Week 1.

- (1) Prove that the isotopy class of the positive trefoil $T_{2,3}$ is unchanged under orientation reversal.
- (2) Let $K: S^1 \to \mathbb{R}^3$ be a smooth knot. Prove that there exists a continuous map $H: [0,1] \times S^1 \to \mathbb{R}^3$ such that $K_t := H|_{t \times S^1}$ is a smooth knot for all t, and $K_0 = K$ and K_1 is the unknot. (You need to prove continuity of the map that you construct.)
- (3) Prove that the Seifert form is well-defined, that is, independent of the choice of curves representing the homology elements.
- (4) Prove that $\sigma(K)$, det(K), Det(K), and $\Delta_K(t)$ are independent of the choice of Seifert surface for K.
- (5) Draw two non-isotopic diagrams of the positive trefoil $T_{2,3}$. (Non-isotopic diagrams means they are not related by an isotopy of \mathbb{R}^2 .)
- (6) Prove that two Seifert surfaces obtained by applying Seifert's algorithm to above two diagrams are isotopic (in ℝ³).
- (7) Compute the Seifert matrix of $T_{2,3}$ using the above Siefert surface. Compute $\sigma(T_{2,3})$, det $(T_{2,3})$, Det $(T_{2,3})$, and $\Delta_{T_{2,3}}(t)$.
- (8) We proved in class that for a knot K, $\Delta_K(1) = 1$. What is $\Delta_L(1)$ for a link L?
- (9) Complete the proof from class of the skein relation

$$\Delta_{L_{+}}(t) - \Delta_{L_{-}}(t) = (\sqrt{t} - \frac{1}{\sqrt{t}})\Delta_{L_{0}}(t).$$

- (10) We proved in class that for a knot K, $\Delta_K(1/t) = \Delta_K(t)$. What is the corresponding statement for $\Delta_L(1/t)$ for a link L?
- (11) Prove that the skein relation uniquely determines the Alexander polynomial. That is, if $f_L(t)$ is a polynomial link invariant with $f_U(t) = 1$ and it satisfies

$$f_{L_{+}}(t) - f_{L_{-}}(t) = (\sqrt{t} - \frac{1}{\sqrt{t}})f_{L_{0}}(t)$$

then prove $f_L(t) = \Delta_L(t)$.

Week 2.

- (12) If L_0 is obtained from L by resolving a crossing, prove that there exists a saddle cobordism connecting them.
- (13) Prove that connected sum is a well-defined operation on oriented knots.
- (14) If -K denotes the reverse of the mirror of K, prove that K # K is slice for all knots K.
- (15) Prove that the torus links $T_{p,q}$ and $T_{q,p}$ are isotopic.
- (16) Prove $\sigma(L_+) \leq \sigma(L_-) \leq \sigma(L_+) + 2$.
- (17) Prove that any link cobordism in $I \times S^3$ can be isotoped so that all the births happen at the beginning and all the deaths happen at the end. (Hint: Try to prove it by viewing the cobordism as a movie.)
- (18) What is the genus of the surface produced by Seifert's algorithm on the standard diagram of a (p,q) torus link? (p,q) need not be relatively prime.)
- (19) If a knot K bounds an immersed surface of genus g with k ribbon singularities and no other singularities, prove that K also bounds a Seifert surface of genus g + k.
- (20) Prove that the homology of a chain complex over a graded ring R is a graded module over R.

- (21) Prove that the homotopy category K(R) is a well-defined category; that is, prove chain homotopy equivalence is an equivalence relation and it respects composition.
- (22) Find a ring R and finitely and freely generated chain complexes C, D over R which are not isomorphic in the homotopy category K(R), but become isomorphic in the derived category D(R).

Week 3.

- (23) Write down all the variants for grid commutation and grid stabilization, and prove that they all keep the link type unchanged.
- (24) Prove that each of the three Reidemeister moves can be realized by grid moves.
- (25) Prove that the (p,q) torus link $T_{p,q}$ is indeed represented by the index (p+q) grid diagram that I drew in class. Use that to show $T_{p,q} = T_{q,p}$ and $T_{p,q} = r(T_{p,q})$. What is the grid diagram that represents its mirror?
- (26) Complete the check that the differential ∂ in the fully blocked grid complex satisfies $\partial^2 = 0$.
- (27) Complete the proof that the Maslov grading $M(x) = 1 + \mathcal{I}(x O, x O)$ is well-defined. Show that it is an integer.
- (28) Compute the bigraded fully blocked chain complex for an index-3 picture of an unknot.
- (29) Compute the bigraded fully blocked chain complex of the standard index-4 diagram for the Hopf link $T_{2,2}$.

Week 4.

- (30) Compute GH for the index-1 and index-2 grid diagrams for the unknot.
- (31) If $f, g: C \to D$ are chain homotopic chain maps, prove that their cones are chain homotopy equivalent chain complexes.
- (32) Assume C is a freely generated chain complex over R[U]. Prove that the chain complex $C/U = C \otimes_{R[U]} R$ is chain homotopy equivalent to the cone of U, over R.
- (33) Use the above two to prove that \widetilde{CG} is chain homotopy equivalent to $2^{n-\ell}$ copies of \widehat{CG} .

Week 5–6.

- (34) For commutation $G \to G'$, prove that the pentagon map $CG^-(G) \to CG^-(G')$ is a chain map. Prove that the hexagon map $CG^-(G) \to CG^-(G)$ is a chain homotopy from the composition of two pentagon maps to the identity.
- (35) For stabilization $G \to G'$, construct the chain maps and chain homotopies between $CG^{-}(G')$ and the mapping cone $CG^{-}(G)[W_{n+1}] \xrightarrow{W_1 - W_{n+1}} CG^{-}(G)[W_{n+1}]$.
- (36) Prove that the above mapping cone is chain homotopy equivalent to $CG^{-}(G)$ over $\mathbb{F}[W_1, \ldots, W_n]$ (but not over the bigger ring $\mathbb{F}[W_1, \ldots, W_{n+1}]$).

Week 7.

Week 8.

Week 9.

Week 10.