c1E for some set E and some c ∈ C (i.e. scalar multiples
of indicator functions). We refer to |c| as the height of the step function,
and µ(E) as the width.

• Simple functions f =
∑J

j=1 cj1Ej (i.e. finite linear combinations of indi-

cator functions). Equivalently, simple functions are functions which are
measurable with respect to a finite σ-algebra.

As it turns out, simple functions will be dense in every function space considered
in these notes, which means that for the purposes of estimates we may restrict
attention to simple functions, which is convenient as it means we have essentially
no problems in justifying any computation (e.g. swapping a sum and integral).
We cannot quite restrict attention in the same way to step functions, however step
functions are definitely a major example to consider. Indeed one can gain a lot of
intuition about how any given estimate or result here works by first considering
how it applies to step functions.

A little later on we shall see some “fuzzier” versions of the above concepts, when
we start atomically decomposing Lp functions into components. We shall see in
particular the dyadic pigeonhole principle, which asserts that general functions only
differ from step functions “by a logarithm”.

As is usual in measure theory, we identify two functions (or sets) if they agree
almost everywhere, and hence every pointwise identity that we assert is understood
to only be true outside of sets of measure zero.

Our theory shall mostly focus on the sets E and functions f , and how to decompose
or otherwise manipulate these objects. However the space X , the σ-algebra B and
measure µ are not purely passive actors in this theory; we will occasionally see
some use in manipulating X , B or µ in various ways. Indeed this freedom to play
with X , B and µ is a major advantage in working in this abstract setting, rather
than staying in a concrete setting such as Euclidean space Rd. (The other major
advantage, of course, is that the theory lets one deal with all the concrete examples
simultaneously, rather than having to tediously repeat the same theory separately
for each concrete case.)

10It is also common to see χE used instead of 1E in the literature, though χ has enough other
uses (e.g. as a smooth cutoff, or as a character) that it can be better to use 1E instead to free up
some namespace.
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5. Lp theory - basics

We begin with the theory of the Lp norms of a function f , defined for 0 < p < ∞
as

‖f‖Lp(X,dµ) := (

∫
X

|f |p dµ)1/p

and for p = ∞ as

‖f‖L∞(X,dµ) := ess sup
x∈X

|f(x)|

or more usefully, ‖f‖L∞(X,dµ) is the least real number for which we have the point-
wise bound

|f(x)| ≤ ‖f‖L∞(X,dµ) for almost every x ∈ X.

Thus for instance a step function of height H and width W has Lp norm HW 1/p.
We often abbreviate ‖f‖Lp(X,dµ) as ‖f‖Lp(X), ‖f‖Lp, or even just ‖f‖p when there
is no chance of confusion.

Problem 5.1. For f a simple function, verify that limp→∞ ‖f‖p = ‖f‖∞, and that
limp→0 ‖f‖

p
p = µ(supp(f)), where supp(f) := {x : f(x) 6= 0}. For this reason, the

measure of the support of f is sometimes referred to as the L0 norm of f , though
it would be more accurate (though confusing) to refer to it as the 0th power of the
L0 norm.

Example 5.2. Let α > 0. On a Euclidean space Rd, the function f(x) :=
|x|−α1|x|>1 lies in Lp(Rd) (with a norm of Op,α(1)) if and only if α > d/p, while

the function g(x) := |x|−α1|x|≤1 lies in Lp(Rd) if and only if α < d/p. The function

|x|−α does not lie in any Lp(Rd), although it only fails “logarithmically” to lie in
Ld/α. Thus we see that control in Lp for high p rules out severe local singularities at
a point, while control in Lp for low p rules out insufficiently rapid decay at infinity.

For 1 ≤ p ≤ ∞, these norms are indeed norms, in particular we have the triangle
inequality

‖f + g‖p ≤ ‖f‖p + ‖g‖p. (1)

Proof (Sketch) The case p = ∞ is trivial, so take 1 ≤ p < ∞. By homogeneity
‖cf‖p = |c|‖f‖p we may reduce to the case ‖f‖p = 1 − θ, ‖g‖p = θ for some
0 ≤ θ ≤ 1. The cases θ = 0, 1 are trivial, so suppose 0 < θ < 1. Writing
F := f/(1− θ) and G := g/θ we reduce to the convexity estimate

‖(1− θ)F + θG‖p ≤ 1 whenever ‖F‖p, ‖G‖p ≤ 1 and 0 ≤ θ ≤ 1.

But since z 7→ |z|p is convex for p ≥ 1, we have the pointwise convexity bound

|(1− θ)F (x) + θG(x)|p ≤ (1− θ)|F (x)|p + θ|G(x)|p.

Integrating this we obtain the claim. This proof is a basic example of how one uses
a symmetry (in this case, homogeneity symmetry) to simplify the task of proving
an estimate, by normalising one or more inconvenient factors to equal 1.

Problem 5.3. Show that the triangle inequality is sharp if and only if f, g are
parallel, thus either f = 0, g = 0, or f = cg for some real positive c.
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We give another proof of the triangle inequality at the end of this section.

Problem 5.3 leads to a useful heuristic: triangle inequalities in general are only ex-
pected to be efficient when the functions involved can all “align” or “correlate” in
some substantial way. If there is a lot of “orthogonality”, “separation” or “cancel-
lation”, one expects to improve on triangle inequality bounds somehow. Of course,
obtaining this improvement can often be quite difficult. However let us make one
remark: if f, g have disjoint supports, then the triangle inequality improves to

‖f + g‖p = (‖f‖pp + ‖g‖pp)
1/p

for any 0 ≤ p < ∞ (with the usual modification at p = ∞).

Iterating the triangle inequality (and using monotone and dominated convergence)
we obtain

‖
∑
n

fn‖p ≤
∑
n

‖fn‖p (2)

for either finite or infinite summation. For 0 < p < 1 we have the pointwise sub-
additivity property

|f(x) + g(x)|p ≤ |f(x)|p + |g(x)|p

and hence
‖f + g‖pp ≤ ‖f‖pp + ‖g‖pp

and more generally

‖
∑
n

fn‖
p
p ≤

∑
n

‖fn‖
p
p. (3)

In particular we have the quasitriangle inequality

‖f + g‖p .p ‖f‖p + ‖g‖p

and more generally (by Hölder’s inequality)

‖

N∑
n=1

fn‖p ≤ N
1
p−1

N∑
n=1

‖fn‖p. (4)

Problem 5.4. Show that the bound N
1
p−1 here is sharp in general, i.e. it cannot be

replaced by any smaller quantity.

Problem 5.5. Show that for any 0 < p < ∞ and any sequence fn of functions we
have

(

∞∑
n=1

‖fn‖
max(p,1)
p )1/max(p,1) ≤ ‖

∞∑
n=1

|fn|‖p ≤ (

∞∑
n=1

‖fn‖
min(p,1)
p )1/min(p,1).

After the triangle inequality, the next most important inequality in Lp theory is
Hölder’s inequality:

‖fg‖r ≤ ‖f‖p‖g‖q whenever 0 < p, q, r ≤ ∞ and
1

p
+

1

q
=

1

r
. (5)

Proof (Sketch) We assume p, q, r < ∞ as the case p, q, r = ∞ is trivial (and can also
be obtained by limiting arguments). Using the separate homogeneity symmetry in
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both f and g we may normalise ‖f‖p = ‖g‖q = 1. Writing F := |f |p, G := |g|q,
and θ = r/q (so 1− θ = r/p) we reduce to showing that∫

X

F 1−θGθ ≤ 1 whenever

∫
X

F =

∫
X

G = 1.

But from the convexity of θ 7→ F 1−θGθ we have the pointwise estimate

F 1−θ(x)Gθ(x) ≤ (1− θ)F (x) + θG(x);

integrating this we obtain the claim.

Remark 5.6. Note that Hölder’s inequality is not just symmetric under the homo-
geneities f 7→ cf and g 7→ cg of the functions, but also under the homogeneity
µ 7→ λµ of the underlying measure11. This latter symmetry demonstrates why the
condition 1

p + 1
q = 1

r is necessary. (The first two symmetries demonstrate why f

appears the same number of times on both sides of the inequality, and similarly for
g.)

Remark 5.7. It is instructive to verify Hölder’s inequality directly when f and g
are step functions.

Hölder’s inequality is also equivalent to the log-convexity of Lp norms :

‖f‖r ≤ ‖f‖1−θ
p ‖f‖θq whenever 0 < p < q < ∞, 0 < θ < 1 and

1

r
=

1− θ

p
+

θ

q
.
(6)

Again, it is instructive to verify this inequality for step functions - in fact it is an
equality in this case.

Problem 5.8. Derive (6) from Hölder’s inequality. Conversely, by manipulating the
measure µ appropriately, derive Hölder’s inequality from (6). (For technical reasons
one needs to first reduce to the case where X has finite measure, and then f and
g are everywhere non-vanishing simple functions. Now consider the convexity of
|f |α|g|β with respect to a measure |f |γ |g|δµ for some suitable exponents α, β, γ, δ.)

It is instructive to give several additional proofs of this convexity estimate (6), in
order to illustrate certain techniques12 we shall encounter repeatedly in this course.
One approach is a direct one:

11In Euclidean space Rd, this symmetry is equivalent to the scaling symmetry x 7→ ax for
a > 0, as the Jacobian of this map is λ = ad. But the point is that by manipulating the measure
directly, one still enjoys this symmetry even when no scaling operation is present.

12It is always good to have as many proofs of basic results as possible in analysis, because
one often needs to generalise these basic results beyond their usual range of applicability, and
having many genuinely different proofs increases the chance that one of them will extend to cover

the desired generalisation. This is in sharp contrast to algebra, in which theorems can often be
used as “black boxes” without knowledge of the proof technique. Algebra draws its power from
modularity, abstraction and identities; analysis draws its power from robustness, physical intuition
and estimates.
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Problem 5.9 (Direct approach to log convexity). Differentiate log ‖f‖p twice with
respect to α := 1/p and show that this is non-negative (take f to be a non-zero
simple function with finite measure support to avoid technicalities). This is an
example of a monotonicity formula method - deriving estimates from a monotonicity
property, which in turn follows from the non-negativity of a derivative.

You will see that this approach is surprisingly messy. For all the other ways,
observe that (6) enjoys homogeneity symmetry in both f and µ, which lets one
normalise both ‖f‖p and ‖f‖q to equal one. Thus the task is now to show that if
‖f‖p = ‖f‖q = 1, then ‖f‖r ≤ 1 for all r between p and q. This can be done by
the pointwise convexity of p 7→ |f(x)|p, or more precisely the estimate

|f(x)|r ≤ (1− θ)|f(x)|p + θ|f(x)|q ;

the observant reader will note that this is merely the proof of Hölder’s inequality
in disguise.

Let us now give a more unusual proof of the log-convexity which does not appeal
to any pointwise convexity estimate, instead combining the “divide and conquer”
strategy with an elegant (and rather cheeky) “tensor power trick”. Again normalise
‖f‖p = ‖f‖q = 1. We split f into a broad flat piece and a narrow tall piece

f = f1|f |≤1 + f1|f |>1

which are disjoint, and thus

‖f‖rr =

∫
|f |≤1

|f |r +

∫
|f |≥1

|f |r.

When13 |f | ≤ 1, then |f |r ≤ |f |p, and when |f | ≥ 1, then |f |r ≤ |f |q. Thus we end
up with

‖f‖rr ≤

∫
X

|f |p +

∫
X

|f |q = 2.

The above argument (which is a prototype of the real interpolation method) ob-
tained an estimate which is off by a factor of two from what we wanted; this is a
typical feature of the method. However we can recover this factor for free by the
following tensor power trick. Let M be a large integer. We replace the measure
space (X,B, µ) by its M th power (XM ,B⊕M , µ⊕M ) using the product measure con-
struction, and similarly replace f with its tensor power f⊕M : XM → C, defined
by

f⊕M (x1, . . . , xM ) := f(x1) . . . f(xM ).

One then observes that

‖f⊕M‖Lp(XM ) = ‖f‖MLp(X) = 1;

‖f⊕M‖Lq(XM ) = ‖f‖MLq(X) = 1;

‖f⊕M‖Lr(XM ) = ‖f‖MLr(X).

13What we are doing here is exploiting some very basic intuition about Lp norms, namely that

Lp bounds for large p tend to exclude tall narrow spikes, whereas Lp bounds for small p tend
to exclude short broad tails. Of course, either sort of bound would exclude tall broad functions,
and neither excludes narrow short functions. Once again, this intuition can be buttressed by
considering the special case of step functions.
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Now we apply the preceding arguments to f⊕M instead of f to deduce that

‖f⊕M‖rLr(XM ) ≤ 2

which on taking M th roots gives

‖f‖rLr(X) ≤ 21/M .

Now the left-hand side is independent of M ; take limits as M → ∞ and we obtain
‖f‖r ≤ 1 as desired.

The tensor power trick can be viewed as another application of symmetry: if an
estimate is invariant under raising to a tensor power, then one can automatically
replace all absolute constants with 1; thus we obtain the “free lunch” of deducing
a bound with an explicit constant 1, from a bound with an unspecified constant14.
Contrapositively, if an estimate is invariant under tensor power, then a weak coun-
terexample (which shows that the constant must exceed one) can be amplified into
a strong counterexample (which shows that no finite constant suffices) by tensor
powering15. The tensor power trick seems like a magical trick at present, but is
actually exploiting some basic results in information theory such as the Shannon
entropy inequalities and the central limit theorem; it also combines well with vir-
tually any inequality which involves Gaussians. Unfortunately due to lack of time
we will not be discussing these beautiful topics further in this course. At any rate
one sees the power of abstraction in this tensor power trick. (One could similarly
perform this trick in Rd, so long as the constants only grew sub-exponentially in
the dimension d.)

The final proof of log-convexity of the norm that we give here proceeds via complex
analysis, and the maximum principle - which in many ways is a complex analogue
of convexity16. We need the following result from complex analysis.

Lemma 5.10 (Three lines lemma). Let f be a complex-analytic function on the
strip {0 ≤ Re(z) ≤ 1}, which is of at most double-exponential growth, or more

precisely17 |f(z)| .f eOf (e
(π−δ)|z|) for some δ > 0. Suppose that we have the bounds

|f(z)| ≤ A when Re(z) = 0 and |f(z)| ≤ B when Re(z) = 1. Then we have
|f(z)| ≤ A1−Re(z)BRe(z) for all z in the strip.

14The free lunch is even better; the same trick even allows one to lose logarithmic factors in
the constant, the basic point being that limM→∞(logNM )1/M = 1 for any N .

15The same amplification heuristic also applies, more or less, to other operations which resemble
tensor powers, such as Riesz products; we shall return to this point later in the course.

16Note that convex functions also obey the maximum principle. Actually, the more accurate
analogy is between subharmonic functions of two variables (which include the magnitude of com-
plex analytic functions as special cases) and subharmonic functions of one variable (i.e. convex
functions). Subharmonic functions obey the maximum principle in arbitrary dimension.

17Because the constants here do not affect the final conclusion of the lemma, we refer to
such an estimate as a qualitative estimate rather than a quantitative one. In practice, these
sorts of qualitative facts are usually easy to establish (especially when compared to quantitative

estimates) by restricting, smoothing, or damping to a nice class of functions, or by smoothing
out or discretising various operators and domains. See for instance the proof of this lemma in
which we upgrade “for free” a weak qualitative bound (sub-double-exponential growth) to a strong
qualitative bound (decay at infinity).
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The rather strange sub-double-exponential hypothesis here is completely sharp, as

the example f(z) = e−ieπiz

shows.

Proof The hypotheses and conclusion of the lemma are invariant under the op-
eration of multiplying f by a constant (and adjusting A,B appropriately). So we
may normalise A = 1. Similarly, the hypotheses and conclusion of the lemma are
invariant under the operation of multiplying f by an exponential exp(cz) for some
real c. Using this, one can also normalise B = 1. So now f is bounded by 1 on
both sides of the strip and we want to show it is bounded by 1 inside the strip.

Let us first assume that f is much better than exponential growth, namely that
it goes to zero at infinity. Then for all sufficiently large rectangles {0 ≤ Re(z) ≤
1;−N ≤ Im(z) ≤ N} the complex-analytic function f is bounded by 1 on all four
sides of this rectangle, and hence in the interior also by the maximum principle,
and we are done by setting N → ∞.

Now let us handle the general case; as is usual when removing a qualitative assump-
tion, we do this by a limiting argument. We replace f(z) by f(z) exp(εei[(π−ε)z+ε/2]);
a little complex arithmetic shows that this converts the almost double-exponentially
growing function f to one which is still complex analytic but is now decaying at
infinity. It is still bounded by 1 at both sides of the strip, and hence by 1 in the
interior also by the previous argument. Now take ε → 0 to conclude the claim.

Problem 5.11. Suppose that f is analytic on the strip {0 ≤ Re(z) ≤ 1}, obeys the

sub-double-exponential bound |f(z)| .f eOf (e
(π−δ)|z|) on the strip, and obeys the

polynomial bounds |f(z)| . (1 + |z|)O(1) on the sides of the strip. Show that it
obeys the polynomial bound |f(z)| . (1 + |z|)O(1) on the interior of the strip also.

To apply the three-lines lemma to prove (6), take f to be a simple function (with
finite measure support) and consider the entire function

z 7→

∫
X

|f |z.

This function has exponential growth at most (because of the qualitative assump-
tion that f is simple with finite measure support), and is bounded by 1 on the
lines Re(z) = p and Re(z) = q, and hence (by a trivially rescaled version of the
three lines lemma) bounded by 1 on the strip inside the lines. In particular it is
bounded by 1 at z = r, which gives the claim for simple functions. The claim
for more general functions (dropping the qualitative assumption of simpleness and
finite measure support) then follows by a standard limiting argument (using for
instance monotone convergence) which we leave as an exercise.

The above argument is a prototype of the complex interpolation method. As one can
see, it can give slightly sharper results than the real interpolation method (though
using the tensor power trick the real method can sometimes “catch up”), but on the
other hand requires the quantities being studied to depend complex-analytically on
a parameter rather than (say) real-analytically.
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Having conclusively demonstrated the log-convexity (6) in multiple ways, let us
now give some quick applications. It shows that control on two extreme Lp norms
implies control of the intermediate Lp norms. Under additional assumptions on
the measure space (X,B, µ), one of these extremes is not necessary. If the measure
space is finite in the sense that µ(X) < ∞ (thus prohibiting functions from being
arbitrarily broad), then higher Lp norms control lower ones:

‖f‖p ≤ ‖f‖qµ(X)
1
p−

1
q whenever 0 < p ≤ q ≤ ∞. (7)

Indeed this is trivial when q = ∞, and the general case then follows by convexity.
The bound (7) can also be usefully written in terms of averages: if we write

∫
−Xf dµ

for 1
µ(X)

∫
X f dµ, then we see that higher Lp averages control lower Lp averages18:

(

∫
−

X

|f |p dµ)1/p ≤ (

∫
−

X

|f |q dµ)1/q whenever 0 < p ≤ q ≤ ∞.

By restricting X to its support supp(f) one can refine (7) to

‖f‖p ≤ ‖f‖qµ(supp(f))
1
p−

1
q whenever 0 < p ≤ q ≤ ∞.

(Note that this is a limiting case of log-convexity at the exponent 0, in view of
Problem 5.1). In the converse direction, if the measure space is granular in the
sense that one has a lower bound µ(E) ≥ c for all sets E of positive measure, then
functions are prohibited from being arbitrarily narrow, and lower norms control
higher norms:

‖f‖q ≤ ‖f‖pc
1
q−

1
p whenever 0 < p ≤ q ≤ ∞.

This can be seen by first checking the q = ∞ case, and then using log-convexity to
get the remaining cases. In particular, in the lp spaces (i.e. Lp spaces with counting
measure d#) we see that ‖f‖lq ≤ ‖f‖lp for q ≥ p. For lp spaces on N points, we
thus have (non-matching) upper and lower bounds

‖f‖lq ≤ ‖f‖lp ≤ N
1
p−

1
q ‖f‖lq , (8)

thus the lp and lq norms are comparable to some extent, but the comparability gets
worse as N → ∞ or as p and q get further apart.

Problem 5.12. When does equality occur for either of the inequalities in (8)? Note
how the example that attains the lower bound is in many ways the “opposite
extreme” to the example which attains the upper bound.

Once again, one can gain some intuition into the above estimates by specialising
everything to the case of step functions, in which it all collapses to high school
algebra (and if one takes logarithms, it collapses further, to linear programming).

Lebesgue measure on Euclidean spaces Rd with the usual Borel or Lebesgue σ-
algebra is not granular. However one can create granularity by coarsening the
σ-algebra. For instance, if we let B1 be the σ-algebra generated by the lattice unit
cubes n+[0, 1)d for n ∈ Zd, then we have granularity with constant c = 1, and now
lower Lp norms of functions f control higher ones - but only for functions which are
measurable with respect to this algebra, i.e. only for functions which are constant

18One way to view this is that as one lowers the exponent p, the exceptionally large values of
f become less important, leaving the small values of f to dominate.
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on each lattice unit cube. (This is the first time we have actually manipulated
the σ-algebra B to say something non-trivial, as opposed to manipulating f , X , or
µ.) Thus we see that local constancy of functions can lead to additional estimates
on Lp norms. Later on we shall see that frequency localisation achieves a similar
effect as local constancy, as quantified by Bernstein’s inequality; this is a concrete
manifestation of the famous Heisenberg uncertainty principle.

Finiteness and granularity of the measure space prevent a function from being too
broad or too narrow respectively. Similar things happen when a function is being
prevented from being too tall or too short; for instance if f is bounded above by a
constant M , then we have

‖f‖q ≤ ‖f‖p/qp M1−p/q whenever 0 ≤ p ≤ q ≤ ∞

(this is just log-convexity at the ∞ exponent), while if f is bounded below by M
on its support, then we have the reverse inequality

‖f‖p ≤ ‖f‖q/pq M1−q/p whenever 0 ≤ p ≤ q ≤ ∞.

From Hölder’s inequality one also obtains the fundamental duality property: if
1 ≤ p ≤ ∞, and f ∈ Lp(X), then19

‖f‖p := sup{|

∫
X

fg| : ‖g‖p′ ≤ 1} (9)

where 1 ≤ p′ ≤ ∞ is the dual exponent to p, thus 1
p + 1

p′ = 1. We leave the proof

of this standard result to the reader; it is sometimes referred to as the converse to
Hölder inequality. But note that (9), which expresses the Lp norm as the supremum
of the magnitude of many linear functions, gives an immediate proof of the triangle
inequality (1).

Standard density arguments allow one to restrict g in (9) to lie in any dense sub-

class of Lp′

, and in particular one can restrict g to be a simple function. (When
p = 1 one needs to argue a little more carefully, taking advantage of the σ-finite
hypothesis.)

There are two obvious algebraic identities involving Lp norms which are worth
knowing. The first is that one can interchange lp sums with Lp integrals for any
0 < p < ∞, in the sense that

‖(
∑
n

|fn|
p)1/p‖Lp = (

∑
n

‖fn‖
p
Lp)

1/p;

19A small subtlety here - one needs f to be in Lp in the first place in order for the integrals∫
X

fg to be absolutely convergent. Thus this estimate does not quite assert that the dual space

of Lp is Lp′ , though that is indeed the case for 1 < p < ∞ and (for reasonable measures) for
p = 1 also. However, in practice the trick of reducing to a dense class of functions generally lets
one work with Lp functions as a qualitative a priori assumption. Also, if one restricts f, g to

non-negative functions (not necessarily in any Lp class), then (9) still holds (when p = 1 or p = ∞
one needs the σ-finite hypothesis to discover sets of arbitrarily large measure inside sets of infinite
measure). Thus, even though the dual of L∞ is usually not L1, the estimate (9) for p = ∞ lets
us pretend for the sake of proving estimates that this is indeed the case.
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this is just an application of the Fubini-Tonelli theorem. Secondly, exponents can
pass through Lp norms by changing the exponent: for any 0 < p, q < ∞ we have

‖|f |q‖Lp = ‖f‖qLpq .

We shall use both of these identities in the sequel without further comment.

6. Lorentz spaces

Recall that the weak Lp norm ‖f‖Lp,∞(X,dµ) of a function f is defined for 0 < p < ∞
as

‖f‖Lp,∞(X,dµ) := sup
λ>0

λµ({|f | ≥ λ})1/p.

Since

‖f‖pp =

∫
X

|f |p dµ ≥

∫
X

λp1|f |≥λ dµ = λpµ({|f | ≥ λ})

for any f and λ, we obtain Chebyshev’s inequality

‖f‖Lp,∞(X,dµ) ≤ ‖f‖Lp(X,dµ)

(the case p = 1 is also known as Markov’s inequality). When p = ∞ we adopt the
convention that L∞,∞ = L∞.

We define weak Lp(X, dµ) or Lp,∞(X, dµ) to be the space of all functions with
finite Lp,∞(X, dµ) norm, with the usual abbreviations. We sometimes refer to Lp

as strong Lp to distinguish it from weak Lp.

Example 6.1. On a Euclidean space Rd, the power function |x|−α lies in weak Lp

if and only if α = d/p. Indeed one can think of a weak Lp function as a function
which is pointwise dominated in magnitude by a rearrangement of (a multiple of)
|x|−d/α.

Suppose 0 < p < ∞. From elementary calculus we have

|f(x)|p = p

∫ ∞

0

1|f(x)|≥λλ
p dλ

λ

and hence on integration and Fubini’s theorem

‖f‖pp = p

∫ ∞

0

µ({|f | ≥ λ})λp dλ

λ
.

To summarise, we have

‖f‖Lp,∞ = ‖λµ({|f | ≥ λ})1/p‖L∞(R+, dλλ )

and

‖f‖Lp = p1/p‖λµ({|f | ≥ λ})1/p‖Lp(R+, dλλ )
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for 0 < p < ∞. These two identities motivate introducing the Lorentz (quasi-
)norm20 Lp,q(X,µ) for 0 < p < ∞ and 0 < q ≤ ∞ by21

‖f‖Lp,q(X,µ) := p1/q‖λµ({|f | ≥ λ})1/p‖Lq(R+, dλλ ).

Thus for instance Lp norm is identical to the Lp,p norm. We shall abbreviate
‖f‖Lp,q(X,µ) by ‖f‖Lp,q(X), ‖f‖Lp,q , or even ‖f‖p,q when there is no chance of
confusion.

Problem 6.2. If f : R+ → R+ is a monotone non-increasing function, show that

‖f‖Lp,q(X,µ) = ‖f(t)t1/p‖Lq(R+, dtt ).

(For some arguments it may be convenient to first prove this for smoother f , such
as diffeomorphisms with strictly negative derivative, in order to apply an inverse
function theorem.)

Problem 6.3. Show that a step function of height H and width W has an Lp,q norm
of (p/q)1/qHW 1/p for any 0 < p < ∞ and 0 < q ≤ ∞.

Problem 6.4. For any 0 < p, r < ∞ and 0 < q ≤ ∞ show that

‖f r‖Lp,q(X,µ) ∼p,q,r ‖f‖rLpr,qr(X,µ).

It is obvious that these norms are both rearrangement-invariant and monotone. To
get a better intuitive handle on what the Lp,q norm represents, we need some more
definitions.

• A sub-step function of height H and width W is any function f supported
on a set E with the bounds |f(x)| ≤ H almost everywhere and µ(E) ≤ W .
(Thus |f | ≤ H1E .)

• A quasi-step function22 of height H and width W is any function f sup-
ported on a set E with the bounds |f(x)| ∼ H almost everywhere on E,
and µ(E) ∼ W . (Thus |f | ∼ H1E.)

Remark 6.5. From the binary expansion of the unit interval [0, 1) we see that a non-
negative sub-step function f of height 1 and width W can always be decomposed
as

∑∞
k=1 2

−kfk where fk is an actual step function of height 1 and width at most
W . By homogeneity we have a similar statement for other heights. Because of this,
bounds on step functions tend to automatically extend to sub-step functions (and
hence quasi-step functions) without difficulty.

20For various reasons it is not worth trying to define Lorentz norms when p = ∞, although we
will use the convention L∞,∞ = L∞. The most important values of q, in descending order, are
q = p, q = ∞, q = 1, and q = 2; the other cases essentially never occur in applications.

21The factor p1/q is inconsequential, but is traditional in order to maintain compatibility with
the strong Lp norm. But in practice the exact form of the Lorentz norm is not important; there
are many formulations which are equivalent up to constants, and one generally just picks the
formulation which is most convenient. The measure dλ

λ
is of course multiplicative Haar measure

on R+. One can interpret the equivalence of (i)-(iii) below by making the change of variables
λ = 2m, so that the Haar measure just becomes Lebesgue measure in m (modulo an inessential
constant) and then passing from continuous m to discrete m.

22It is a little dangerous to put fuzzy notation such as ∼ within a definition; if multiple quasi-
step functions appear in an argument, the question then arises as to whether the implied constants
are uniform. In our applications, the implied constants here are true absolute constants (like 1
and 2) so this will not be an issue.
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Just like actual step functions, the Lp,q norm of sub-step and quasi-step functions
are well controlled; a sub-step function of height H and width W has Lp,q norm
Op,q(HW 1/p), while a quasi-step function has Lp,q norm ∼p,q HW 1/p - almost
exactly like actual step functions. In the converse direction, it turns out that every
Lp,q function can be decomposed as an lq sum of “very different” Lp,q-normalised
sub-step or quasi-step functions.

Theorem 6.6 (Characterisation of Lp,q). Let f be a function, let 0 < p < ∞ and
1 ≤ q ≤ ∞, and let 0 < A < ∞. Then the following are equivalent up to changes
in the implied constants:

(i) We have ‖f‖Lp,q .p,q A.
(ii) There exists a decomposition f =

∑
m∈Z

fm where each fm is a quasi-step
function of height 2m and some width 0 < Wm < ∞, with the fm having
disjoint supports and

‖2mW 1/p
m ‖lqm(Z) .p,q A. (10)

Here the m subscript in lqm denotes the variable that the lq norm is being
taken over.

(iii) There exists a pointwise bound |f | ≤
∑

m∈Z
2m1Em , with

‖2mµ(Em)1/p‖lqm(Z) .p,q A. (11)

(iv) There exists a decomposition f =
∑

n∈Z
fn where each fn is a sub-step

function of width 2n and some height 0 < Hn < ∞, with the fn having
disjoint supports, the Hn non-increasing in n, the bounds Hn+1 ≤ |fn| ≤
Hn on the support of fn, and

‖Hn2
n/p‖lqn(Z) .p,q A. (12)

(v) There exists a pointwise bound |f | ≤
∑

n∈Z
Hn1En, where µ(En) .p,q 2n

and (12) holds.

Remark 6.7. The formulations (ii), (iv) are useful when trying to use an Lp,q bound
on f ; the formulations (iii), (v) are useful when trying to obtain an Lp,q bound on f .
Heuristically, the above theorem is trying to say the following. If f is a quasi-step
function of height H and width W , then ‖f‖Lp,q ∼p,q HW 1/p. But if f is instead
the sum

∑
n fn of quasi-step functions of height Hn and width Wn, and either the

heights or the widths are sufficiently variable in n (e.g. one or the other grows like

a power of two), then ‖
∑

n fn‖Lp,q ∼p,q ‖HnW
1/p
n ‖lqn .

Proof We may use homogeneity symmetry to normalise A = 1. The implications
(ii) =⇒ (iii) and (iv) =⇒ (v) are trivial. To see that (i) implies (ii), set fm :=
f12m−1<|f |≤2m and Wm := µ({2m−1 < |f | ≤ 2m}). (This is the “vertically dyadic
layer cake decomposition”.) The only thing that requires nontrivial verification is
(10); but one easily verifies that

2mW 1/p
m .p,q ‖λµ({|f | ≥ λ})1/p‖Lq([2m−2,2m−1], dλλ )

and the claim follows by summing this in lq.
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Similarly, to see that (i) implies (iv), define

Hn := inf{λ : µ({|f | > λ}) ≤ 2n−1};

note that this is a non-increasing function of n, which goes to zero as n → ∞ (this
comes from the hypothesis that ‖f‖Lp,q is finite). We then define

fn := f1Hn≥|f |>Hn+1
.

(This is the “horizontally dyadic layer cake decomposition”.) The only non-trivial
thing to verify is (12). But one easily verifies the telescoping estimate

Hn2
n/p = (Hq

n2
nq/p)1/q

= (

∞∑
k=0

(Hq
n+k −Hq

n+k+1)2
nq/p)1/q

.p,q (
∞∑
k=0

2−kq/p‖λ2(n+k)/p‖q
Lq([Hn+k+1,Hn+k],

dλ
λ )

)1/q

.p,q (

∞∑
k=0

2−kq/p‖λµ({|f | ≥ λ})1/p‖q
Lq([Hn+k+1,Hn+k],

dλ
λ )

)1/q

and the claim follows by summing this in lq and interchanging the summation
signs. (We leave to the reader how to modify the above argument to handle the
case q = ∞.)

It remains to show that (iii) implies (i) and (iv) implies (i). Suppose first that (iii)
holds. It is clear that for any m we have

µ({|f | > 2m}) ≤

∞∑
k=0

µ(Em+k)

and hence

‖λµ({|f | ≥ λ})1/p‖Lq((2m,2m+1], dλλ ) .p,q 2
m(

∞∑
k=0

µ(Em+k))
1/p

and so on taking lq summation in m it would suffice to show that

‖2m(
∞∑
k=0

µ(Em+k))
1/p‖lqm .p,q 1.

Raising to the pth power we rewrite as

‖

∞∑
k=0

2pmµ(Em+k)‖lq/pm
.p,q 1.

But from the hypothesis we have

‖2pmµ(Em)‖
l
q/p
m

.p,q 1

and hence on shifting m by k

‖2pmµ(Em+k)‖lq/pm
.p,q 2

−kp.

The claim then follows from (2), (3), or Q1.
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Now suppose that (iv) holds. Observe that for any λ > 0 we have

µ({|f | > λ}) .p,q sup{2
n : H ′

n ≥ λ}

where H ′
n are the modified heights

H ′
n :=

∞∑
k=0

Hn+k.

Indeed, if µ({|f | > λ}) > 2n−1 for some n then one easily verifies that Hn ≥ λ and
hence H ′

n ≥ λ. The shifting trick and triangle inequality argument used previously
shows that H ′

n obeys the same bound (12) as Hn, thus

‖H ′
n2

n/p‖lqn(Z) .p,q 1.

We now compute

‖λµ({|f | ≥ λ})1/p‖q
Lq(R+, dλλ )

.p,q

∫ ∞

0

λq−1 sup{2nq/p : H ′
n ≥ λ} dλ

.p,q

∑
n

∫ ∞

0

λq−12nq/p1H′
n≥λ dλ

∼p,q

∑
n

2nq/p(H ′
n)

q

. 1

as desired. (We leave to the reader how to modify the above argument to handle
the case q = ∞.)

Remark 6.8. Suppose that the ratio between the tallest height and lowest non-zero
height of a function f is N (i.e. there exists A such that A ≤ |f(x)| ≤ AN whenever
f(x) is non-zero). Then the above theorem shows that two different Lorentz norms
‖f‖Lp,q1 , ‖f‖Lp,q2 with the same primary exponent p only differ by multiplicative
powers of logN . Similarly if the broadest width and narrowest width of a function
differs by N (e.g. if µ(X) is equal to N times the granularity c of X). What
this indicates is that the secondary exponent q in the Lorentz norms only offers
“logarithmic correction” to the Lebesgue norms Lp; in contrast, (4) shows that
varying the primary exponent p leads to polynomial-strength changes in the norm.
So as a first approximation (ignoring logarithms) one can pretend that Lp,q ≈ Lp.
Note also that for quasi-step functions, the Lp,q norms barely depend on q at all.

One easy corollary of the above theorem is that the Lp,q quasi-norm is indeed a
quasi-norm; this can be seen for instance by using the equivalence of (i) and (iii).
Another easy consequence is that the simple functions are dense in Lp,q.

A particularly useful consequence of the above theorem is a Hölder inequality for
Lorentz spaces, due to O’Neil.

Theorem 6.9 (Hölder’s inequality in Lorentz spaces). If 0 < p1, p2, p < ∞ and
0 < q1, q2, q ≤ ∞ obey 1

p = 1
p1

+ 1
p2

and 1
q = 1

q1
+ 1

q2
then

‖fg‖Lp,q .p1,p2,q1,q2 ‖f‖Lp1,q1 ‖g‖Lp2,q2

whenever the right-hand side norms are finite.
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Proof We may normalise ‖f‖Lp1,q1 = ‖g‖Lp2,q2 = 1, and drop the dependence of
the implied constants on p1, p2, q1, q2 for brevity. By the equivalence of (i) and (v)
in Theorem 6.6 we may dominate |f | ≤

∑
n Hn1En and |g| ≤

∑
n H

′
n1E′

n
where

µ(En), µ(E
′
n) . 2n and

‖Hn2
n/p1‖lq1n , ‖H ′

n2
n/p2‖lq2n . 1.

Then we have

|fg| ≤
∑
k

∑
n

HnH
′
n+k1En∩E′

n+k
.

By the quasi-triangle inequality and monotonicity it suffices to show that

‖
∑
k≥0

∑
n

HnH
′
n+k1En∩E′

n+k
‖Lp,q . 1

and

‖
∑
k<0

∑
n

HnH
′
n+k1En∩E′

n+k
‖Lp,q . 1.

By symmetry it suffices to consider the k ≥ 0 component. Here we observe that
En∩E′

n+k has measure at most 2n, so by the equivalence of (i) and (v) in Theorem
6.6

‖
∑
n

HnH
′
n+k1En∩E′

n+k
‖Lp,q . ‖HnH

′
n+k2

n/p‖lqn .

But by the ordinary Hölder inequality

‖HnH
′
n+k2

n/p‖lqn ≤ ‖Hn2
n/p1‖lq1n ‖H ′

n+k2
n/p2‖lq2n ;

shifting the second n by k we conclude

‖
∑
n

HnH
′
n+k1En∩E′

n+k
‖Lp,q . 2−k/p2 .

The claim now follows from Q1.

One corollary of this Hölder inequality is that Lp,q functions are absolutely inte-
grable on sets of finite measure whenever p > 1.

Now we consider dual formulations of the Lp,q norms. The case q = ∞ is fairly
straightforward:

Problem 6.10 (Dual formulation of weak Lp). Let 1 < p ≤ ∞. Then for every f in
Lp,∞(X, dµ), we have

‖f‖Lp,∞(X,dµ) ∼p sup{µ(E)−1/p′

|

∫
X

f1E dµ| : 0 < µ(E) < ∞} (13)

Also show that the hypothesis f ∈ Lp,∞(X, dµ) can be dropped if one instead
assumes f to be non-negative23.

23What is going on here is that there are two overlapping notions of integral
∫
X

dµ being

used here; the absolutely convergent integral, which only makes sense for L1 functions, and the
non-negative integral, which only makes sense for non-negative functions. Fortunately, the two

concepts of integral agree on their common domain (absolutely integrable non-negative functions),
and furthermore dominated convergence and the monotone convergence theorem, coupled with the
ability to approximate both L1 and non-negative functions by simple functions of finite support,
generally allows one to translate results from one context to the other.



LECTURE NOTES 1 23

The right-hand side is clearly a semi-norm at least on f . This leads in particular
to a quasi-triangle inequality

‖f1 + . . .+ fN‖Lp,∞(X,dµ) ∼p ‖f1‖Lp,∞(X,dµ) + . . .+ ‖fN‖Lp,∞(X,dµ)

for any f1, . . . , fN ∈ Lp,∞(X, dµ).

Remark 6.11. It is worth comparing (13) to (9). In (9), one takes the inner product

of f against all Lp′

-normalised functions, and the worst inner product becomes the
Lp norm. In (13), one only takes the inner product of f against the Lp′

-normalised

step functions µ(E)−1/p′

1E . This is fully consistent with the fact that the Lp norm
is stronger than the weak Lp norm.

Problem 6.10 can be rephrased as follows: if f ∈ Lp,∞ for some 1 < p < ∞ and
A > 0, then the following two statements are equivalent (up to changes in the
implied constants):

• ‖f‖Lp,∞ .p A.

•
∫
X
f1E dµ = Op(µ(E)1/p

′

) for all sets E of finite measure.

Unfortunately this equivalence breaks down at p = 1 or below (consider for instance
the weak Lp function |x|−d/p on Rd, which is not even locally integrable when
p ≤ 1). However, one does have a substitute: see Q5.

For more general Lp,q spaces, we have

Theorem 6.12 (Dual characterisation of Lp,q). Let 1 < p < ∞ and 1 ≤ q ≤ ∞.
Then for any f ∈ Lp,q,

‖f‖Lp,q ∼p,q sup{|

∫
X

fg dµ| : ‖g‖Lp′,q′ ≤ 1}.

Again, the hypothesis f ∈ Lp,q can be dropped if f is non-negative and g is restricted
to also be non-negative.

Thus the Lp,q quasi-norm is in fact equivalent to a norm when 1 < p < ∞ and
q ≥ 1. In particular, weak Lp is equivalent to a normed space when 1 < p < ∞.
(For p = 1, weak Lp fails to be normable “by a logarithm”; see Q3.) As with other

dual characterisations, one can restrict g to a dense subclass of Lp′,q′ , for instance
simple functions with finite measure support.

Proof To obtain the &p,q part of this theorem, we simply estimate

|

∫
X

fg dµ| ≤ ‖fg‖L1 = ‖fg‖L1,1

and use Theorem 6.9. To obtain the .p,q part, we normalise ‖f‖Lp,q = 1. It then
suffices by homogeneity to find g with ‖g‖Lp′,q′ ≤ 1 and

∫
X
fg dµ & 1.

The case q = ∞ follows from (13), so let us take q < ∞. By the equivalence
of (i) and (ii) in Theorem 6.6 may write f =

∑
m fm where fm is a quasi-step
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function of height 2m and width Wm with disjoint supports such that the sequence

am := 2mW
1/p
m has an lqm norm of ∼p,q 1. Now take

g :=
∑
m

gm

where
gm := aq−p

m |fm|p−2fm

adopting the obvious convention that |fm|p−2fm = 0 when fm = 0. Then (because
of the disjoint supports)

|

∫
X

fg| =
∑
m

∫
X

aq−p
m |fm|p.

But since fm has height 2m and width Wm,
∫
X
|fm|p ∼p 2mpWm = apm and so

|

∫
X

fg| ∼p

∑
m

aqm ∼p,q 1.

To conclude it will suffice to show that

‖
∑
m

gm‖Lp′,q′ .p,q 1.

If Em is the support of fm, then we have the pointwise bound

gm .p,q a
q−p
m 2m(p−1)1Em

and the measure bound µ(Em) .p,q Wm = 2−mpapm.

At this point we would like to apply Theorem 6.6, but neither the height nor width
of gm is necessarily a power of 2. But we can remedy this by introducing the
modified heights

Hm := sup
k≥0

aq−p
m−k2

m(p−1)2−k(p−1)/2.

We have Hm+1 ≥ 2(p−1)/2Hm, and so the Hm increase geometrically. It then
suffices to show that

‖
∑
m

Hm1Em‖Lp′,q′ .p,q 1.

By refining the m by a constant factor we can make each Hm at least twice as large
as the previous, and so by applying the equivalences of (i) and (iii) in Theorem 6.6
and the triangle inequality it suffices to show that

‖Hmµ(Em)1/p
′

‖
lq

′
m
.p,q 1

which we expand using our bound on µ(Em) as

‖ap−1
m sup

k≥0
aq−p
m−k2

−k(p−1)/2‖
lq

′
m
.

But from Hölder’s inequality and the lq bound on am we have

‖ap−1
m aq−p

m−k2
−k(p−1)/2‖

lq
′

m
.p,q 2

−k(p−1)/2;

summing this using the triangle inequality (and estimating the supremum by a
sum) we obtain the claim.

The case when f, g are restricted to be non-negative can be deduced from the above
result and a monotone convergence argument (representing f as a monotone limit
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of simple functions of finite measure support) which we leave as an exercise to the
reader.

7. Orlicz spaces (Optional)

So far we have studied the Lebesgue spaces Lp, together with the more general
Lorentz spaces Lp,q, which includes weak Lp as a special case. These spaces are
all rearrangement-invariant and monotone. There is a different generalisation of
the Lebesgue spaces Lp, the Orlicz spaces Φ(L), which are also rearrangement-
invariant and monotone, and which are occasionally useful. (There is a common
generalisation of both, the Lorentz-Orlicz spaces, but these occur very rarely in
applications.)

The motivation for Orlicz spaces starts with the trivial observation that if 1 ≤ p <
∞, then

‖f‖Lp ≤ 1 if and only if

∫
X

|f |p dµ ≤ 1.

Inspired by this, we generalise by letting Φ : R+ → R+ be a function (with some
additional properties to be selected shortly) and ask if we can find a norm ‖f‖Φ(L)

which obeys the property

‖f‖Φ(L) ≤ 1 if and only if

∫
X

Φ(|f |) dµ ≤ 1. (14)

Since norms need to be homogeneous, this would imply

‖f‖Φ(L) ≤ A if and only if

∫
X

Φ(|f |/A) dµ ≤ 1

for all A > 0. In particular, if A < A′, then we need∫
X

Φ(|f |/A) dµ ≤ 1 implies

∫
X

Φ(|f |/A′) dµ ≤ 1.

To ensure this property it is thus very natural to require that Φ be increasing. Also
to deal with the zero norm case one typically requires Φ(0) = 0.

Next, in order for Φ(L) to be a norm, the unit ball {f : ‖f‖Φ(L) ≤ 1} needs to be
convex. Looking at (14), we see that this will indeed be the case when Φ is itself
convex. (Note that the proof of (1) was a special case of this argument).

We can put all the above discussion together and conclude: if Φ : R+ → R+ is
increasing and convex with Φ(0) = 0, then the norm

‖f‖Φ(L) := inf{A > 0 :

∫
X

Φ(|f |/A) dµ ≤ 1}

is a norm on the space Φ(L) := {f : ‖f‖Φ(L) < ∞}.

As discussed above, the Lp spaces for 1 ≤ p < ∞ are examples of Orlicz spaces
with Φ(x) := xp. The space L∞ is not really an Orlicz space, but can be viewed the
limiting case where Φ(x) is infinite for x > 1 and zero for x ≤ 1 (or more informally,
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Φ(x) = x+∞). Aside from the Lebesgue spaces, the most common Orlicz spaces
which appear are

• The space L logL, defined as the Orlicz space with Φ(x) := x log(2 + x);
• The space eL, defined as the Orlicz space with Φ(x) := ex − 1;

• The space eL
2

, defined as the Orlicz space with Φ(x) := ex
2

− 1.

The correction factors of 2 and 1 in the above functions should not be taken too
seriously; note that if two functions Φ, Φ̃ are comparable then their Orlicz norms
are comparable also; a little more generally, if Φ . Φ̃, then ‖f‖Φ(L) . ‖f‖Φ̃(L). It

is the behaviour of Φ(x) for large values of x which is the most important, although
when X has infinite measure the behaviour at small values of x is also relevant.

Problem 7.1. If X has finite measure, verify the relation

‖f‖Φ(L) ∼Φ,µ(X) ‖f‖1+Φ(L)

which is another indication of the irrelevance of the low values of Φ in the finite
measure case.

The final fact about Orlicz spaces that we give here is the duality relation. Suppose
that Φ : R+ → R+ is increasing, convex, and is also superlinear in the sense that
limx→+∞ Φ(x)/x = +∞. We can then define the Young dual Ψ : R+ → R+ of Φ
by the formula

Ψ(y) := sup{xy − Φ(x) : x ∈ R+};

the hypothesis that Φ is superlinear ensures that this function is well-defined. We
may equivalently define Ψ(y) to be the smallest function for which one has the
inequality

xy ≤ Φ(x) + Ψ(y) for all x, y ∈ R+. (15)

Problem 7.2. If 1 < p < ∞, show that the Young dual of Φ(x) = xp is Ψ(y) =
pp′/p

p′ yp
′

. Show also that the Young dual of Φ(x) = x log(2 + x) takes the form

Ψ(y) ∼ ey for y > 1. What does the Young duals of ex − 1 and ex
2

− 1 look like?

One can easily verify that Ψ is also increasing, convex, and super-linear, and so
the Orlicz norm ‖‖Ψ(L) makes sense. From (15) and the triangle inequality it is
immediate that

|

∫
X

fg dµ| ≤ 2 whenever ‖f‖Φ(L), ‖g‖Ψ(L) ≤ 1

and hence by homogeneity we obtain the duality relation

|

∫
X

fg dµ| ≤ 2‖f‖Φ(L)‖g‖Ψ(L)

whenever f ∈ Φ(L) and g ∈ Ψ(L).

Problem 7.3. Establish the more precise relationship

‖f‖Φ(L) ∼ sup{|

∫
X

fg dµ| : ‖g‖Ψ(L) ≤ 1}.
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Problem 7.4. Show that if Ψ is the Young dual of Φ, then Φ is the Young dual of
Ψ. (It may help to view things geometrically, and in particular understanding Ψ
as parameterising the support lines of the graph of the convex function Φ.)

Problem 7.5. When X has finite measure, show that the spaces L logL and eL are

dual to each other. What is the dual to eL
2

?

8. Real interpolation

So far we have only considered functions f on a single measure spaceX = (X,BX , µX).
Now we shall consider operators T which take functions on one measure space
X = (X,BX , µX) to functions on another measure space Y = (Y,BY , µY ); the
study of such operators is in fact a major focus of harmonic analysis. Ultimately
we want to extend T to a standard normed vector space such as Lp(X), but in
practice one has to initially first restrict attention to a dense subspace of functions,
such as simple functions or test functions.

We are primarily interested in linear operators, thus T (cf) = cT f and T (f + g) =
Tf + Tg. But it is also worth considering the more general sublinear operators, in
which

|T (cf)| = |c||Tf |

and we have the pointwise estimate

|T (f + g)| ≤ |Tf |+ |Tg|.

Apart from the linear operators, the next most important example of a sublinear
operator is a maximal operator

Tf(x) := sup
n

|Tnf(x)|

where Tn are a collection (possibly countably or uncountably infinite, though in
the latter case one has to take some care in ensuring measurability) of linear or
sublinear operators. The third most important example is a square function such
as

Tf(x) := (
∑
n

|Tnf(x)|
2)1/2.

More generally, one can consider a family Ty of operators indexed by some param-
eter y, and take Tf(x) to be the norm in the y variable of Tyf in some suitable
norm. But the above three examples of linear operators, maximal operators, and
square functions already cover the vast majority of applications.

Let 0 < p, q ≤ ∞ be exponents, and let T be sublinear. Let us define the following
concepts.

• We say that T is24 strong-type (p, q) (or simply type (p, q)) if we have a
bound

‖Tf‖Lq(Y ) .T,p,q ‖f‖Lp(X)

24This is also called type (Lp, Lq); more generally, type (V,W ) means that T is bounded from
a (dense subspace of) V to W .
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for all f in Lp, or in a dense sub-class thereof. Note that in the latter case
there is a unique extension to all of Lp.

• If q < ∞, we say that T is weak-type (p, q) if we have a bound

‖Tf‖Lq,∞(Y ) .T,p,q ‖f‖Lp(X)

• We say that T is restricted strong-type (p, q) if we have a bound

‖Tf‖Lq(Y ) .T,p,q HW 1/p (16)

for all sub-step functions of height H and width W . In particular, we have

‖T 1E‖Lq(Y ) .T,p,q µ(E)1/p. (17)

(Conversely, we can deduce (16) from (17) using tricks such as those in
Remark 6.5.)

• If q < ∞, we say that T is restricted weak-type (p, q) if we have a bound

‖Tf‖Lq,∞(Y ) .T,p,q HW 1/p (18)

for all sub-step functions f of height H and width W . In particular, we
have

‖T 1E‖Lq,∞(Y ) .T,p,q µ(E)1/p. (19)

Clearly, whenever p, q are fixed, strong-type implies weak-type and restricted strong-
type, either of which imply restricted weak-type. In most applications, it is the
strong-type bounds which are desired; however, we shall see in this section that
the real interpolation method allows us to deduce strong-type bounds from weak-
type, or even restricted weak-type bounds, as long as the strong-type bounds are
an interpolant between the restricted weak-type bounds. This can be a very use-
ful strategy, because (as we shall see in next week’s notes) weak-type or restricted
weak-type bounds are easier to prove than strong-type estimate.

Let us first make a mild (and qualitative) assumption, namely that the form

〈|Tf |, |g|〉 :=

∫
Y

|Tf ||g| dν (20)

is well-defined whenever f, g are simple functions with finite measure support. This
is for instance the case if T is of restricted type (p, q) for some 0 < p < ∞ and
1 ≤ q ≤ ∞, or restricted weak-type (p, q) for some 0 < p < ∞ and 1 < q < ∞;
thus in practice this assumption is easily satisfied. We observe that this form is
non-negative, homogeneous and sublinear in both f and g:

〈|Tcf |, |g|〉 = 〈|Tf |, |cg|〉 = |c|〈|Tf |, |g|〉

〈|T (f1 + f2)|, |g|〉 ≤ 〈|Tf1|, |g|〉+ 〈|Tf2|, |g|〉

〈|Tf |, |g1 + g2|〉 ≤ 〈|Tf |, |g1|〉+ 〈|Tf |, |g2|〉.

The form 〈|Tf |, |g|〉 turns out to be a convenient way to understand the various
types of T , and the ability to decompose both f and g independently is very useful
in establishing interpolation type results. There is a near-symmetry between f
and g here, if we could somehow take an “adjoint” of the operator T , but we will
not explicitly exploit this symmetry here as it is not always available for sublinear
operators (though the “duality” or “adjoint” trick is undoubtedly very powerful in
the important linear case).
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Let us look in particular at the form (20) applied to indicator functions, thus we look
at the quantity 〈|T 1E|, 1F 〉 for E ⊂ X and F ⊂ Y of finite measure. Now suppose
that T had some strong type (p, q) bound for some 0 < p < ∞ and 1 ≤ q ≤ ∞, say

‖Tf‖Lq(Y ) .p,q A‖f‖Lp(X)

for some A > 0. Then in particular

‖T 1E‖Lq(Y ) .p,q Aµ(E)1/p

and hence by Hölder’s inequality

〈|T 1E|, 1F 〉 .p,q µ(E)1/pν(F )1/q
′

. (21)

Actually it is clear that strong type (p, q) is too much of an assumption; restricted
type (p, q) would have sufficed for the conclusion. If q > 1, we can relax things
further to restricted weak-type:

Problem 8.1. Let 0 < p ≤ ∞, 1 < q ≤ ∞, and A > 0. Let T be a sublinear operator
such that the form (20) is well-defined. Then the following are equivalent up to
changes in the implied constant:

• T is restricted weak-type (p, q) with constant A, in the sense that

‖Tf‖Lq,∞(Y ) .p,q AHW 1/p (22)

for all simple sub-step functions f of height H and width W .
• For all E ⊂ X , F ⊂ Y of finite measure, we have the bound

〈|T 1E|, 1F 〉 .p,q Aµ(E)1/pν(F )1/q
′

(Hint: use (13) and Remark 6.5.)

This already gives a simple version of real interpolation:

Corollary 8.2 (Baby real interpolation). Let T be a sublinear operator such that
the form (20) is well-defined. Let 0 < p0, p1 ≤ ∞, 1 < q0, q1 ≤ ∞ and A0, A1 > 0
be such that T is restricted weak-type (pi, qi) with constant Ai (in the sense of
(22)) for i = 0, 1. Then T is also restricted weak-type (pθ, qθ) with constant Aθ for
0 ≤ θ ≤ 1, where

1

pθ
:=

1− θ

p0
+

θ

p1
;

1

qθ
:=

1− θ

q0
+

θ

q1
;Aθ := A1−θ

0 Aθ
1 (23)

and the implied constant depends on p0, p1, q0, q1.

Indeed, all we are using here is the obvious algebraic observation that if X . Y0

and X . Y1, then X . Yθ := Y 1−θ
0 Y θ

1 for all 0 ≤ θ ≤ 1.

The above corollary has two defects. Firstly, it can only conclude restricted weak-
type rather than strong type. Secondly, the restriction q0, q1 > 1 is inconvenient
for many applications, since weak L1,∞ bounds are actually rather common. To
address the second concern, we have the following variant of Problem 8.1:
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Problem 8.3. Let 0 < p ≤ ∞, 0 < q ≤ ∞, and A > 0. Let T be a sublinear operator
such that the form (20) is well-defined. Then the following are equivalent up to
changes in the implied constant:

• T is restricted weak-type (p, q) with constant A, in the sense that (22)
holds.

• For all E ⊂ X , F ⊂ Y of finite non-zero measure, there exists F ′ ⊂ F with
µ(F ′) ≥ 1

2µ(F ) such that

〈|T 1E|, 1F ′〉 .p,q Aµ(E)1/pν(F )1/q
′

Hint: use Q5.

Corollary 8.4. The hypothesis q0, q1 > 1 in Corollary 8.2 can be weakened to
q0, q1 > 0.

Now we can give a significantly more useful real interpolation theorem, which can
interpolate between restricted weak-type estimates to obtain strong-type estimates.

Theorem 8.5 (Marcinkeiwicz interpolation theorem). Let T be a sublinear operator
such that the form (20) is well-defined. Let 0 < p0, p1 ≤ ∞, 0 < q0, q1 ≤ ∞ and
A0, A1 > 0 be such that T is restricted weak-type (pi, qi) with constant Ai (in the
sense of (22)) for i = 0, 1. Suppose also that p0 6= p1 and q0 6= q1. Then for any
0 < θ < 1 and 1 ≤ r ≤ ∞ with qθ > 1 we have

‖Tf‖Lqθ,r(Y ) .p0,p1,q0,q1,r,θ Aθ‖f‖Lpθ,r(X)

for all simple functions f with finite measure support, where pθ, qθ, A were defined
in (23). In particular, if qθ ≥ pθ, then T is strong-type (pθ, qθ) with constant
Op0,p1,q1,θ(Aθ).

Proof To simplify the notation let us suppress the dependence on p0, p1, q0, q1, r, θ.
Observe that the statement and conclusion of the theorem have several homogeneity
symmetries. The most obvious one is that we can multiply T (and the Aθ) by an
arbitrary constant, but we may also multiply the measure µ by a constant C (and
the Aθ by the constant C−1/pθ ); similarly we may multiply ν by C and Aθ by
C1/qθ ). Using these symmetries we may normalise A0 = A1 = 1 (and hence Aθ = 1
for all θ). Our task is then to show that

‖Tf‖Lqθ,r(Y ) . ‖f‖Lpθ,r(X)

for all simple functions f with finite measure support.

Using Theorem 6.12 (and the hypothesis qθ > 1), this is equivalent to showing that

〈|Tf |, |g|〉 . ‖f‖Lpθ,r(X)‖g‖Lq′
θ
,r′ (Y )

(24)

for all simple functions f, g of finite measure support.

We currently have q0, q1 > 0 and qθ > 1. By using Corollary 8.4 to bring the
restricted weak-type exponents (p0, q0) and (p1, q1) a bit closer to (pθ, qθ) we may
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assume that q0, q1 > 1 as well. Applying Theorem 8.1 we conclude that

〈|T 1E|, 1F 〉 . |E|1/pi |F |1/q
′
i

for all sets E,F of finite measure and i = 0, 1. From Remark 6.5 and sublinearity
we conclude that

〈|Tf |, |g|〉 . HW 1/piH ′(W ′)1/q
′
i

whenever f, g are sub-step functions of height and widths H,H ′ and W,W ′ respec-
tively. We can of course pick the better of the two estimates, leading to

〈|Tf |, |g|〉 . HH ′ min
i=0,1

(W 1/pi(W ′)1/q
′
i). (25)

Now we can return to proving (24). By homogeneity we may normalise

‖f‖Lpθ,r(X) = ‖g‖
Lq′

θ
,r′ (Y )

= 1.

We then apply Theorem 6.6 to decompose f =
∑

n∈Z
fn, g =

∑
n∈Z

gn with fn, gn
sub-step functions of width 2n and heights Hn, H

′
n respectively, with the height

bounds

‖a‖lr(Z), ‖b‖lr′(Z) . 1 (26)

where a, b are the sequences

an := Hn2
n/pθ ; bn := H ′

n2
n/q′θ .

Since f, g are simple functions, only finitely many of the fn and gn are non-zero25.
We now use sublinearity to estimate

〈|Tf |, |g|〉 ≤
∑
n,m

〈|Tfn|, |gm|〉

and then use (25) to obtain

〈|Tf |, |g|〉 .
∑
n,m

HnH
′
m min

i=0,1
(2n/pi2m/q′i).

We can write this in terms of a, b, and reduce to showing that∑
n,m

anbm min
i=0,1

(2
n( 1

pi
− 1

pθ
)
2
m( 1

qθ
− 1

qi
)
) . 1.

Because p0 6= p1 and q0 6= q1, and because of the definitions of pθ, qθ, we can write
the left-hand side as ∑

n,m

anbm min(2ε(n+αm), 2−ε′(n+αm))

for some non-zero α ∈ R and some ε, ε′ > 0 depending only on p0, p1, q0, q1, θ. We
substitute k := ⌊n+ αm⌋ (thus n = k − ⌊αm⌋) and estimate this by∑

k

min(2εk, 2−εk)
∑
m

ak−⌊αmbm.

25This is not explicitly stated in Theorem 6.6, but can be extracted from the proof. Alternately,
one can coarsen the sigma-algebras so that there are only finitely many measurable sets in X and
Y , while keeping the simple functions f, g measurable, and then apply Theorem 6.6, at which
point the finiteness is obvious from the disjoint supports.
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By (26) and Hölder we see that the inner sum is O(1) uniformly in k, and the claim
follows.

Finally, if we specialise r = qθ and recall that the Lpθ,qθ norm will be dominated
by the Lpθ norm for pθ ≥ qθ, the last claim of the theorem follows.

There are many other variations on the real interpolation method, for instance an
extension to multilinear operators, or to other function spaces. However, the basic
method of proof is still the same: dualise, decompose all inputs, estimate each term
as optimally as one can, and then sum.

One can illustrate the real interpolation method graphically using type diagrams.
One plots all points ( 1p ,

1
q ) where the operator T is strong-type (p, q) or restricted

weak-type (p, q). Ignoring some of the technical hypotheses, the above interpo-
lation theorems then essentially assert that the restricted weak-type diagram and
strong-type diagrams are both convex, with the latter contained in the former. Fur-
thermore, if two points lie in the former, then the open interval connecting them
lies in the latter. Determining the type diagrams of various operators T is a basic
task of harmonic analysis, as it conveys a lot of information as to how T transforms
the width and height of functions.

There is a different interpolation method, the complex interpolation method, which
offers similar results to the real interpolation method but with some slight differ-
ences. On the plus side, the complex interpolation method gives sharper bounds,
and more importantly can handle the case where the operator T itself varies (ana-
lytically) with the interpolation parameter. On the minus side, the method cannot
upgrade weak or restricted weak-type estimates to strong-type estimates.

In the next set of notes we shall present several applications of the real interpolation
method.

9. Exercises

• Q1. Let ‖‖ be a quasinorm on functions, thus ‖cf‖ = |c|‖f‖ for scalars c,
‖f‖ = 0 if and only if f = 0, and we have the quasitriangle inequality.

‖f + g‖ . ‖f‖+ ‖g‖ (27)

for all functions f, g. Let fn, n = 1, 2, . . . , N be a sequence of functions
obeying the bounds

‖fn‖ . 2−εn

for some ε > 0. Prove that

‖

N∑
n=1

fn‖ .ε 1

(the point being that the bound is uniform in N .) Hints: Use (27) to reduce
to the case where ε is large. Then use (27) to sum backwards from N to 1.
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• Q2. Let ‖‖ be a quasinorm, and let fn, n = 1, 2, . . . , N obey the bounds

‖fn‖ . n−A

for some A > 0. Prove that if A is sufficiently large (depending on the
implied constant in (27)), then

‖
N∑

n=1

f‖ .A 1.

Hints: dyadically decompose into blocks 2k ≤ n < 2k+1. Then sum each
block using a binary tree - a classic example of divide and conquer.

• Q3. (Stein-Weiss inequality) Let f1, . . . , fN be functions withN ≥ 2. Show
that

‖f1 + . . .+ fN‖L1,∞ . logN(‖f1‖L1,∞ + . . .+ ‖fN‖L1,∞).

thus the weak L1,∞ quasinorm only fails to be a norm “by a logarithm”.
Show with an example that the logN cannot be removed. Hints: first use
homogeneity to reduce to showing that

µ({|f1 + . . .+ fN | ≥ 1}) . logN(‖f1‖L1,∞ + . . .+ ‖fN‖L1,∞).

Then reduce to the case when the fn are non-negative, bounded above by
1, and bounded below by 1/2N (possibly replacing the 1 on the LHS with
1/2 to achieve this latter reduction). Then compare the L1,∞ norm with
the L1 norm and use the triangle inequality in L1. Thus L1,∞ is only “a
logarithm away” from being a norm; compare with the polynomial-type
failure of the triangle inequality in (4). For the counterexample, try to

exploit the logarithmic divergence of
∑N

n=1
1
n or

∫ N

1
dx
x .

• Q4. For each integer n, let fn be a quasi-step function of height 2n and
width Wn for some Wn > 0. Show that

‖
∑
n

|fn|‖p ∼p ‖2nW 1/p
n ‖lpn(Z)

for all 0 < p < ∞. If instead fn is a quasi-step function of height Hn and
width 2n for some Hn > 0, show that

‖
∑
n

|fn|‖p ∼p ‖Hn2
n/p‖lpn(Z)

for all 0 < p < ∞. What goes wrong when we remove the absolute values
on the fn? (This can be repaired by replacing the powers of 2 with powers
of a sufficiently large constant (depending on the implied constant in the
definition of a quasi-step function) - why?)

• Q5. Let 0 < p < ∞, 0 < A < ∞, and f ∈ Lp,∞(X, dµ). Show that the
following are equivalent (up to changes in the implied constant):

– ‖f‖Lp,∞(X,dµ) .p A.
– For every set E of finite measure, there exists a subset E′ of E with

µ(E′) ≥ 1
2µ(E) such that∫

X

f1E′ dµ = O(µ(E)1/p
′

)

(in particular, we assert that the integral on the left-hand side is ab-
solutely integrable).
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Hint: It may be instructive to work out the example f(x) = |x|−d/p on
Rd by hand to get a sense of what is going on; this should suggest how to
prove things in general. The proof is slightly simpler in the case when f
is non-negative, so you may want to try that case first. Comment on how
this result implies Problem 6.10 (or its equivalent version discussed shortly
afterwards) when p > 1.

• Q6. Let f be a function on a measure space X of bounded measure µ(X) =
0(1). Show that the following are equivalent (up to changes in the implied
constants):
(i) ‖f‖eL = O(1).
(ii) ‖f‖Lp,∞ = O(p) for all 1 ≤ p < ∞.
(iii) ‖f‖Lp = O(p) for all 1 ≤ p < ∞.
Hint: You may find the Taylor expansion for ex, together with the obvious
bounds (k/2)k/2−1 ≤ k! ≤ kk for integer k (or Stirling’s formula, if you
know what that is), to be useful.

• Q7. Obtain the analogue of Q6 for the Orlicz space eL
2

.
• Q8 (Loomis-Whitney inequality). Let d ≥ 2, let X1, . . . , Xd be measure
spaces, and for i = 1, . . . , d let fi ∈ Lp(

∏
1≤j≤d:j 6=i Xj) for some 0 < p ≤ ∞.

Show that the function

F (x1, . . . , xd) :=

d∏
i=1

fi(x1, . . . , xi−1, xi+1, . . . , xd)

lies in Lp/(d−1)(
∏

1≤j≤d Xj) with the Loomis-Whitney inequality

‖F‖Lp/(d−1)(
∏

1≤j≤d Xj) ≤

d∏
i=1

‖fi‖Lp(
∏

1≤j≤d:j 6=i Xj).

Conclude in particular the box inequality

µ∏
1≤j≤d Xj

(E) ≤ (

d∏
i=1

µ∏
1≤j≤d:j 6=i

(πi(E)))1/(d−1)

where E is any subset of
∏

1≤j≤d Xj and πi is the canonical projection from∏
1≤j≤d Xj to

∏
1≤j≤d:j 6=i Xj . From this, deduce the weak isoperimetric

inequality
|E| .d |∂E|d/(d−1)

for any E ⊂ Rd, where |E| is the Lebesgue measure of E and |∂E| is the
d− 1-dimensional Hausdorff measure of the boundary of E.
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