Mathematics 245A
Terence Tao
Final, March 23, 2004

Instructions: Do all seven problems; they are all of equal value. There is plenty of working
space, and a blank page at the end.

You may enter in a nickname if you want your final score posted. Good luck!
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Problem 1. Let (X,d) be a non-empty metric space. We say that a point z € X is a limit
point if it is the limit of some sequence z1,zs,... in X such that z, # x for all n. We say
that X is perfect if every point is a limit point.

Show that every metric space which is both complete and perfect, must be uncountable.
(Hint: use the Baire category theorem).

(Note: the hypothesis that X was non-empty was mistakenly omitted from the print version
of this exam).

Let z € X. Since X is a metric space, the singleton set {z} is closed. Since X is perfect, z is
a limit point, and hence z is adherent to the complement X\{z} of {z}, and thus is not an
interior point of {z}. Thus {z} has no interior, and hence (being closed) is nowhere dense.

Since X is non-empty and complete, it cannot be the countable union of nowhere dense sets,
by the Baire category theorem. Thus X cannot be a countable union of points, and thus
must be uncountable.

An equivalent proof proceeds by observing that X — {z} is open dense for every z, and hence
every countable intersection of these sets is also dense.




Problem 2. Let X be a Banach space. Show that the weak and weak-* topologies on X*
co-incide if and only if X is reflexive.

The weak topology on X* is generated by using the sets {w € X* : [{(w) — 2| < 7} as sub-
basic open sets, where £ ranges over X **, z is a complex number, and r > 0. In contrast, the
weak-* topology is generated by the sets {w € X* : |w(z)—z| < r} where x ranges over X, z is
a complex number, and r > 0. These sets can also be rewritten as {w € X* : |#(w) — 2| < r}.
Thus if X is reflexive, then the sub-basic sets are identical and thus the topologies are also
identical.

Now suppose that X is not reflexive, then there exists £ € X** such that £ # & for any x € X.
Let B be the set {w € X* : |{(w)| < 1}. Then B is open in the weak topology. We claim that
B is not open in the weak-* topology, and therefore that the two topologies are distinct. To
prove this, suppose for contradiction that B was open in the weak-* topology. In particular,

B must contain a basic neighborhood of 0, i.e. there exist z1,...,zxy and r1,...,ry such
that

N

ﬂ{w € X*: |w(zy)| <t} C{we X™:|Ew)| <1}

i=1

In particular, we have

N
{w e X*:w(zn) =0} C {w e X*: [{(w)]| < 1}.

i=1

Multiplying this by ¢, we obtain
N
({w e X" :w(zy) =0} C {w e X*: [{(w)] <&}
i=1
for any £ > 0, and hence
N
ﬂ{w €X":w(zy) =0} C{we X" :&w) =0}
i=1

If one lets ® : X* — C be the linear map ®(w) := (w(x1),...,w(zx)), then the above
inclusion asserts that the kernel of ® is contained in the kernel of £&. This implies that
&€ =T o® for some map T : CN — C. Since ¢ and ® are linear, then T is also. But this
then means that £ is a linear combination of the Z,, and thus lies in the image of X, a
contradiction.

Note: it is quite difficult to prove this assertion using convergent sequences (or more precisely,
convergent nets, since weak topologies tend not to be first countable).




Problem 3. Let H be a Hilbert space, and let (eq)aca be an orthonormal basis for H
(which may be finite, countable, or uncountable). Let x1, 2,3, ... be a sequence of vectors
in H which are bounded (i.e. there exists an M > 0 such that ||z,|| < M for all n). Let x be
another vector in H.

Show that the sequence z,, is weakly convergent to z if and only if we have lim,,_, oo (%, €q) =
(z,e,) for all a € A.

“only if”: If x,, is weakly convergent to x, then ¢(z,) — ¢(z) for all ¢ € H*. In particular, for
any e, we have (z,,e,) = (z,e,), since the map = — (z,e,) is a bounded linear functional
on H (by the Cauchy-Schwarz inequality).

“if”: Suppose (Tn,eq) — {(,e4) for all a. Let ¢ € H*; our task is to show that ¢(z,) = ¢(z).
By the Riesz representation theorem for H, we can find a y € H such that ¢(z) = (z,y), so
our task is now to show that (z,,y) — (z,y).

If one immediately expands z, and y in the basis e, one will find significant difficulty inter-
changing the limit and summation. To avoid this, we first approximate y by a finite linear
combination of the e,. Pick any € > 0. Since ) . 4 (¥, €q)ea converges unconditionally (but
not absolutely!) to y, we can find a finite set F' C A such that

” Z(yaea)ea - y” S €.
a€A
In particular, by Cauchy-Schwarz we have
(@ns 3 (s eadea) = (2n,9)] < llanll <M
a€cA

and similarly

(2, Y {y,eadea) = (2,9)] < ella]

a€cA
On the other hand, by interchanging the finite sum with the limit we know that

<33'n; Z(yaea)ea> - <$= Z<y76a>ea>

a€A aEA

and so for n sufficiently large (depending on ¢)

|<xna Z(yaea>ea) - (.’IJ, Z(y;ea>ea>| <e.

aEA a€A

Putting all this together using the triangle inequality, we obtain
(@n,y) — (@, y)| < e(M + [lz]| + 1).

Since € > 0 was arbitrary, the claim follows.




Problem 4. Let W be a vector space. Let A be a non-empty index set, and for each a € A,
let V, be a subspace of W which is equipped with a norm ||||y,. Suppose that for each «, the
norm ||||y, turns V, into a Banach space. Also assume the following compatibility condition:
if o, € A and a sequence z,, € V,, N Vg converges to z in the V, norm and to z' in the V3
norm, then z = z'. Define a new vector space U by

Uw={ze (| Va: lzlv, <oo}
aEA acA
and equip this space with the norm
Iello = llllv.-

a€cA

Show that ||||r is indeed a norm, and this norm turns U into a Banach space.

I apologize for not including the compatibility condition in the print version, without which
the problem is false. Another equivalent form of the compatibility condition is the assertion
that each pair V,,NVj is a Banach space with the norm ||z||y, +||z||v,. Yet another formulation
is that there is a Frechet space topology on W which is weaker than each of the V, topologies
when restricted to V,,. (Frechet spaces have unique limits). Also, the requirement that A be
non-empty was also omitted.

First we verify the norm property. The triangle inequality for U follows from the triangle
inequalities for the individual V, norms:

e +yllo =Y llz+ylv. <Y lzllv. + llyllve = llello + llyllo-
a€cA a€cA

The homogeneity property is proven similarly:

Nello =" IAallv. < D Allzllv. = Allz]lo-

a€A a€cA

Similarly we have non-degeneracy: if ||| = 0, then ) 4 [[z]|v, = 0, hence |||y, = 0 for
at least one V,, hence z = 0. This concludes the proof that ||| is a norm.

Now we show that U is a Banach space. It suffices to show that any series Zle T, which
is absolutely convergent in U, thus > ° [lz,|lv < oo, is also conditionally convergent in
U. Since ||z,|lv, < ||znllu, we see that Y7, x, is absolutely convergent in V,, hence
conditionally convergent in V,, to some limit. By the compatibility condition, this limit is
not dependent on «, thus Y., z, = z in each of the V, topologies. Now we need to show
that Y >° | z,, = z in the U topology. We have

N oo 0
o=zl =1 3 zalhe < S lzallv.
n=1 n=N-+1 n=N-+1



for all @ and N; summing in a and using Fubini’s theorem for sums we obtain

N oo
le=> zallv < D llznllu-
n=1 n=N+1

Taking N — oo and using the convergence of Y ° , ||z ||u, the claim follows.




Problem 5. Let H be a Hilbert space. Recall that if M is a closed subspace of H, then we
can define a linear operator Py : H — H by defining Ppsx to be the element of M such that
x — Pyrz € M (see Problem 58 of Chapter 5).

Suppose that we have a sequence My, Ma, ... of closed subspaces of H such that M,, C M1
for all n. Let M, := UZ‘;l M,, i.e. we let M, be the closure of the union of all the
subspaces M,,. Show that Py, converges to Py in the strong operator topology (see page
169 of textbook).

Let x € H; our task is to show that Py, x converges to Py z as n — oo.

Proof A: Recall that Py x is the closest point in My, in z. In particular, it is closer to z
than Py, x, which lies in M,, and hence in M. In other words,

|z — Par || < ||z — Pa, |-

On the other hand, since Py« lies in the closure of |J,~ ; My, for every e there exists an
integer n and an xz,, € M,, such that ||z, — Py z|| < e. But since Py, z is the closest point
in M, to x we have

|z = Pu, 2|l < |lz = znl| < |lz — Puzll +e
by the triangle inequality. Putting these two facts together we see that
||z — P, z|| = ||z — Pu,z|| as n — oo.

Now observe that Py, x — Py x lies in M, and is hence orthogonal to z — Py _xz. By
Pythagoras we thus have

llz = Par,zl” = llz — Pyl + | Pz — Pa, 2l
and combining this with the previous observation we see that
[|Pr,x — Py, zl| = 0 asn — oo
as desired.

Proof B: (Uses Axiom of Choice) We endow M; with an orthonormal basis (€4 )qca,- Since
M; C M, we can extend this to an orthonormal basis (e4)aca, of M2 for some A D Aj.
We can continue in this manner, choosing a basis (eq)aca, of M, for each n.

Now let A = |J;~, An. The vectors (eq)qca are still orthonormal, and all lie in |J;> ;, M,
and hence in M. If they do not form a basis for M,, then there would be a non-zero
vector v € M, which is orthogonal to all of the e,. But this implies that v is orthogonal
to each of the M,, and hence to Uzozl M, and hence to M, which implies that v is
orthogonal to itself, which is absurd. Thus (e4)aca is an orthonormal basis for My, and
in particular the series ) __ ,{(z,eq)eq is unconditionally convergent to Pyr,, x. In particular
Y eca, (T, €a)ea = Py, x converges to Py, z, as desired.




Problem 6. Let (X, M,pu) be a sigma-finite measure space, and let 1 < p < oo. Let
f X — C be a measurable function. Show that f lives in weak LP (i.e. [f], < o0) if and
only if there exists an M > 0 such that for every measurable set E of finite measure, the
integral [, |f| dp is absolutely convergent and obeys the estimate

/Elfl dp < Mu(E)/7.

(Hint: You may wish to estimate the distribution function Ag|, of the restriction f|g of f to
E in terms of the distribution function As of f itself.)

Again, T apologize, as the hypothesis that X was sigma finite was omitted from the print
version of this question.

“if”: Let a > 0 be arbitrary, and let E be an arbitrary finite measure subset of {z € X :
|f(z)| > a}. By hypothesis we have

/ |f] du < Mu(E)V?
E
but on the other hand we have
/ |f[ dp > / a dp = ap(E).
E E
Combining the two we obtain

u(E) < MP/a?

for all finite measure subsets of {x € X : |f(z)| > a}. Using the sigma finite hypothesis, we
obtain
pn({r € X : [f(z)] > a}) < MP[a?

which shows that f is in weak L?.

“only if”: Let E be a set of finite measure. Observe that

Aip(e) = o € B |f()] > o} < pfa € X : [£(@)] > a} < [f5/o”
and also
Mip(e) = ple € B |f(z)] > a} < p(E).
Thus -
[ isldn= [ apu@ da< [ minsp/or, u(E)) do.

The latter integral is finite (for 0 < a < 1 use the u(E) bound; for @ > 1 use the [f]P/aP
bound) and the claim follows




Problem 7. Let (X, M,u) and (Y, N,v) be measure spaces, and let 1 < p,q < oo. Let
T:LP(X)— LY) be a continuous linear operator which has the form

/ K(z,y)f(z) du(z) for all simple functions f € LP(X)

for some complex-valued, absolutely integrable function K on X x Y. (The restriction to
simple functions is to ensure that the above integral is actually convergent for almost every
y, thanks to Fubini’s theorem). Let T : LY (Y) — L? (X) be the adjoint of T as defined in
Exercise 22 of Section 5.2, and where we have identified the dual of LP(X) with L? (X), and
the dual of L4(Y') with L4 (Y) in the usual manner (cf. Theorem 6.15). Show that

= / K (z,y)g(y) dv(y) for all simple functions g € LY (Y).
Y

Let g be a simple function, and hence in L% (V). If we think of T'(g) as an element of the
dual of LP(X), then it acts on functions f € L?(X) by the formula

TH(g)(f) = goTf = /Y Tf()s@) dy

where we are identifying g € L7 (Y) with a linear functional on L?(Y) in the usual manner.
In particular, for simple functions f we have

//sz ) du(=)g(y) du(y).

By Fubini’s theorem we then have

THg)(f) = /X f(@) /Y R, 9)g(y) dv(y)du(z).
Thus if we write h(z) = [, K(z,y)g(y) dv(y), we see that
/ f(x)h(z) du(z) for all simple f.

By hypothesis, T1(g) is a bounded linear functional on L?(X), hence h € L? (X). Now take
limits using the fact that the simple functions are dense in L”, to conclude that

/ fz (z) for all f € LP(X).

Thus T't(g) can be identified with h, and the claim follows.




