Mathematics 245A
Terence Tao
Final, Dec 17, 2004

Instructions: Try to do seven out of nine problems; they are all of equal value. There is
plenty of working space, and a blank page at the end. Throughout this final, all measures
are real (but could be signed or unsigned). You may use the axiom of choice freely.

You may enter in a nickname if you want your final score posted.

Good luck!
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Problem 1. Let X be a set, let A be a o-algebra on X, and let y and v be two measures
on A. Suppose that u is o-finite and unsigned, and that v is o-finite and signed. Show that
the following three statements are logically equivalent:

e (¢) vy < pand |g—;(m)| <1 for p-almost every z € X.

There are six implications to prove here, but of course one can demonstrate as few as three
of them to yield the result, and it would be smart to pick those three which are easiest to
prove. Here we give all six implications.

(a) = (b): Let X = X_ U Xy be a Jordan decomposition of X. If E is measurable in X,
then

V[(E) =v|[(ENX)+v|(EnNXy) =v(ENX_ )+vy (ENXy) = —v(ENX_)+v(ENXy)

since v_ is supported on X_ and v, is supported on X;. But since v < p and —v < pu, we
have
—v(BNX_)+v(BENXy) < p(BENX_) +p(ENXy) < p(E)

and hence |v| < p. Note that the above arguments are still valid even if one of vy or v_ is
infinite (recall that they cannot both be infinite).
(b) = (a): If E is measurable in X, then
v(E) = v (E) —v(E) <vi(E) + v (B) = [v|(E) < p(E)

and

V(B) = v4(E) — v_(E) > —v4.(B) - v_(E) = —|v|(E) > —u(E)
and hence —p <v < p.
(b)) = (¢): If E is measurable in X and p(E) = 0, then |v(E)| must also be zero, which
implies that v, (E) = v_(E) = 0, and hence v(E) = 0. Thus v <« p, and dv = g—l‘:du.
This implies dlv| = g—mdu. Pick any € > 0, let A be any set of finite y-measure, and
let B. := {z € A: || > 1+¢}. Then [v|(E.) > (1 +¢)u(E:), but p(E;) is finite and
[v(E:)| < p(E:), thus u(E.) = 0. Taking unions over countably many A (exploiting the
o-finite hypothesis) and over countably many ¢ going to zero, we see that the set where
|§—I‘;| > 1 has p-measure zero as desired.

(¢) = (b): Since dJv| = |g—l’:|du and |fii—;’:| <1 p-a.e., we see that for any measurable E

IW|(E) = [E |j—;|du < /Eldu — u(E).



(a) = (¢): If E is measurable in X and pu(E) = 0, then —p(E) < v(E) < pu(E) and hence
v(E) = 0. Thus v € p, and dv = g—;d,u. Arguing as in (b)) = (¢), we can then use the

hypothesis v < p to conclude that g—z < 1 p-a.e., and using the hypothesis v > —u we
conclude that g—; > —1 p-a.e. Combining these two, the claim follows.

(¢) = (a): For any measurable E,

v(E) = /E j—:du < /E Ly = u(E)
and i
uE) = [ Sdn> /E (=) = —p(E).




Problem 2. Let (X, A,u) be a measure space, and let f, € L'(X) be a sequence of
absolutely integrable functions which converges in measure to another absolutely integrable
function f € L'(X). Let g(z) := sup, |fn()].

(a) Show that if g is absolutely integrable, then f,, converges to f in L.

Let fn, be an arbitrary subsequence of f,. Then f,; also converges in measure to f, and
thus there exists a subsequence f,; which converges pointwise a.e. to f. By the dominated
convergence theorem, this implies that f,; converges in L' to f. Thus every subsequence of
fn itself contains a subsequence which converges to f in L', which forces the entire sequence
to converge to L'. (If f, did not converge to f in L', there would be an ¢ such that
[|fn — fllzr > € for infinitely many n, which would then produce a subsequence of f, for
which no convergent subsequence converged to f.)

One can also argue more directly without recourse to the dominated convergence theorem,
but it requires some effort. One can reduce to the case of finite measures, because one can
approximate g in L' by a function supported on a set of finite measure; for similar reasons
one can reduce to the case when g is bounded. Then one can control the L' norm of f,, — f
without too much trouble from the convergence in measure hypothesis.

(b) Give an example to show that if g is not absolutely integrable, then f, need not converge
to fin L'.

There are many examples which would work here; for instance take X = R with Lebesgue
measure, and take f, = nlj 1/, and f = 0. Another somewhat different example is f, =
%1[0,n] and f = 0. Note that one does not actually need to demonstrate that g is not
absolutely integrable for these examples (though it is not hard to do), since this follows from
the contrapositive of (a).




Problem 3. Let (X, A, u) be a finite measure space, and let f,, be a sequence of non-negative
measurable functions which converge in the L! sense to zero.

(a) Show that /f, converges in the L' sense to zero. (Hint: for each n, split X into the
region where f,, > ¢ and where f,, < ¢).

Pick any £ > 0, and we bound

/|an|dNS/ and,u+/ V [n dp.
X fn2>e fn<e
If f, > e, then /f, < fn/\/e. On the other hand, if f, < ¢, then \/f, < /2. Thus

/X"/f_"' duS/fn/\/Edu+/\/Edu.

Since [ f,, converges to zero, we thus have
limsup/ |V fal dp < /\/5 dp = Veu(X).
n—o0 X
But ¢ > 0 is arbitrary and p(X) is finite, and so we must have
limsup/ [V fnl dp =0
n—oQ X

and the claim follows.

A slicker way to do it: use the arithmetic mean-geometric mean inequality to conclude that
Vfn < %(e + fn/€), and one no longer needs to subdivide X. Even slicker: use the Cauchy-

Schwarz inequality to conclude [y v/Fr du < ([ fadp)'/?([y 1du)'/2.

(b) Give an example to show that the functions f2 need not converge in the L! sense to zero.

Many examples here: one is to take X = R with Lebesgue measure and f,, = n'/?1j;/,. In
fact one can find examples for which f2 is not even absolutely integrable.




Problem 4. Let B be the Borel o-algebra on the real line R, and let u be a finite non-
negative Borel measure on B. Let v be counting measure on R. Show that it is impossible
for v to be absolutely continuous with respect to u, i.e. show that v £ pu.

Suppose for contradiction that » <« p. Then all points {z} on the real line have non-zero v-
measure, and hence must also have non-zero py-measure. On the other hand, since p is finite,
we know that for each € > 0 there are at most finitely many points = for which u({z}) > ¢;
taking countable unions we conclude that p({z}) can be non-zero for at most countably many
points. Since the reals are uncountable, we obtain a contradiction.

Alternatively, one can use a divide-and-conquer algorithm to locate a point with zero p mea-
sure. Start with an interval I, say the unit interval [0, 1), and divide it into two subintervals.
One of them will have at most half of the y-measure of the whole. Pass to that interval,
divide that into two subintervals, and then again locate the subinterval which has at most
half of the p measure of the previous interval (and thus at most one quarter of the whole).
Repeating this process and using continuity from above we will locate a point in the real line
with p-measure zero but v-measure one, thus contradicting absolute continuity.




Problem 5. Let X be a space, and let X = A; U...U A, be a finite partition of X into n
disjoint non-empty sets. Let B be the o-algebra generated by A;,..., A, (i.e. the space of
sets which are unions of some, none, or all of the A;). Let p be a finite unsigned measure
on B such that 0 < p(A4;) < oo for all 1 < ¢ < n, and let v be a finite signed measure on
B. Show that v is absolutely continuous with respect to u, and that g—;(x) = Zgig for all
1<i<nandall z € A,

If E is measurable, then E = |J;.; A; for some I C {1,...,n}, and hence u(E) = 3, u(As).
Thus p(E) = 0 can only occur if E is empty, which means that v is automatically absolutely
continuous with respect to u. Now observe that

WE) = Y vl = ¥ 2t = [ 1 du

iel iel K

where f(z) := :gi; forall 1 <i<n and x € A;. Since E was an arbitrary measurable set,
and since f is y-measurable, we see from uniqueness of the Radon-Nikodym derivative that
g—” = f p-a.e. But the only sets of y-measure zero are the empty set, thus d—Z = f and the

d
cﬁxim follows.




Problem 6. Let F : R — R be an increasing, right-continuous function, and let & : R -+ R
be a continuous increasing invertible function. Let pp and proe be the Lebesgue-Stieltjes
measures associated to F' and F o ® respectively. Show that if f € L'(dur), then fo ® €

Ll(d:u’FO@)J and
/f dur :/fo<1> djiros.

It suffices to prove the claim for non-negative f, since the claim for general f then follows by
taking positive and negative parts. It then suffices to prove the inequality

/fO‘I’dIJFmbS/deF

since by replacing ® with ® ! we get the opposite inequality. Note that such an inequality will
also yield for free that f o ® € L'(duros) whenever f € L'(dur). By monotone convergence
(writing f as the monotone limit of simple functions) it suffices to verify this when f is a
simple function; by linearity it suffices to verify this when f = 1g is an indicator function.
Thus are reduced to checking that

/lE o ® duros < /1E dpr = pr(E).
The right-hand side is the outer measure of E with respect to the premeasure of ur on

half-open intervals. Thus if we cover E by countably many half-open intervals Iy, I, ..., it
suffices to show that

/1E o ® duroe < ZNF(In)

n=1

for any such covering. But by monotone convergence we have

oo (o ]
/lqu) dpr.e < /len o® duroe = Z/lln o® duros
n=1 n=1

so it suffices to show that for each interval I = [a,b), we have

[ 100 ® dsven < pie(la,b) = FO) - Fla.

But this follows since 1[4,4) © ® = 1jg-1(4),@-1(b))-




Problem 7. Let (X, A, u) be a measure space such that {z} € A for all z € X (i.e. all
points are measurable), and such that p is a non-negative finite measure. Show that there
is a unique decomposition p = ppp, + pc, where ppp, is a non-negative finite measure on A
supported on a countable set (known as the “pure point” component of u) and p. is a non-
negative finite measure A such that p.({z}) = 0 for all z € X (known as the “continuous”
component of ). (Hint: Do not try to apply the Lebesgue-Radon-Nikodym theorem. A good
place to start instead is to show that there are at most countably many points z € X for
which p({z}) is positive).

For any € > 0, observe that the set of points z for which u({z}) > ¢ is at most finite, since p
itself is finite. Taking countable unions, we then conclude that the set E := {z : u({z}) > 0}
is at most countable. Let up, := p|g be the restriction of p to E, and let p, := p|ge be
the restriction to the complement. Then pu,, and u. are then also non-negative and finite,
and pp, is supported on E and is thus supported on a countable set (one can enlarge E if
necessary). Also if z is any point we have p.({z}) = 0 if z € E (since . is restricted to
E°), and p.({z}) = p({z}) = 0if z € E°, by definition of E. This gives the existence of the
decomposition p = py, + pc.

Now suppose that there was an alternate decomposition p = i, + p. Then we have p;,, —
Upp = pe — p, (note that all measures are finite). The left-hand side is supported on a
countable set, but the right-hand side assigns a measure of zero to all points. Taking countable
unions, we conclude that both sides are zero, and thus p,, = pi,p and p, = p.. This proves
uniqueness.




Problem 8. Let £ be the space of half-open rectangles [a, b) x [c,d) in the plane R? (where
a < b and ¢ < d are real numbers). Let p : &€ - R be the function p([a,b) x [¢,d)) :=
(b—a) x (d—c¢), and let pu* be the outer measure associated to p. Show that if E is a
Lebesgue measurable subset of R?, then p*(E) = m(E), where m is the two-dimensional
Lebesgue measure of F.

Let us first establish that u*(E) > m(FE). Suppose we cover E by countably many half-open
rectangles Ry, Ry, .... Then

m(E) <3 m(Ra) = 3 p(Rn)

since for each half-open rectangle it is clear that m and p co-incide. Taking infima over all
coverings we conclude that m(E) < p*(E).

It remains to show that p*(E) < m(FE). It suffices to do this when E is bounded, since an
unbounded measurable set can be written as the countable union of bounded measurable sets
and one can use countable additivity of m and countable subadditivity of p*.

Since m(E) = m*(E), it suffices to show that for any generalized rectangles A,, x B,, which
cover E (where A,, B, are merely measurable subsets of R), we have

u(E) < Zm(An x Bp).

Since E is bounded, we may take A,, and B,, to be bounded also. By subadditivity we have
pH(E) <3 w*(A, x By), so it suffices to show that

" (A x B) < m(A x B) = my(A)ym (B)

whenever A, B are bounded measurable subsets of R and m; denotes one-dimensional Lebesgue
measure. But if we pick any &, we can cover A by half-open intervals Ij,... such that
Yooy mi(L;) < mi(A) + & = mi(A) + ¢, and similarly we can find Ji,... covering B such
that -2, mi(J;) < mj(B)+¢e =mi(B) +¢. This implies that the rectangles I; x J; cover
A x B, thus

p*(AxB) < szl(li)ml(*]j) = (Z ml(Ii))(Z m1(J;)) < (mi(A4) +¢€)(m1(B) +e).
i=1 j=1 =1 j=1

Since € > 0 was arbitrary, and m1(A) and mq(B) are finite, the claim follows.
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Problem 9. Let & : R” — R” be a diffetomorphism (i.e. a continuously differentiable
function whose inverse is also continuously differentiable), which is also a contraction in
the sense that |®(z) — ®(y)| < |z — y| for all z,y € R™ (where |z — y| is the Euclidean
distance between z and y). Show that m(®(E)) < m(E) for any Lebesgue measurable set E,
where m denotes Lebesgue measure. (You may assume without proof that ®(E) is Lebesgue
measurable). Hint: it may help to first establish the case when F is a ball.

Using the change of variables theorem, we have

m(®(E)) = / Loz dm = / 15| det(D®)|dm
while
m(E) = / Lwdm.

Thus it will suffice to show that |det(D®)(z)| < 1 for all z. (Actually almost all z would
suffice, but we can do all z here). There are two ways to do this:

Proof A. Suppose for contradiction that | det(D®)(z)| > 1 for some z; since ® is continuously
differentiable this implies that in fact | det(D®)(z)| > 1 + ¢ for some ball B(z,r) and some
€ > 0. Using the change of variables theorem again, this implies that

m(®(B(z,r))) > (1+e)m(B(x,r)).

But since @ is a contraction, observe that if y € B(xz,r) then ®(y) is necessarily in B(®(z),r).
Thus ®(B(z,r)) C B(®(z),r), and hence

m(®(B(z,r))) < m(B(®(z),r)) = m(B(z,r)),
a contradiction.

Proof B. Let z € R™. Observe that det(D®) is the volume of the parallelopiped with edge
vectors gTq;(x) for j = 1,...,n. Thus it will suffice to show that each of these vectors has
length at most 1. But this follows by using the definition

0® . ®(z+ hej) — B(x)
im
8.%']' h—0 h

and using the contraction property.
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