
Mathematics 245B
Terence Tao
Midterm, Feb 4, 2009

Instructions: Try to do all three problems; they are all of equal value. There is plenty of
working space, and a blank page at the end.

You may freely use the axiom of choice in your work, and cite any theorem or result from
the class notes or textbook.

Good luck!
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Problem 1. Let 1 ≤ p <∞, and let f ∈ Lp(R), where we give R the usual Lebesgue measure
and σ-algebra. For every t ∈ R, let ft ∈ Lp(R) be the translated function ft(x) := f(x− t).
Show that ft converges in Lp norm to f in the limit t → 0 (i.e. limt→0 ‖ft − f‖Lp(R) = 0).
(Hint: First verify this when f is a step function 1[a,b], then when f is an indicator function
1E of some set of finite measure E, then as a simple function, then as an arbitrary Lp function.
Alternatively, show that the space of f ∈ Lp(R) which obeys the desired properties is a closed
linear subspace of Lp that contains the step functions.)

Let V be the space of all f ∈ Lp(R) such that limt→0 ‖ft − f‖Lp(R) = 0, thus V is a subset
of Lp(R). It is closed under addition: if f, g ∈ V , then f + g ∈ V , because ‖(f + g)t − (f +
g)‖Lp(R) ≤ ‖ft− f‖Lp(R) + ‖gt− g‖Lp(R) thanks to the triangle inequality (and the fact that
translation f 7→ ft is a linear operation). For similar reasons, it is closed under multiplication:
if c ∈ C and f ∈ V , then cf ∈ V , because ‖(cf)t − cf‖Lp(R) = |c|‖ft − f‖Lp(R). Thus V is a
vector space.

Also observe that V is closed in Lp(R): if f (n) ∈ V converges in Lp(R) to f , then for any ε > 0
we have ‖f (n) − f‖Lp(R) ≤ ε for some sufficiently large n. Since translation does not affect
Lebesgue measure (and thus does not affect the Lp norm), we also have ‖f (n)

t − ft‖Lp(R) ≤ ε
for all t ∈ R (it is important here that the RHS is uniform in t). Fixing n, we then see that
as f (n) ∈ V , we also have ‖f (n)

t − f (n)‖Lp(R) ≤ ε for all sufficiently small t. Putting this all
together using the triangle inequality, we see that ‖ft− f‖Lp(R) ≤ 3ε for all sufficiently small
t, and thus f ∈ V .

[One can also deduce the closed nature of V from the more general fact that the uniform limit
of continuous functions from some topological space to some metric space is again continuous,
but this is not much shorter than (or particularly different from) the above direct proof.]

On the other hand, if f = 1[a,b] is the indicator function of an interval, then we see that ft

converges pointwise almost everywhere to f , and is also dominated by an Lp function for t
bounded, so by dominated convergence we see that ft → f in Lp as t → 0. (One can of
course also work out the integrals by hand; note that the cases t > 0 and t < 0 are slightly
different, as are the cases |t| < b − a and |t| ≥ b − a (though the latter is irrelevant in the
limit t → 0). Note also that for general f , it is not the case that ft converges pointwise
almost everywhere to f ; this is true if and only if f is continuous almost everywhere.) Thus
the indicator function of an interval lies in V . By linearity, this means that the indicator
function of any finite union of intervals lie in V . Since every measurable set E ⊂ R of finite
measure can be approximated to arbitrary accuracy (in Lebesgue measure) by a finite union
of intervals, every indicator function 1E can be approximated in Lp(R) norm to arbitrary
accuracy by the indicator function of a finite union of intervals. Since V is closed, we thus see
that every indicator function with finite measure support lies in V ; by linearity, this means
that any simple function with finite measure support lies in V . Since such functions are dense
in Lp(R), V must equal all of Lp(R), and we are done.

Note that the claim fails when p = ∞; consider for instance what happens with f = 1[0,1].
(Indeed, ft converges to f in L∞(R) if and only if f is (essentially) uniformly continuous (i.e.
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uniformly continuous after modification on a set of measure zero).)

A shorter proof would be to observe that the continuous functions of compact support lie in
V (this follows either from dominated convergence or uniform continuity), and that these are
dense in Lp(R), which can be proven by a variety of methods.
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Problem 2. Let ([0, 1],B) be the unit interval with the Borel σ-algebra. Let M([0, 1]) be
the space of real finite measures µ : B → R, with the norm ‖µ‖ := |µ|([0, 1]). Show that
M([0, 1]) is a real Banach space. (You may assume without proof that M([0, 1]) is a normed
vector space.)

It suffices to show that every absolutely convergent series
∑∞

n=1 µn in M([0, 1]) is also con-
ditionally convergent.

For any Borel set E, we have |µn(E)| ≤ |µn|(E) ≤ ‖µn‖. Since
∑∞

n=1 ‖µn‖ is absolutely
convergent, we see that

∑∞
n=1 µn(E) is also. Write µ(E) :=

∑∞
n=1 µn(E) for this limit.

Clearly µ(∅) = 0. Also, we have the finiteness bound |µ(E)| ≤
∑∞

n=1 ‖µn‖ <∞ by the above
discussion. Finally, we claim that µ is countably additive (and is hence a real finite measure).
To see this, let E1, E2, . . . be disjoint measurable sets. Observe that

∑∞
n=1

∑∞
m=1 |µn(Em)| ≤∑∞

n=1 ‖µn‖ <∞. Thus by Fubini’s theorem, we have

∞∑
n=1

∞∑
m=1

µn(Em) =
∞∑

m=1

∞∑
n=1

µn(Em)

(in particular, all series here are absolutely convergent). But the left-hand side is µ(
⋃∞

m=1Em)
and the right-hand side is

∑∞
m=1 µ(Em), and so we obtain countable additivity.

It remains to show that
∑N

n=1 µn converges in norm to µ. Observe for any set E that

|µ(E)−
N∑

n=1

µn(E)| = |
∞∑

n=N+1

µn(E)| ≤
∞∑

n=N+1

‖µn‖

and thus

‖µ−
N∑

n=1

µn‖ ≤
∞∑

n=N+1

‖µn‖.

Letting N →∞ we obtain the claim.

An alternate (less elementary) proof is as follows. It suffices to prove every Cauchy sequence
converges. If µn is a Cauchy sequence, then it is bounded. If we now write ν :=

∑∞
n=1 2−n|µn|,

then ν is an unsigned finite measure (by the above arguments), and the µn are all absolutely
continuous with respect to ν, thus by the Radon-Nikodym theorem dµn = fndν for some
fn ∈ L1(ν). Since the µn are Cauchy in M([0, 1]), the fn are Cauchy in L1(ν), and hence by
completeness of L1(ν) converge to some f ∈ L1(ν). One then verifies that µn converges to
the measure µ defined by dµ = fdν.
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Problem 3. Show that there exists a continuous linear functional µ : `∞(Z) → C with
the property that µ(1) = 1 (where the 1 ∈ `∞(Z) on the left-hand side represents the
constant function 1 on the integers Z), and such that one has the translation invariance
property µ(fm) = µ(f) for all m ∈ Z and f ∈ `∞(Z), where fm(n) := f(n − m) is the
translation of f by m. (Hint: using the Hahn-Banach theorem, one can create a generalised
limit functional λ : `∞(N) → C that extends the usual limit function; then set µ(f) :=
λ(( 1

2n+1

∑n
j=−n f(j))n∈N) to be the generalised limit of the averages ( 1

2n+1

∑n
j=−n f(j))n∈N.)

Let lim : c(N)→ C be the limit functional (an)∞n=1 → limn→∞ an on the space c(N) ⊂ `∞(N)
of convergent sequences, equipped with the sup norm. This is a bounded linear functional,
and hence by Hahn-Banach has an extension λ : `∞(N) → C to `∞(N), which is also a
bounded linear functional.

Now define µ(f) := λ(( 1
2n+1

∑n
j=−n f(j))n∈N). Observe that if f is a sequence bounded in

magnitude by M (say), then the averages 1
2n+1

∑n
j=−n f(j) are also bounded in magnitude

by M , and so µ maps `∞ to C and is bounded; it is also clearly linear. Since λ(1) = 1, and
the averages of the sequence f(j) := 1 are also 1, we see that µ(1) = 1. Finally, for any m,
observe that

µ(f)− µ(fm) = λ((
1

2n+ 1

n∑
j=−n

f(j)− 1
2n+ 1

n∑
j=−n

f(j −m))n∈N).

For n > |m|, a comparision of the two summations reveals that they differ in exactly 2|m|
terms. Thus, if f is bounded in magnitude by M ,

| 1
2n+ 1

n∑
j=−n

f(j)− 1
2n+ 1

n∑
j=−n

f(j −m)| ≤ 2|m|
2n+ 1

,

so in particular the expression inside the absolute value goes to zero as n → ∞ (keeping m
fixed). Since λ extends the limit functional, we conclude that

λ((
1

2n+ 1

n∑
j=−n

f(j)− 1
2n+ 1

n∑
j=−n

f(j −m))n∈N) = 0,

and so µ(f) = µ(fm) as required.

(Note, incidentally, that to verify µ(f) = µ(fm), it suffices by induction and symmetry to do
so in the case m = 1, although the case of general m is not really that much harder than the
m = 1 case.)

The function µ is known as an invariant mean on Z, and groups with an invariant mean are
known as amenable groups. They play an important role in harmonic analysis, geometric
group theory, and representation theory (and have already shown up in the notes on the
Banach-Tarski paradox).
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