Mathematics 245B
Terence Tao
Final, March 24, 2005

Instructions: Do all seven problems; they are all of equal value. There is plenty of working
space, and a blank page at the end.

You may enter in a nickname if you want your final score posted. Good luck!
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Problem 1. Let H be a Hilbert space, and let M be a non-trivial closed subspace of H
(i.e. M # {0}. Let Py : H — H be the orthogonal projection from H to M, thus in the
notation of Theorem 5.24, we have Pyx =y € M and x — Pyyx = 2z € M-+ for all z € H.
You may assume without proof that Py is linear. Show that ||Pp|lop = 1 (so in particular
Py is bounded), that P2, = Py, and (using the notation of Q57 from Chapter 5) Py = Pj;.
(More succinctly, orthogonal projections are linear idempotent self-adjoint contractions).

Since Py lies in M and x — Py lies in M+, we see that Pyz and & — Py are orthogonal,
hence by Pythagoras’s theorem

l2]* = 1Ppall® + llz — Paga]®.

In particular we have ||Pyz| < [|z||, which implies that ||Pa|lop < 1. Also, if 2 is any
non-zero element of M (which exists since M is non-trivial) we see that Pysx = x, and hence
||Parz|] = ||z|| for this vector. Thus ||Pasllop > 1, which when combined with the preceding
gives || Par|lop = 1.

If x € H, then Pyx € M, and then Py(Pyz) = Py (the orthogonal projection of M onto
M is the identity). Thus Pi = Puy.

Finally, we show self-adjointness. By definition of adjoint, we have
(Pmuz,y) = (x, Pyy) for all z,y € H.
Applying this for all 2 € M+ we see that
(z,Pyry) =0forallz € Mt andy € H

and thus P}y € (M)t = M for all y € H. Also, applying the previous identity for all
x € M gives
(z,y) = (z, Pyry) for all z € M and y € H

and hence y — P;;y € M+ for all y € H. Combining these two and recalling the uniqueness of
orthogonal projection we obtain Py,y = Py for all y € H, and hence Py, = Py as desired.




Problem 2. Let H be a Hilbert space, and let P : H — H be a continuous linear mapping
such that P2 = P and P = P* (using the notation from Q57 from Chapter 5). Show that
there exists a closed linear subspace M of H such that P = Py, where Py is the orthogonal
projection operator defined in Problem 1. (Remark: this shows that all linear idempotent
self-adjoint contractions are orthogonal projections, thus providing a converse to Problem 1).
Hint: analyze the behavior of P on the range P(H) and on the cokernel P(H)~.

If z € P(H), then x = Py for some y € H, and Pz = P?y = Py = z. Thus P is the identity
on P(H).

Now suppose that € P(H)*. Then we have (z, Py) = 0 for all y € H. By self-adjointness
this means that (Pz,y) = 0 for all y € H, hence Pz € H+ = {0}. Thus P is zero on P(H)> .
Now let M be the closure of P(H). Then by continuity we see that P is the identity on M,
and is zero on P(H)+ = M~. In particular,

Pz = P(Pyz + (x — Pyz)) = P(Pyz) + P(z — Pyz) = Pyz + 0= Pyx

and hence P = Py as desired.




Problem 3. Let (X, (||[|»)52;) be a Frechet space equipped with a countable number of
semi-norms ||||1,]|[|2,--.- Let d : X x X - R* be the function

Z g-n =yl
1+ Iz =yl

You may assume without proof that this series is convergent, and that d is a metric. Show
that the topology generated by the metric space (X, d) is the same as the topology generated
by the Frechet space (X, (||||l»)S%;), and show that (X,d) is complete. (Note that the latter
claim does not automatically follow from the former, because completeness is not a topological
property).

We need to show that every open set in the Frechet space is also open in the metric space,
and vice versa. Let us first show that every open space in the Frechet space is open in the
metric space. Since the Frechet space topology is generated by the sub-basic sets

Bp(zo,7) ={z € X : ||z — mo]||n < T},
it suffices to show that these sets are also open in the metric topology, or equivalently that
X\Bp(z0,7) ={x € X : ||z — 20||n > 7}

is closed in the metric topology. Thus, let z,, be a sequence in X\ By, (zo,7) which converges
to some point y in the metric d, thus d(x,,,y) — 0. By definition of d this implies that

% — 0, which by continuity of - and its inverse, implies that [|Zm —ylln — 0, and

hence by the triangle inequality ||y — yol||» > 7, as desired.

Conversely, let us show that every open set in the metric space is also open in the Frechet
space. It suffices to show that a metric ball

B(zg,r) ={z € X : d(z,zq) < r}

is open in the Frechet space. Pick x € B(xzg,r), then there exists an integer N such that
d(z,z0) <7 —2"N*!. Now we claim that B(zo,r) contains the basic open set

N
ﬂ B(z,27N
n=1

Indeed, if y lies in the above set, then ||z — y||, < 2™V for all 1 < n < N, and hence

N [e%s)
d(z,y) <Y 272N 4 Y 2N g N =7V
n=1 n=N+1

and hence by the triangle inequality d(y,zo) < r, as desired.




Problem 4. Let X be a real vector space. Let (Fy)aca be a family of topologies on X,
such that for each a € A, (X,F,) is a topological vector space (i.e. addition and scalar
multiplication are continuous, see Sec 5.4). Note that A could be uncountable. Let F :=
Vaca Fa be the topology generated by |J,c 4 Fo (thus U,y Fa is a sub-base for ). Show
that (X, F) is also a topological vector space.

We need to show that the addition map + : X x X — X and the scalar multiplication map
-: R x X — X are continuous. We begin with addition. We need to show that the inverse
image + (V) = {(z,y) € X x X : +y € V} of any open set in F is still open. Actually we
only need to check this for the sub-basic open sets, thus sets in F,. But the inverse images
of those sets will be open in F, x F,, and hence also open in the larger topology F x F. A
similar argument also works for scalar multiplication.




Problem 5. Let C([0,1]) be the space of continuous real-valued functions f : [0,1] = R,
equipped with the uniform norm || f{|ec := sup,¢o,1)|f(2)|- (You may assume without proof
that C[0,1]) is a Banach space). If f € C([0,1]), and M,r > 0 are positive numbers, show
that the sets

Eun,y:={f € C([0,1]) : There exists € R such that |f(z+h)—f(z)| < M|h| for all |h| < r}
is closed in C([0, 1]) and contains no interior points. (Hint: you may find the “zigzag” function
fe(z) :=inf{|z —en|:n € Z}

to be useful). Using the Baire category theorem (Theorem 5.9), conclude that there exists a
function f € C([0,1]) which is nowhere differentiable (i.e. limp_q M does not exist
for any z € R).

(Note: the version of this question in the final was severely broken and had to be discarded).
Closure is easy: if f, is a sequence in Ejs,, which converges uniformly to a function f €
C(]0,1]), then by taking limits of the inequality |fn(z + h) — fn(z)] < M|h| we obtain
|f(z+h) — f(z)| < M|h|, and hence f € Ep,. Now we show that Ear,, has no interior. Let
f be an element of Fjs ., and let € > 0 be arbitrary. Using the Weierstrass approximation
theorem, we can find a polynomial P such that ||f — P|| < &. Note that P’ is also continuous
on [0, 1], hence is bounded, which means that P is Lipschitz with some large Lipschitz constant
L. Now we consider the function g := P + N f. /5 for some very large N. One can verify
that [|[Nf. /x|l < N5 <€, so by the triangle inequality we have ||f — gl[cc < 2¢. Also, if N
is large enough (bigger than L + M will suffice) then one can easily check that g cannot lie
in Eup,, (it always has slope bigger than N — L or less than —N + L). Thus f is arbitrarily
close to an element outside of Ejs ,, and hence Ej, has no interior.

The sets Ejy,, are thus nowhere dense, and so by the Baire category theory ;e Uren Enr,1/r
cannot cover all of C([0,1]). Hence there exists a function f which does not lie in Ey; /5
for any positive integer M, R. But by definition of E /g this forces f to be nowhere
differentiable.




Problem 6. Let n > 1 be an integer, let K be a compact subset of R™, and let L' (K) be the
space of absolutely integrable functions on K, with the norm || f||; := [, |f(z)| dz, and two
functions f and g identified if they agree almost everywhere. You may assume without proof
that L'(K) is a Banach space. Let P(K) be those functions f € L!'(K) (or more precisely,
equivalence classes of functions) which are polynomials, thus one has

f(@y,...,zp) = Z Ciyroin T .. i

0<it,yin <N

for some constants ¢;, .. ;. and some integer N, and all (z1,...,2z,) € K. Show that P(K)
is dense in L!'(K). (Hint: you will find the Stone-Weierstrass theorem (Theorem 4.45),
Urysohn’s lemma (Lemma 4.15), Theorem 2.26, and Theorem 2.40 to be useful).

We first observe that P(K) is dense in C'(K) (with the uniform topology). This follows from
the Stone-Weierstrass theorem, since P(K) is an algebra which separates points (as can be
seen from the monomial polynomials 1, ...,z,) and contains the identity 1. In particular
P(K) also is dense in C'(K) in the L' topology. So it will suffice to show that C'(K) is dense
in L1(K).

Let us first show that for any measurable subset E of K, the set 1g lies in the closure of
C(K). Pick any € > 0. By Theorem 2.40(a), one can find an open set V and a compact
set K' such that K’ ¢ E C V and m(V\K') < e. Using Urysohn’s lemma, one can find
a function f € C(K) which equals 1 on K’ and equals zero outside of V, and take values
between 0 and 1 elsewhere, and thus || f —1g||1 < e. This shows that 1g is adherent to C(K),
and thus lies in its closure. Taking linear combinations we see that all simple functions lie
in the closure of C'(K); using Theorem 2.26 we conclude then that the closure of C'(K) is in
fact all of L'(K), as desired.




Problem 7. Let X be a real vector space (with no topology!), and let B be a convex subset
of X, with the property that the intersection of B with any line through the origin is a
symmetric open interval; more precisely, for any non-zero z € X there exists an M (z) > 0
such that

{teR:treB}={tcR:-M(z) <t< M(x)}.

Let xg be an element of X which does not lie in B. Show that there exists a linear functional
A: X — R (not necessarily continuous!) such that A(zg) > 1, and A(z) < 1 for all z € B.
(This is a special case of the “Separating Hyperplane Theorem”). Hint: show that the
function ||z||p := 1/M(z) is a norm, then use Theorem 5.8(b).

We let ||z||g := 1/M(z) when x # 0, and define ||0|| g := 0. This norm is clearly non-negative,
non-degenerate, and homogeneous. Now we verify the triangle inequality ||z +y||s < ||z||B +
|ly||s- This is easy if z, y, or z + y are zero, so suppose that they are all non-zero. Observe
that tz € B for all 0 < t < 1/||z||p and sy € B for all 0 < s < 1/||y|| 5, so by convexity of B,

S35t + 5555y € B for all such s,t. In other words, m(w +y) € B whenever 1/t > ||z||5

and 1/s > ||y||s, which means that i (z +y) € B whenever r > ||zl + [ly||s. This forces

M(z +y) > re4mrs and hence [lz+ylls < ||zl + [lyll5 as desired.

Since z¢ does not lie in B, we have M (xo) < 1, and hence ||zo||s > 1. Now by Theorem 5.8(b)
we can find a linear functional A : X — R with [|A||x+ = 1 such that A(zo) = ||zo]|B > 1.
In particular, if z € B, then M(z) > 1, thus ||z||p < 1, and then |A(z)| < 1, and the claim
follows.




This blank page can be used as additional space for your answers (but please indicate which
question is being answered!).




