• Or more directly, since \(z=0 \) on \(C_i \),

\[
I = \oint_C (\sin x + y) \, dx + 0 \, dy + \sin y \, dz
\]

\[
= \oint_C (\sin x + y) \, dx
\]

\[
= \oint_C d(-\cos x) + \oint_C y \, dx.
\]

\[
= 0 \quad \text{by FTC.} \quad \text{As in the previous method...}
\]

\[\text{Summary}\]

• Conservative \(\Rightarrow \) Cross-Partial Condition (CPC)

• CPC + simply connected domain \(\Rightarrow \) conservative.

\[\text{Ex \#14}\]

Find a potential function for \(\mathbf{F} = \langle e^x(z+1), -\cos y, e^x \rangle \), or determine that \(\mathbf{F} \) is not conservative.

\[\text{Sol}\]

• CPC is satisfied: \(\frac{\partial F_x}{\partial x} = 0 = \frac{\partial F_y}{\partial y}, \quad \frac{\partial F_y}{\partial z} = 0 = \frac{\partial F_z}{\partial z}, \quad \frac{\partial F_y}{\partial z} = e^x = \frac{\partial F_z}{\partial z} \).

• The domain of \(\mathbf{F} \) is \(\mathbb{R}^3 \), which is simply connected.

\[\Rightarrow \exists \text{ potential function } V.\]

• Let \(V_1 = \int F_1 \, dx = e^x(z+1) + C \) with the choice \(C=0 \). Then

\(\nabla V_1 = \langle e^x(z+1), 0, e^x \rangle \) so

\(\nabla (V-V_1) = \mathbf{F} - \nabla V_1 = \langle 0, -\cos y, 0 \rangle.\)

• Let \(V_2 = \int -\cos y \, dy = \sin y + C \). Then \(\nabla V_2 = \langle 0, -\cos y, 0 \rangle \) and

\(\nabla (V-V_1-V_2) = 0 \quad \Rightarrow \quad V_1 + V_2 \) is a potential function for \(\mathbf{F}. \)
Section 17.4: Parametrized Surfaces and Surface Integrals.

Overview

- **Single Integral**
 \[\int_a^b f(x) \, dx \]

- **Multiple Integral**
 \[\int_D f(x,y) \, dx \, dy \]
 - much harder to describe the domain \(D \)

- **Line Integral**
 \[\int_C f \, ds \quad \text{or} \quad \int_C F \cdot ds \]
 - domain is now 'warped', so need to parametrize it.
 - distinction between scalar and vector appears
 - orientation matters

- **Surface Integral**
 \[\int_S f \, dS \quad \text{or} \quad \int_S F \cdot n \, dS \]
 - those characteristics are combined.

Summary

- A parametrized surface \([\text{surface } S] + [\text{parametrization } G: D \to S]\)
- Points in \(S \) are written as \((x,y,z) = (x(u,v), y(u,v), z(u,v)) = G(u,v)\).
- \(u,v \) are called parameters, \(D \) parameter domain

\[G(u,v) \]
- \(T_u = \frac{\partial G}{\partial u} \), \(T_v = \frac{\partial G}{\partial v} \) are called tangent vectors.
- \(n = T_u \times T_v \) is called a normal vector.
- \(G \) is called regular at \(P \) if \(n(P) \neq 0 \).
Goal

How to parametrize a surface?

- Cylinder: \(G(\theta, z) = (R \cos \theta, R \sin \theta, z) \)
- Sphere: \(G(\phi, \theta) = (R \cos \theta \sin \phi, R \sin \theta \sin \phi, R \cos \phi) \)
- Graph: \(G(x, y) = (x, y, f(x, y)) \).

But of course different parametrizations are also possible.

Ex

Parametrize the surface \(S \): part of \(z = 1 - x^2 - y^2 \) on \(z \geq 0 \).

Sol) 1

\[z = 1 - x^2 - y^2 \] Intersects \(z = 0 \) on \(x^2 + y^2 = 1 \).

\[\Rightarrow S \text{ : graph of } z = 1 - x^2 - y^2 \text{ on } D : x^2 + y^2 \leq 1. \]

\[\Rightarrow G(x, y) = (x, y, 1 - x^2 - y^2) \text{ on } D. \]

2

Using cylindrical coordinates,

\[G(r, \theta) = (r \cos \theta, r \sin \theta, 1 - r^2) \text{ on } D : 0 \leq r \leq 1, 0 \leq \theta \leq 2\pi. \]

Q: Which is better? A: It depends on situation.

Ex

Parametrize the part of the plane \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 \), where \(x, y, z \geq 0 \).

Sol)

NOTE \(S \) is a part of the graph

\[z = c \left(1 - \frac{x}{a} - \frac{y}{b} \right) \]

on the triangular domain \(D \) with vertices \((0, 0), (a, 0), (0, b) \).

\[\Rightarrow G(x, y, z) = (x, y, c(1 - \frac{x}{a} - \frac{y}{b})) \text{, } (x, y) \in D. \]