Mathematics 245B
Terence Tao
Midterm, Feb 11, 2003

Instructions: Try to do all three problems; they are all of equal value. There is plenty of
working space, and a blank page at the end.

You may enter in a nickname if you want your midterm score posted.

Good luck!
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Problem 1. (a) Let X be a compact topological space, and let F C C(X;R) be a collection
of continuous functions from X to R which is pointwise bounded (i.e. the set {f(z) : f € F}
is bounded for all € X)) and equicontinuous. Prove that F is uniformly bounded (i.e. there
exists an M > 0 such that |f(z)| < M for all z € X and f € F).

Proof A: By the Arzela-Ascoli theorem, F is totally bounded in C'(X;R), hence bounded in
C(X;R), hence uniformly bounded.

Proof B: Choose any € > 0 (e.g. € = 1). For each z € X, there exists an open neighborhood
U, C X of z such that |f(y) — f(z)| < e for all y € U, and f € F, by equicontinuity. We
then choose such an U, for each z (invoking the axiom of choice). The collection of open
sets {U, }zex covers X (since z € U, for all z), thus by compactness we have a finite cover
X =Ug, U...UUy,. For each z;, we have an M; > 0 such that |f(z;)| < M; for all f € F,
by pointwise boundedness. This then implies that |f(y)| < M; +¢ forally € U,; and f € F,
by the triangle inequality. This then implies that |f(y)| < maxi<j<x M; +¢ for all y € X
and f € F, which establishes uniform boundedness.

Extra challenge: Suppose we drop the assumption that F is pointwise bounded for all z € X,
and just assume instead that F is pointwise bounded for a single point x € X. Also, assume
that X is connected. Conclude again that F is uniformly bounded. (Why do we need
connectedness?)

(b) Give an example to show that the results in part (a) fail if the assumption of equicontinuity
is dropped.

There are of course many examples. One such is X = [0,1] and F = {f, : n € Z}, where
fn is the function f,(z) := min(n,1/x). Various other examples based on ”moving bumps”
that get larger but narrower as n — oo are possible. Note that we are still assuming X to be
compact.




Problem 2. (a) Let X,Y be topological spaces, and suppose that Y is Hausdorff. Let A be
a dense subset of X, and let f: X -+ Y and g : X — Y be continuous functions. Show that
if f and g agree on A (i.e. f(x) = g(x) for all z € A), then they agree on all of X (i.e. f and
g are identical).

Proof A: The function (f,g) : X = Y x Y defined by (f, 9)(z) := (f(z), g(z)) is continuous
because each of its component functions are. Since Y is Hausdorff, the diagonal A := {(y, y) :
y € Y} is closed in Y x Y (why?). Thus (f,g) 1(A) is closed in X, i.e. the set {z € X :
f(z) = g(x)} is closed. But this set contains A, and hence it contains A = X, and we are
done.

Proof B: Suppose for contradiction that f and g are not identical, then there is an x € X
such that f(x) # g(z). By the Hausdorff property there thus exists disjoint open sets U, V' in
Y containing f(z) and g(x) respectively. By continuity there then exist open neighborhoods
W1, Wa of x such that f(W;) C U and g(W3) C V. Then f and g are always unequal on
W1 N Wa, so in particular Wy N Wy cannot intersect A. But this contradicts the fact that A
is dense, since W1 N W, is open and non-empty.

Extra challenge: give an example to show that the statement can fail if the assumption that
Y is Hausdorff is dropped. Extra extra challenge: show that the statement can fail if the
assumption that Y is Hausdorff is relaxed to Y merely being T3.

(b) Now suppose that X is normal, and A is a subset of X which is not dense. Show that
there exist continuous functions f : X — R and g : X — R which agree on A but do not
agree on all of X.

Since A is not dense, there exists an z € X such that z ¢ A. By Urysohn’s lemma, there
then exists a continuous function f : X — R such that f =1 on the closed set A and f =0
on the closed set {z}. Now take g =1 on all of X, and we are done.

Extra challenge: Give an example to show that this statement can fail if the assumption
that X is normal is dropped. Extra extra challenge: Show that the statement can fail if the
assumption that X is normal is relaxed to X merely being Hausdorff. (I don’t know what
happens if X is only assumed to be regular).




Problem 3. Let X be a Banach space, and let I*(Z) be the space of absolutely summable
sequences (Zn)nez, with the I' norm [|(2n)nezllit(z) == 2 ,cz [%nl- Let I3 (Z) be the subspace
of I1(Z) consisting of the compactly supported sequences (those sequences which are only non-
zero for finitely many n); we give [1(Z) the norm induced from [!(Z), of course. For each
integer n, let e, € I1(Z) be the element of [%(Z) whose n'" entry is 1 and whose other entries
are zero (thus (e;)m =1 if m =n and (e,)n = 0 otherwise).

Let T : I}(Z) — X be a linear transformation. Show that T is continuous if and only if the
set {T'(en) : n € Z} is a bounded subset of X.

If T is continuous, then it is bounded. Since {e, : n € Z} is a bounded subset of I%(Z) (since
llenll;(z) = 1, we thus have that {T'(e,) : n € Z} is a bounded subset of X.

Conversely, suppose that {T(e,) : n € Z} is a bounded subset of X, thus there exists an
M > 0 such that ||T(e,)||x < M for all n € Z. Now take any = (¥)nez in [1(Z). Then
observe that £ = ), Tne, (this sum has only finitely many non-zero terms and so there
are no questions of convergence. Then

ITallx =1 ) znTenllx <D |zallTenllx <MY |a| < Mllallizcx)
nez nez nez
which implies that T is bounded, hence continuous.
Extra challenge: if T' is continuous, show that ||T'|| = sup,,cz |[|T(en)| x-

Extra Extra challenge: Given any bounded sequence {v, : n € Z} of elements in X, show
that there exists precisely one continuous linear operator T : I'(Z) — X such that Te, = v,
for all n € Z, and that ||T'|| = sup,,cz ||vnl|x- (This challenge, unlike the previous ones, really
uses the fact that X is a Banach space).




