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1 Introduction

Let Cp denote the cyclic subgroup of order p. Let G = Cp1 ∗ Cp2 ∗ · · · ∗ Cpk
and let Mn be the number of subgroups of G of index n. We will study a few
properties of Mn modulo some primes. If p1 = p2 = 2, then Mn = 1(2). Also if
G = Cp1 ∗ Cp2 , p1 = 1(q) and n 6= 1, p2(q), then Mn = 0(q).

2 Graphical representation

Subgroups of index n in G = Cp1 ∗ Cp2 ∗ · · · ∗ Cpk are in 1-1 correspondance
with subgroups of index n in F [x1, x2, . . . , xk], the free group on k generators,
containing the normal subgroup generated by {xp1

1 , x
p2
2 , . . . , x

pk
k }.

Such subgroups in turn are in 1-1 correspondance with connected directed
graph on n vertices, with a basepoint, with edges coloured in k colours, such
that each vertex has 1 incoming and 1 outgoing edge of each colour and the
colour j cycles are either loops or pj cycles. This correspondance is given by
the fundamental group of the graph w.r.t the basepoint.

So for G = Cp1 ∗ Cp2 , subgroups of index n correspond to bi-coloured (say
with colours red and blue) graphs, such that red cycles are either loops or p1

cycles and blue cycles are either loops or p2 cycles.

3 G = Cp1
∗ Cp2

We want to count Mn modulo a prime q which divides p1 − 1. If n is not
congruent to 1 or p2 modulo q, it turns out that q divides Mn.

Theorem 1 If G = Cp1 ∗ Cp2 , p1 = 1(q) and n 6= 1, p2(q), then Mn = 0(q).

Proof The main idea of the proof is make Cq act in some way on a subset of
the set of all legal graphs on n vertices, such that there will be no fixed graph.
This implies the number of graphs in this subset was divisible by q, so Mn(q)
depends on the remaining graphs. Then we will make Cq act freely (i.e. without
any fixed points) in another way on a subset of the remaing graphs, and then
concentrate on the ones still remaining. Continuing in this way, after a finite
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stage, we will still have a few graphs left, and no natural way of making Cq act
freely on any subset of them. Then we will have another type of action of Cq on
these graphs, and look at all the fixed points. Then there will be another action
of Cq on these fixed points and we will look at the fixed points of that also.
Contuining in this fashion we will find that unless n = 1, p2(q), there cannot
exist a graph which is a fixed point of all the actions. This will conclude the
proof.

Given a legal graph, by it’s blue skeleton (with a basepoint) we mean the
new graph (not necessarily connected) obtained by deleting all the red edges.
Clearly different graphs can have the same blue skeleton. The way we will define
the actions, the blue skeleton of a graph will not be changed.

Given any red p1 cycle with one of the vertices being labelled as loopbase,
we can number each vertex by the minimum number of the directed red edges to
be traversed from loopbase to reach that vertex. For example the loopbase will
be numbered 0, and it’s 2 adjacent vertices will be numbered as 1 and p1 − 1.

As p1 = 1(q), so C∗p1
, the (cyclic) mutiplicative group on {1, 2, . . . , p1 − 1},

has a unique (cyclic) subgroup of order q. Let the subgroup be generated by
r ∈ Cp1 . All our actions by Cq will be of the following type.

We will take some red p1 cycle with a fixed loopbase, and number all the
vertices in the manner as described above. Under the action of t ∈ Cq on the
graph, we will delete all the red edges of just this red cycle, and make new edges
from rtj to rt(j + 1) ∀j ∈ Cp1 . The old loopbase will still be a called as the
loopbase, and the other vertices will be numbered accordingly. (Note, for t 6= 0,
all the vertices except the loopbase will be renumbered). It is easy to see that
this is a well defined action.

Let A be the basepoint vertex of the whole graph, and let A be the set of
vertices connected to A in the blue skeleton, i.e. by blue edges. Let a be the
number of vertices in A (a = 1, p2). Let us number each vertex of A by the
minimum number of directed blue edges to be traversed to reach the vertex
from A. (The important thing is to number the vertices in such a way that the
numbering depends only on the blue edges of A).

Let us consider all the legal graphs where some 2 distinct vertices of A are
connected without using any blue edge of A (all graphs in this set necessarily
having a = p2). We make Cq act freely on this set as follows.

Let us consider all possible pairs of vertices in A, where both vertices of the
pair are connected without the blue edges of A. Let us choose the vertex with
the minimum number which occurs in some pair. Then we choose the red cycle
(necessarily a p1 cycle) passing through that vertex and call the vertex as it’s
loopbase, and make Cq act on the graph as described above. It is not difficult
to see that this is a well defined action without a fixed point.

So graphs which are remaining do not have any 2 distinct vertices of A
connected without the blue edges of A. So if exactly ã vertices in A have red
p1 cycles (the rest have red loops), we number these ã cycles from 1 to ã, based
on the numbering of the corresponding vertex in A.

Consider the red cycle numbered j, and call it’s (unique) vertex in A as it’s
loopbase and number the rest of the vertices accordingly. Let Bj be the set of
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all vertices connected in the blue skeleton to the p1− 1 vertices of the red cycle
except the loopbase, and call this red cycle as the defining cycle of Bj . There is
a natural ordering of the vertices of Bj as follows.

The vertices of the defining cycle are already numbered from 1 to p1− 1. So
for each blue cycle in Bj , consider the smallest vertex (say vertex numbered k)
of the defining red cycle which is also in this blue cycle, and call it the blue-
loopbase and number all the vertices of this cycle by minimum number (say l) of
directed blue edges to be traversed to go to that vertex from the blue-loopbase.
This numbers all the vertices in Bj by the pair (k, l), and gives an ordering
based on the dictionary ordering.

If there is a total of b vertices in
⋃
Bj , then there is again a natural numbering

of these vertices from 1 to b. Vertices in Bi will be numbered lower than the
vertices in Bj for i < j. And in a particular Bj , vertices are ordered as desribed
above. (Here also the numbering of the vertices depends only on the blue edges
of A, Bj and their red defining cycles).

Now among the remaining graphs, consider all the graphs which have 2
distinct vertices of some Bj connected without using the blue edges of Bj or it’s
defining cycle. We will make Cq act freely on this set in a very similar fashion
as the first one.

Consider all the pair of vertices in
⋃
Bj such that they are connected without

using the blue egdes of any Bj or it’s defining cycle, and choose the minimum
vertex occuring in some pair. We choose the red (p1) cycle passing through
that vertex and call that vertex it’s loopbase, and make Cq act in the manner
already described. A similar proof as before will show that this is well defined
and cannot have any fixed points.

Now we look at the graphs that are still remaining and proceed similarly.
If exactly b̃ vertices in

⋃
Bj have red p1 cycles, we number each of these cycles

from 1 to b̃ (based on the numbering of the b vertices of
⋃
Bj . In the red cycle

numbered k, define the vertex in
⋃
Bj as the loopbase and number the other

vertices in the red cycle accordingly. Then define Ck to be the set of vertices
connected in the blue skeleton to p1 − 1 vertices of this red cycle except the
loopbase and call this cycle to be the defining cycle for Ck. There will be a
natural ordering for the vertices of Ck which in turn will give a numbering of
the c vertices in

⋃
Ck from 1 to c (again the ordering depending only on the

blue edges upto Ck and the red defining cycles upto this stage). We will look
at the all the graphs where some 2 distinct vertices of some Ck are connected
without using the blue edges or the red defining cycle of Ck. We will choose a
particular red cycle with a loopbase based on our numbering and make Cq act
freely using this red cycle. We will then look at the remaining graphs.

However as Mn is finite, this process cannot continue indefinitely, and we
have to stop somewhere. Take any legal graph which is left out and assume all
it’s vertices are partitioned into A,Bj , . . . ,Vt, such that in Vt all the red cycles
other than it’s defining cycle are loops.
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Now we will make Cq act in a different way on these remaining graphs. Call
the sequence {ã, b̃, . . .} as the signature of a graph. It is a sequence of 0 after
some point. In the graph in the previous paragraph, we assumed that it is 0
after ũ. The sequence of actions we define now will preserve the signature of the
graph and for every signature, there cannot be any graph fixed by all actions if
n 6= 1, p2(q).

Take a particular signature (say one where the last non-zero entry is ũ). All
the ũ defining cycles of

⋃
Vt have fixed loopbase, and hence have numbered

vertices. We make Cq act on the graph by making Cq act on all the defining red
cycles (with loopbases) simultaneously. It is clearly well defined and preserves
signature. If a graph is fixed, it is not difficult to see that it must be fixed if Cq
just acted on the red defining cycle of 1 particuar Vt.

But then Vt must look the same after the action of Cq. But when we ordered
the vertices of Vt, we assigned a pair of numbers to any given vertex as (the
minimum vertex in the red defining cycle

⋂
the blue cycle containing the given

vertex, the minimum number of directed blue edges to be traversed to reach the
given vertex from the minimum vertex). Under the action of a non-zero element
of Cq, all the p1− 1 vertices of the red defining cycle in Vt are renumbered, and
hence each vertex in Vt is renumbered (by another pair of numbers). This
induces a free action of Cq on the vertices of Vt (we are using the fact that
Vt looks same after action of Cq on the defining cycle, hence if some vertex
is numbered (k, l) in Vt, then after the action by some element of Cq and the
consequent renumbering, some vertex in Vt will be numbered as (k, l)). Thus
there must be 0(q) vertices in Vt, hences 0(q) vertices in

⋃
Vt.

Now let us look at all the graphs that are fixed of the given signature (all
such graphs having 0(q) vertices in

⋃
Vt). We now make Cq act on these graphs

by making it act on all the t̃ defining cycles of
⋃
Ui. A similar reasoning shows
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each Ui and hence
⋃
Ui has 0(q) vertices.

Proceeding similarly, we find for a graph to be fixed by all such Cq actions,
the number of vertices in each Bj , Ck, . . . ,Ui,Vt must have 0(q) vertices. But
then n, the total number of vertices must be a = 1, p2(q), which is not possible.
Thus there is no fixed graph, and hence Mn = 0(q).

4 G = C2 ∗ C2 ∗ Cp3
∗ · · · ∗ Cpk

We will prove that Mn = 1(2) ∀n. The case pj = 2 ∀j has already been settled
by Newman and Grady for k ≥ 4, and by Sury for k = 3. Without loss of
generality, we can assume that pk is an odd prime.

Before embarking on the actual proof, let us prove a few simple lemmas.

Lemma 1 1
2l

(2l)!
l! = 1(2),

(
2m
m

)
= 0(2) and

(
2m
2l

)
=
(
m
l

)
(2).

Proof We know the exact power of 2 dividing n! is {[n2 ]+[n4 ]+· · ·}. So the exact
power of 2 dividing (2l)!

l! is {l + [ l2 ] + · · ·} − {[ l2 ] + · · ·} = l. Similarly the exact
power of 2 dividing

(
2m
m

)
is {m+[m2 ]+ · · ·}−2{[m2 ]+ · · ·} = m−{[m2 ]+ · · ·}. But

{[m2 ]+ · · ·} ≤ {m2 + · · ·} = m and equality cannot hold throughout, thus proving(
2m
m

)
= 0(2). Similarly the exact power of 2 dividing

(
2m
2l

)
is {m+ [m2 ] + · · ·} −

{l+ [ l2 ] + · · ·} − {m− l+ [m−l2 ] + · · ·} = {m2 ] + · · ·} − { l2 ] + · · ·} − {m−l2 ] + · · ·}
which is the exact power of 2 dividing

(
m
l

)
.

Lemma 2
∑m
l=0 #{s̄ ∈ Nm |

∑m
i=1 si = r}

(
2m
2l

)
1
2l

(2l)!
l! = 0(2), where #S de-

notes the cardinality of the set S.

Proof Using 1
2l

(2l)!
l! = 1(2) and

(
2m
2l

)
=
(
m
l

)
(2), the given sum simplifies to∑

l #{s̄ ∈ Nm |
∑m
i=1 si = r}

(
m
l

)
. But as

(
m
l

)
=
(
m
m−l

)
, so the given sum with

l 6= m − l is 0(2). Now if m = 1(2), l = m − l is not possible, hence the whole
sum is 0(2). While on the other hand, if m = 0(2), then the required sum is
#{s̄ ∈ Nm |

∑m
i=1 si = r}

(
m
m/2

)
= 0(2) as

(
m
m/2

)
= 0(2).

With these 2 lemmas in hand, let us state and prove our theorem.

Theorem 2 If G = C2 ∗ C2 ∗ Cp3 ∗ · · · ∗ Cpk , then Mn = 1(2).

Proof We use induction on k, the number of colours in our graphical reperesen-
tation. It is clearly true for k = 2. As argued earlier, we can assume pk = 1(2).
In the graphical representation, we are working with k coloured graphs, and
let green be the colour corresponding to pk. Thus the green cycles are either
loops or pk cycles. Let us call any other colour in the graph as grey. The graph
obtained by deleting all the green edges is called the grey skeleton. In a manner
very similar to the previous section, we will be using free action of C2 on a
subset of graphs, and count the remaining graphs.

If Nr denotes the number of subgroups of index r in G = C2 ∗C2 ∗Cp3 ∗ · · · ∗
Cpk−1 , then by induction hypothesis Nr = 1(2).
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We define a special graph to be a connected legal graph of the above type
(on n vertices and with k colours), such that the only cycle at the basepoint
that is not a loop is the green cycle (i.e. the grey connected component of the
basepoint is itself), and also that green cycle is the only green cycle that is not
a loop (the other green cycles are loops). First we prove there are even number
of special graphs for any n.

In a special graph, the vertices of the green cycle are very naturally numbered
from 0 to pk − 1, with the basepoint (treated as a loopbase) being numbered 0.
Call the grey connected components of the n− 1 vertices (i.e all vertices except
the basepoint) to be proper grey components. For each proper grey connected
component, call the minimum vertex of the green cycle in that grey component
to be the greybase of the component. The ordering of the vertices in the green
cycle, naturally orders the proper grey components based on their greybases.

Take the set of all special graphs which have at least 3 vertices of the green
cycle, in some grey connected component, and we will make C2 act freely on
this set as follows.

Let G be the first grey connected component that has atleast 3 vertices from
the green cycle. Let A,A1, A2 be the first 3 vertices of the green cycle in G
(A being the greybase). If li denotes the green edge incident on Ai from the
vertex Bi (not necessarily in G), and if mi denote the green edge leaving Ai to
Ci (again need not be in G), then we delete these 4 green edges l1, l2,m1,m2

and put 4 new green edges from B1 to A2, B2 to A1, A1 to C2 and A2 to C1.
This is easily seen to be a well defined free action of C2 on this set of special
graphs.

Let pk − 1 = 2m. There must be even number of proper grey components
containing exactly 1 vertex each of the green cycle, for the other grey compo-
nents have exactly 2 vertices each from the green cycle, and the total number of
vertices in the green cycle is 2m = 0(2). So let 2m− 2l be the number of grey
connected components with exactly one vertex each (just the greybase) from the
green cycle. Based on the ordering of all the 2m vertices, these 2m− 2l vertices
are naturally ordered. Now each of these proper grey components corresponds
to a subgroup of G = C2 ∗ C2 ∗ Cp3 ∗ · · · ∗ Cpk−1 after treating it’s greybase as
a basepoint. Pair up these subgroups (which are also ordered) as first 2, next
2, next 2 and so on. Look at the all the special graphs from the ones that are
remaining where the 2 subgroups of at least 1 such pair does not correspond to
the same subgroup of G = C2 ∗C2 ∗Cp3 ∗ · · · ∗Cpk−1 . We make C2 act freely on
this set as follows.

Number the pairs from 1 to m− l based on the ordering of the grey compo-
nents. Choose the first pair, where the 2 subgroups are different. Let G1 and G2

be the 2 proper grey components corresponding to these 2 subgroups. As before
let Ai be the greybase in Gi, let li be the green incoming edget to Ai from Bi
and mi be the green outgoing edge from Ai to Ci. We delete the 4 green edges
l1, l2,m1,m2 and put 4 new green edges from B1 to A2, B2 to A1, A1 to C2 and
A2 to C1.
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Now we actually count the number of special graphs that are still remaining
in terms of Nr.

The 2m − 2l greybases can be chosen from 2m vertices in
(

2m
2l

)
ways. Let

ti be the number of vertices in either of the 2 grey connected component in
the pair numbered i. The index ti subgroup of G = C2 ∗ C2 ∗ Cp3 ∗ · · · ∗ Cpk−1

corresponding to each of these 2 pairs can be chosen in Nti ways. The remaining
2l vertices have to be partioned in l groups of 2 vertices each (corresponding to
the vertices belonging to the same proper grey component), and this partioning
can be done in precisely 1

2l
(2l)!
l! ways. Let these l grey components be numbered

from 1 to l based on the ordering of their greybases. Let ui be the number
of vertices in the grey component numbered 1. These grey components also
correspond to subgroups of G = C2 ∗ C2 ∗ Cp3 ∗ · · · ∗ Cpk−1 , and so there are
Nui choices for a grey component with ui vertices. After that the second vertex
of the green cycle (the vertex other than the greybase) in that grey component
can be chosen in ui − 1 ways.

So for a given l, and fixed ui and ti, the number of special graphs remaining is(
2m
2l

)
1
2l

(2l)!
l!

∏m−l
i=1 Nti

∏l
i=1Nui(ui−1). Using the fact Nr = 1(2), this expression

simplifies to
(

2m
2l

)
1
2l

(2l)!
l!

∏l
i=1(ui−1). Now if any of the ui = 1(2), this expression

is 0(2). For this expression to be non-zero, all ui are even, say ui = 2si. Then
the expression becomes

(
2m
2l

)
1
2l

(2l)!
l! . But total number of vertices is given by

n − 1 =
∑l
i=1 2si +

∑m−l
i=1 2ti. So if n = 0(2), we do not have any non-zero

expression, and hence the whole sum is 0(2). Else n = 2r + 1, and then si, ti
satisfy r =

∑l
i=1 si +

∑m−l
i=1 ti. The number of such solutions is #{s̄ ∈ Nm |∑m

i=1 si = r}. So the total number of such special graphs is
∑m
l=0 #{s̄ ∈ Nm |∑m

i=1 si = r}
(

2m
2l

)
1
2l

(2l)!
l! = 0(2).

Now we prove that there are odd number of legal graphs on n vertices in k
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colours using the fact that there are even number of special graphs of the same
type. For this part, we will closely follow the method of the previous section
with green taking the role of red, grey for blue, and 2 instead of q.

Let A be the grey connected component containing basepoint. If there are
a vertices in A, we number the vertices from 0 to a− 1, in such a way that the
numbering depends only on the grey edges of A. We can make C2 act freely on
the set of all graphs where some 2 vertices of A are connected without using the
grey edges. We now concentrate on the remaining graphs. If exactly ã vertices
of A have non-loop green cycles, then after numbering these vertices and green
cycles from 1 to ã and calling them the loopbases for the corresponding green
cycles, we define Bj to be the set of vertices grey connected to the pk−1 vertices
(except loopbase) of the green cycle numbered j and call this cycle as it’s green
defining cycle. It is not difficult to convince oneself that the vertices of

⋃
Bj

can also be ordered such that the ordering depends only on grey edges of A and
Bj and their green defining cycles. Now consider all the graphs where some 2
vertices of Bj can be connected without using the grey edges of Bj and we can
make C2 act freely on this set, and proceed with the remaining graphs.

Being a finite graph, we have to stop somewhere. We take 2 cases, A covers
the whole graph, or else it does not. If it does not, then as in the previous
section, let ũ be the last non-zero entry in the signature {ã, b̃, . . .}. If there are
v1 vertices in V1, then by keeping the rest of the graph fixed, and considering
different grey skeletons for V1, we conclude that there are even number of such
possibilities (as each grey skeleton of V1 corresponds to a special graph on v1 +1
vertices with it’s defining cycle playing the role of the unique green cycle of the
special graph). Thus there are even number of graphs with A not being the
whole of the graph.
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But if A is the whole of the graph, then every green cycle is a loop and the
grey skeleton of the whole graph is connected. Number of such graphs is clearly
Nn, hence odd. This completes the induction step and proves that Mn = 1(2).

5 Conclusion

The result we proved in the previous section is true in a bigger generality.
Newman and Grady proved for p > 3, that if p1 = p2 = p and pj ≥ p ∀j, then
Mn(p) satisfies a recurrance relation (independent of k or other pj) of length p.
But since the first p− 1 values of Mn(p) are {1, 0, 0, . . . , 0} for all such groups,
hence Mn(p) is same for all such groups ∀n. What we proved in the previous
section is the case for p = 2. The case p = 3 is still open.
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