Mathematics 245A Terence Tao Final, March 23, 2004

Instructions: Do all seven problems; they are all of equal value. There is plenty of working space, and a blank page at the end.

You may enter in a nickname if you want your final score posted. Good luck!

Name:	
Nickame: _	_
Student ID:	
Signature: _	
Problem	1 (10 points).
	2 (10 points).
Problem	3 (10 points).
Problem	4 (10 points).
Problem	5 (10 points).
Problem	6 (10 points).
Problem	7 (10 points).

Total (70 points): _____

Problem 1. Let (X, d) be a non-empty metric space. We say that a point $x \in X$ is a *limit point* if it is the limit of some sequence x_1, x_2, \ldots in X such that $x_n \neq x$ for all n. We say that X is *perfect* if every point is a limit point.

Show that every metric space which is both complete and perfect, must be uncountable. (Hint: use the Baire category theorem).

(Note: the hypothesis that X was non-empty was mistakenly omitted from the print version of this exam).

Let $x \in X$. Since X is a metric space, the singleton set $\{x\}$ is closed. Since X is perfect, x is a limit point, and hence x is adherent to the complement $X \setminus \{x\}$ of $\{x\}$, and thus is not an interior point of $\{x\}$. Thus $\{x\}$ has no interior, and hence (being closed) is nowhere dense.

Since X is non-empty and complete, it cannot be the countable union of nowhere dense sets, by the Baire category theorem. Thus X cannot be a countable union of points, and thus must be uncountable.

An equivalent proof proceeds by observing that $X - \{x\}$ is open dense for every x, and hence every countable intersection of these sets is also dense.

Problem 2. Let X be a Banach space. Show that the weak and weak-* topologies on X^* co-incide if and only if X is reflexive.

The weak topology on X^* is generated by using the sets $\{\omega \in X^* : |\xi(\omega) - z| < r\}$ as subbasic open sets, where ξ ranges over X^{**} , z is a complex number, and r > 0. In contrast, the weak-* topology is generated by the sets $\{\omega \in X^* : |\omega(x) - z| < r\}$ where x ranges over X, z is a complex number, and r > 0. These sets can also be rewritten as $\{\omega \in X^* : |\hat{x}(\omega) - z| < r\}$. Thus if X is reflexive, then the sub-basic sets are identical and thus the topologies are also identical.

Now suppose that X is not reflexive, then there exists $\xi \in X^{**}$ such that $\xi \neq \hat{x}$ for any $x \in X$. Let B be the set $\{\omega \in X^* : |\xi(\omega)| < 1\}$. Then B is open in the weak topology. We claim that B is not open in the weak-* topology, and therefore that the two topologies are distinct. To prove this, suppose for contradiction that B was open in the weak-* topology. In particular, B must contain a basic neighborhood of 0, i.e. there exist x_1, \ldots, x_N and x_1, \ldots, x_N such that

$$\bigcap_{i=1}^{N} \{ \omega \in X^* : |\omega(x_n)| < r_n \} \subseteq \{ \omega \in X^* : |\xi(\omega)| < 1 \}.$$

In particular, we have

$$\bigcap_{i=1}^{N} \{ \omega \in X^* : \omega(x_n) = 0 \} \subseteq \{ \omega \in X^* : |\xi(\omega)| < 1 \}.$$

Multiplying this by ε , we obtain

$$\bigcap_{i=1}^{N} \{ \omega \in X^* : \omega(x_n) = 0 \} \subseteq \{ \omega \in X^* : |\xi(\omega)| < \varepsilon \}$$

for any $\varepsilon > 0$, and hence

$$\bigcap_{i=1}^{N} \{ \omega \in X^* : \omega(x_n) = 0 \} \subseteq \{ \omega \in X^* : \xi(\omega) = 0 \}.$$

If one lets $\Phi: X^* \to \mathbf{C}^N$ be the linear map $\Phi(\omega) := (\omega(x_1), \dots, \omega(x_N))$, then the above inclusion asserts that the kernel of Φ is contained in the kernel of ξ . This implies that $\xi = T \circ \Phi$ for some map $T: \mathbf{C}^N \to \mathbf{C}$. Since ξ and Φ are linear, then T is also. But this then means that ξ is a linear combination of the \hat{x}_n , and thus lies in the image of X, a contradiction.

Note: it is quite difficult to prove this assertion using convergent sequences (or more precisely, convergent nets, since weak topologies tend not to be first countable).

Problem 3. Let H be a Hilbert space, and let $(e_{\alpha})_{\alpha \in A}$ be an orthonormal basis for H (which may be finite, countable, or uncountable). Let x_1, x_2, x_3, \ldots be a sequence of vectors in H which are bounded (i.e. there exists an M > 0 such that $||x_n|| \leq M$ for all n). Let x be another vector in H.

Show that the sequence x_n is weakly convergent to x if and only if we have $\lim_{n\to\infty} \langle x_n, e_\alpha \rangle = \langle x, e_\alpha \rangle$ for all $\alpha \in A$.

"only if": If x_n is weakly convergent to x, then $\phi(x_n) \to \phi(x)$ for all $\phi \in H^*$. In particular, for any e_{α} , we have $\langle x_n, e_{\alpha} \rangle \to \langle x, e_{\alpha} \rangle$, since the map $x \mapsto \langle x, e_{\alpha} \rangle$ is a bounded linear functional on H (by the Cauchy-Schwarz inequality).

"if": Suppose $\langle x_n, e_\alpha \rangle \to \langle x, e_\alpha \rangle$ for all α . Let $\phi \in H^*$; our task is to show that $\phi(x_n) \to \phi(x)$. By the Riesz representation theorem for H, we can find a $y \in H$ such that $\phi(x) = \langle x, y \rangle$, so our task is now to show that $\langle x_n, y \rangle \to \langle x, y \rangle$.

If one immediately expands x_n and y in the basis e_α one will find significant difficulty interchanging the limit and summation. To avoid this, we first approximate y by a *finite* linear combination of the e_α . Pick any $\varepsilon > 0$. Since $\sum_{\alpha \in A} \langle y, e_\alpha \rangle e_\alpha$ converges unconditionally (but not absolutely!) to y, we can find a finite set $F \subset A$ such that

$$\|\sum_{\alpha \in A} \langle y, e_{\alpha} \rangle e_{\alpha} - y\| \le \varepsilon.$$

In particular, by Cauchy-Schwarz we have

$$|\langle x_n, \sum_{\alpha \in A} \langle y, e_\alpha \rangle e_\alpha \rangle - \langle x_n, y \rangle| \le \varepsilon ||x_n|| \le \varepsilon M$$

and similarly

$$|\langle x, \sum_{\alpha \in A} \langle y, e_{\alpha} \rangle e_{\alpha} \rangle - \langle x, y \rangle| \le \varepsilon ||x||$$

On the other hand, by interchanging the finite sum with the limit we know that

$$\langle x_n, \sum_{\alpha \in A} \langle y, e_\alpha \rangle e_\alpha \rangle \to \langle x, \sum_{\alpha \in A} \langle y, e_\alpha \rangle e_\alpha \rangle$$

and so for n sufficiently large (depending on ε)

$$|\langle x_n, \sum_{\alpha \in A} \langle y, e_\alpha \rangle e_\alpha \rangle - \langle x, \sum_{\alpha \in A} \langle y, e_\alpha \rangle e_\alpha \rangle| \le \varepsilon.$$

Putting all this together using the triangle inequality, we obtain

$$|\langle x_n, y \rangle - \langle x, y \rangle| \le \varepsilon (M + ||x|| + 1).$$

Since $\varepsilon > 0$ was arbitrary, the claim follows.

Problem 4. Let W be a vector space. Let A be a non-empty index set, and for each $\alpha \in A$, let V_{α} be a subspace of W which is equipped with a norm $\| \|_{V_{\alpha}}$. Suppose that for each α , the norm $\| \|_{V_{\alpha}}$ turns V_{α} into a Banach space. Also assume the following compatibility condition: if $\alpha, \beta \in A$ and a sequence $x_n \in V_{\alpha} \cap V_{\beta}$ converges to x in the V_{α} norm and to x' in the V_{β} norm, then x = x'. Define a new vector space U by

$$U := \{ x \in \bigcap_{\alpha \in A} V_{\alpha} : \sum_{\alpha \in A} ||x||_{V_{\alpha}} < \infty \}$$

and equip this space with the norm

$$||x||_U := \sum_{\alpha \in A} ||x||_{V_\alpha}.$$

Show that $|||_U$ is indeed a norm, and this norm turns U into a Banach space.

I apologize for not including the compatibility condition in the print version, without which the problem is false. Another equivalent form of the compatibility condition is the assertion that each pair $V_{\alpha} \cap V_{\beta}$ is a Banach space with the norm $||x||_{V_{\alpha}} + ||x||_{V_{\beta}}$. Yet another formulation is that there is a Frechet space topology on W which is weaker than each of the V_{α} topologies when restricted to V_{α} . (Frechet spaces have unique limits). Also, the requirement that A be non-empty was also omitted.

First we verify the norm property. The triangle inequality for U follows from the triangle inequalities for the individual V_{α} norms:

$$||x + y||_U = \sum_{\alpha \in A} ||x + y||_{V_\alpha} \le \sum_{\alpha \in A} ||x||_{V_\alpha} + ||y||_{V_\alpha} = ||x||_U + ||y||_U.$$

The homogeneity property is proven similarly:

$$\|\lambda x\|_U = \sum_{\alpha \in A} \|\lambda x\|_{V_\alpha} \le \sum_{\alpha \in A} |\lambda| \|x\|_{V_\alpha} = |\lambda| \|x\|_U.$$

Similarly we have non-degeneracy: if $||x||_U = 0$, then $\sum_{\alpha \in A} ||x||_{V_\alpha} = 0$, hence $||x||_{V_\alpha} = 0$ for at least one V_α , hence x = 0. This concludes the proof that $|||_U$ is a norm.

Now we show that U is a Banach space. It suffices to show that any series $\sum_{n=1}^{\infty} x_n$ which is absolutely convergent in U, thus $\sum_{n=1}^{\infty} \|x_n\|_U < \infty$, is also conditionally convergent in U. Since $\|x_n\|_{V_{\alpha}} \leq \|x_n\|_U$, we see that $\sum_{n=1}^{\infty} x_n$ is absolutely convergent in V_{α} , hence conditionally convergent in V_{α} to some limit. By the compatibility condition, this limit is not dependent on α , thus $\sum_{n=1}^{\infty} x_n = x$ in each of the V_{α} topologies. Now we need to show that $\sum_{n=1}^{\infty} x_n = x$ in the U topology. We have

$$\|x - \sum_{n=1}^{N} x_n\|_{V_{\alpha}} = \|\sum_{n=N+1}^{\infty} x_n\|_{V_{\alpha}} \le \sum_{n=N+1}^{\infty} \|x_n\|_{V_{\alpha}}$$

for all α and N; summing in α and using Fubini's theorem for sums we obtain

$$||x - \sum_{n=1}^{N} x_n||_U \le \sum_{n=N+1}^{\infty} ||x_n||_U.$$

Taking $N \to \infty$ and using the convergence of $\sum_{n=1}^{\infty} ||x_n||_U$, the claim follows.

Problem 5. Let H be a Hilbert space. Recall that if M is a closed subspace of H, then we can define a linear operator $P_M: H \to H$ by defining $P_M x$ to be the element of M such that $x - P_M x \in M^{\perp}$ (see Problem 58 of Chapter 5).

Suppose that we have a sequence M_1, M_2, \ldots of closed subspaces of H such that $M_n \subseteq M_{n+1}$ for all n. Let $M_{\infty} := \overline{\bigcup_{n=1}^{\infty} M_n}$, i.e. we let M_{∞} be the closure of the union of all the subspaces M_n . Show that P_{M_n} converges to $P_{M_{\infty}}$ in the strong operator topology (see page 169 of textbook).

Let $x \in H$; our task is to show that $P_{M_n}x$ converges to $P_{M_\infty}x$ as $n \to \infty$.

Proof A: Recall that $P_{M_{\infty}}x$ is the closest point in M_{∞} in x. In particular, it is closer to x than $P_{M_n}x$, which lies in M_n and hence in M_{∞} . In other words,

$$||x - P_{M_{\infty}}x|| \le ||x - P_{M_n}x||.$$

On the other hand, since $P_{M_{\infty}}x$ lies in the closure of $\bigcup_{n=1}^{\infty}M_n$, for every ε there exists an integer n and an $x_n \in M_n$ such that $||x_n - P_{M_{\infty}}x|| \le \varepsilon$. But since $P_{M_n}x$ is the closest point in M_n to x we have

$$||x - P_{M_n}x|| \le ||x - x_n|| \le ||x - P_{M_m}x|| + \varepsilon$$

by the triangle inequality. Putting these two facts together we see that

$$||x - P_{M_n}x|| \to ||x - P_{M_\infty}x|| \text{ as } n \to \infty.$$

Now observe that $P_{M_n}x - P_{M_\infty}x$ lies in M_∞ and is hence orthogonal to $x - P_{M_\infty}x$. By Pythagoras we thus have

$$||x - P_{M_n}x||^2 = ||x - P_{M_n}x||^2 + ||P_{M_n}x - P_{M_n}x||^2,$$

and combining this with the previous observation we see that

$$||P_{M_{\infty}}x - P_{M_n}x|| \to 0 \text{ as } n \to \infty$$

as desired.

Proof B: (Uses Axiom of Choice) We endow M_1 with an orthonormal basis $(e_{\alpha})_{\alpha \in A_1}$. Since $M_1 \subset M_2$, we can extend this to an orthonormal basis $(e_{\alpha})_{\alpha \in A_2}$ of M_2 for some $A_2 \supset A_1$. We can continue in this manner, choosing a basis $(e_{\alpha})_{\alpha \in A_n}$ of M_n for each n.

Now let $A=\bigcup_{n=1}^{\infty}A_n$. The vectors $(e_{\alpha})_{\alpha\in A}$ are still orthonormal, and all lie in $\bigcup_{n=1}^{\infty}M_n$, and hence in M_{∞} . If they do not form a basis for M_{∞} , then there would be a non-zero vector $v\in M_{\infty}$ which is orthogonal to all of the e_{α} . But this implies that v is orthogonal to each of the M_n , and hence to $\bigcup_{n=1}^{\infty}M_n$, and hence to M_{∞} , which implies that v is orthogonal to itself, which is absurd. Thus $(e_{\alpha})_{\alpha\in A}$ is an orthonormal basis for M_{∞} , and in particular the series $\sum_{x\in A}\langle x,e_{\alpha}\rangle e_{\alpha}$ is unconditionally convergent to $P_{M_{\infty}}x$. In particular $\sum_{x\in A_n}\langle x,e_{\alpha}\rangle e_{\alpha}=P_{M_n}x$ converges to $P_{M_{\infty}}x$, as desired.

Problem 6. Let (X, \mathcal{M}, μ) be a sigma-finite measure space, and let $1 . Let <math>f: X \to \mathbf{C}$ be a measurable function. Show that f lives in weak L^p (i.e. $[f]_p < \infty$) if and only if there exists an M > 0 such that for every measurable set E of finite measure, the integral $\int_E |f| d\mu$ is absolutely convergent and obeys the estimate

$$\int_E |f| \ d\mu \le M\mu(E)^{1/p'}.$$

(Hint: You may wish to estimate the distribution function $\lambda_{f|_E}$ of the restriction $f|_E$ of f to E in terms of the distribution function λ_f of f itself.)

Again, I apologize, as the hypothesis that X was sigma finite was omitted from the print version of this question.

"if": Let $\alpha > 0$ be arbitrary, and let E be an arbitrary finite measure subset of $\{x \in X : |f(x)| > \alpha\}$. By hypothesis we have

$$\int_E |f| \ d\mu \le M \mu(E)^{1/p'}$$

but on the other hand we have

$$\int_{E} |f| \ d\mu \ge \int_{E} \alpha \ d\mu = \alpha \mu(E).$$

Combining the two we obtain

$$\mu(E) < M^p/\alpha^p$$

for all finite measure subsets of $\{x \in X : |f(x)| > \alpha\}$. Using the sigma finite hypothesis, we obtain

$$\mu(\{x \in X : |f(x)| > \alpha\}) \le M^p/\alpha^p$$

which shows that f is in weak L^p .

"only if": Let E be a set of finite measure. Observe that

$$\lambda_{f|_E}(\alpha) := \mu\{x \in E : |f(x)| > \alpha\} \le \mu\{x \in X : |f(x)| > \alpha\} \le [f]_p^p/\alpha^p$$

and also

$$\lambda_{f|_{E}}(\alpha) := \mu\{x \in E : |f(x)| > \alpha\} \le \mu(E).$$

Thus

$$\int_E |f| \ d\mu = \int_0^\infty \lambda_{f|_E}(\alpha) \ d\alpha \leq \int_0^\infty \min([f]_p^p/\alpha^p, \mu(E)) \ d\alpha.$$

The latter integral is finite (for $0 < \alpha < 1$ use the $\mu(E)$ bound; for $\alpha > 1$ use the $[f]_p^p/\alpha^p$ bound) and the claim follows.

Problem 7. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be measure spaces, and let $1 < p, q < \infty$. Let $T: L^p(X) \to L^q(Y)$ be a continuous linear operator which has the form

$$Tf(y) = \int_X K(x,y)f(x) \ d\mu(x)$$
 for all simple functions $f \in L^p(X)$

for some complex-valued, absolutely integrable function K on $X \times Y$. (The restriction to simple functions is to ensure that the above integral is actually convergent for almost every y, thanks to Fubini's theorem). Let $T^{\dagger}: L^{q'}(Y) \to L^{p'}(X)$ be the adjoint of T as defined in Exercise 22 of Section 5.2, and where we have identified the dual of $L^p(X)$ with $L^{p'}(X)$, and the dual of $L^q(Y)$ with $L^{q'}(Y)$ in the usual manner (cf. Theorem 6.15). Show that

$$T^{\dagger}g(x) = \int_{Y} \overline{K(x,y)}g(y) \ d\nu(y) \text{ for all simple functions } g \in L^{q'}(Y).$$

Let g be a simple function, and hence in $L^{q'}(Y)$. If we think of $T^{\dagger}(g)$ as an element of the dual of $L^p(X)$, then it acts on functions $f \in L^p(X)$ by the formula

$$T^{\dagger}(g)(f) = g \circ Tf = \int_{V} Tf(y)\overline{g(y)} \ dy$$

where we are identifying $g \in L^{q'}(Y)$ with a linear functional on $L^q(Y)$ in the usual manner. In particular, for simple functions f we have

$$T^{\dagger}(g)(f) = \int_{Y} \int_{X} K(x,y) f(x) \ d\mu(x) \overline{g(y)} \ d\nu(y).$$

By Fubini's theorem we then have

$$T^{\dagger}(g)(f) = \int_{X} f(x) \overline{\int_{Y} \overline{K(x,y)} g(y) \ d\nu(y)} d\mu(x).$$

Thus if we write $h(x)=\int_Y \overline{K(x,y)}g(y)\ d\nu(y),$ we see that

$$T^{\dagger}(g)(f) = \int_X f(x) \overline{h(x)} \ d\mu(x) \text{ for all simple } f.$$

By hypothesis, $T^{\dagger}(g)$ is a bounded linear functional on $L^{p}(X)$, hence $h \in L^{p'}(X)$. Now take limits using the fact that the simple functions are dense in L^{p} , to conclude that

$$T^{\dagger}(g)(f) = \int_{X} f(x)\overline{h(x)} \ d\mu(x) \text{ for all } f \in L^{p}(X).$$

Thus $T^{\dagger}(g)$ can be identified with h, and the claim follows.