Review

- Properties of integral.
- Two quintessential examples: when a is a pure step & a' is integrable.
- Fundamental theorem of calculus
- Pointwise convergence / Uniform convergence
 - Space $C(X)$ of continuous functions w/ sup norm $\|f\| = \sup_{x \in X} |f(x)|$.
 - $C(X)$ is always complete.
 - $C(X)$ is the space of continuous functions if X is compact.
- Uniform convergence and integration.

Ex

If $f \in R(a)$ on $[a,b]$, then $\forall \varepsilon > 0$, $\exists g \in C([a,b])$ s.t. $\int_a^b |f-g| \, dx < \varepsilon$.

Proof

There are tons of proofs for this, but we do as follows: $\forall \varepsilon > 0$, pick $P = \{a = x_0 < \ldots < x_n = b\}$ s.t. $U(P,f,a) - L(P,f,a) < \frac{\varepsilon}{2}$. Define g as the linear interpolation of points $(x_0, f(x_0), \ldots, (x_n, f(x_n))$.

Then we find that, for $x \in [x_i, x_{i+1}]$,

$$\min \{ f(x_i), f(x_{i+1}) \} \leq g(x) \leq \max \{ f(x_i), f(x_{i+1}) \} \leq M_i$$

$$\Rightarrow |f(x) - g(x)| \leq |f(x) - f(x_i)| + |g(x) - m_i|$$

$$\leq (M_i - m_i) + (M_i - m_i)$$

$$\Rightarrow \int_a^b |f-g| \, dx \leq 2(U(P,f,a) - L(P,f,a)) < \varepsilon.$$
Let $f \in R(a)$ on $[a,b]$ be s.t. $\int_a^b fg \, dx = 0$ for any $g \in C([a,b])$.

Show that $\int_a^b |f| \, dx = 0$.

Sol.

- It suffices to show that $\int_a^b f^2 \, dx = 0$.
- $\forall \varepsilon > 0$, use the previous exercise to pick $g \in C([a,b])$ s.t. $\int_a^b |f-g| \, dx < \varepsilon$.
- Let M be a bound for f. Then

 \[
 |\int_a^b f^2 \, dx| = |\int_a^b f^2 \, dx - \int_a^b fg \, dx| \\
 = |\int_a^b f(f-g) \, dx| \\
 \leq \int_a^b M|f-g| \, dx \\
 < ME.
 \]

Since ε is arbitrary, take $\varepsilon \downarrow 0$.

Ex.

Prove: (1) $\sum_{k=1}^n \frac{1}{k^s} = \frac{s}{s-1} - \frac{1}{s-1} \frac{1}{n^{s-1}} - s \int_1^n \frac{x-1}{x^{s+1}} \, dx \quad \forall n \geq 1, \forall s \neq 1$.

(2) $\sum_{k=1}^n \frac{1}{k} = 1 + \log n - \int_1^n \frac{x-1}{x^2} \, dx$.

Sol.

Let $\varepsilon \in (0,1)$. Then

\[
\sum_{k=1}^n \frac{1}{k^s} = \int_{1-\varepsilon}^{1+\varepsilon} \frac{dx}{x^s} = \left[\frac{1}{x^{s-1}} \right]_{1-\varepsilon}^{1+\varepsilon} + s \int_{1-\varepsilon}^{1+\varepsilon} \frac{x-1}{x^{s+1}} \, dx \\
= \frac{n}{(n+\varepsilon)^s} + s \int_{1-\varepsilon}^{1+\varepsilon} \frac{x-1}{x^{s+1}} \, dx.
\]

Take $\varepsilon \downarrow 0$, then

\[
\frac{1}{n^{s-1}} + s \int_1^n \frac{x-1}{x^{s+1}} \, dx \\
= \frac{1}{n^{s-1}} - s \int_1^n \frac{x-1}{x^{s+1}} \, dx + s \int_1^n \frac{dx}{x^2}.
\]

Compute the last integral according to $s \neq 1$ or $s = 1$.

Rmk.

For $s > 1$, (1) shows that $\zeta(s) = \sum_{n=1}^\infty \frac{1}{n^s} = \frac{s}{s-1} - s \int_1^\infty \frac{x-1}{x^{s+1}} \, dx$.

The latter integral converges even for $s > 0$.

Ex) For \(u \in R(\alpha) \), define \(\|u\|_2 = \left(\int_a^b |u|^2 \, d\alpha \right)^{1/2} \). \(\forall f, g \in R(\alpha) \),

1. Show that \(\int_a^b |fg| \, d\alpha \leq \|f\|_2 \|g\|_2 \). (Cauchy-Schwarz)
2. Show that \(\|f + g\|_2 \leq \|f\|_2 + \|g\|_2 \). (Triangle Ineq.)

Sol) (1) Standard argument: May assume \(\int_a^b |g|^2 \, d\alpha \neq 0 \), otherwise both sides are zero. Let

\[
I(t) = \int_a^b (|f| + t|g|)^2 \, d\alpha, \quad t \in \mathbb{R}.
\]

Then \(I(t) \geq 0 \) and

\[
I(t) = t^2 \int_a^b |g|^2 \, d\alpha + 2t \int_a^b |f||g| \, d\alpha + \int_a^b |f|^2 \, d\alpha
\]

Is a quadratic polynomial. So it has no distinct real zero and

discriminant = \(\left(\int_a^b |f||g| \, d\alpha \right)^2 - \left(\int_a^b |g|^2 \, d\alpha \right) \left(\int_a^b |f|^2 \, d\alpha \right) \)

is non-positive.

(2) \(\|f + g\|_2^2 = \int_a^b |f + g|^2 \, d\alpha \)
\[
\leq \int_a^b (|f| + |g|)^2 \, d\alpha
\]
\[
= \int_a^b |f|^2 \, d\alpha + 2 \int_a^b |f||g| \, d\alpha + \int_a^b |g|^2 \, d\alpha
\]
\[
\leq \|f\|_2^2 + 2 \|f\|_2 \|g\|_2 + \|g\|_2^2
\]
\[
\leq (\|f\|_2 + \|g\|_2)^2.
\]

Ex) (1) Consider \(f_n(x) = x^n \) on \([0, 1] \). Then

- \(\lim_{n \to \infty} f_n(x) = 0 \) pointwise,
- \(f_n \to 0 \) uniformly. Indeed,

\[
\|f_n - 0\| \geq |f_n(1 - \frac{1}{n}) - 0| = (1 - \frac{1}{n})^n \to \frac{1}{e}
\]

and thus \(\|f_n - 0\| \to 0 \) as \(n \to \infty \).

(2) Consider the series \(\sum_{n=1}^\infty x^n(1-x) \) on \(x \in [0, 1] \). By direct computation,
\[
\sum_{n=1}^{\infty} x^n (1-x) = \begin{cases}
0 & \text{for } x \in [0,1) \\
1 & \text{for } x = 1
\end{cases}, \text{ pointwise.}
\]

If the convergence were uniform, then the limit should have been continuous as well, which is not the case. So the convergence is NOT uniform.

Ex. (Dini's theorem) Let \(K \) be a compact metric space, \(g, g_n \in C(K) \) be such that:

- \(g_1 \leq g_2 \leq \cdots \) (monotone increasing)
- \(g_n \to g \)
- \(\lim_{n \to \infty} g_n(x) = g(x) \) pointwise.

Show that \(g_n \to g \) uniformly.

Sol. \(\forall \varepsilon > 0 \), consider the set

\[
K_n := \{ x \in K : g(x) - g_n(x) \geq \varepsilon \}
\]

For each \(\forall n \geq 1 \). Since \(K_n \) is compact (it is a preimage of the closed set \([\varepsilon, \infty) \) under the continuous function \(g - g_n \)) and \(K_1 \supseteq K_2 \supseteq K_3 \supseteq \cdots \) by monotonicity of \((g_n) \). Also, by pointwise convergence,

\[
\bigcap_{n=1}^{\infty} K_n = \emptyset.
\]

By the nested set property, \(K_N = \emptyset \) for some \(N \). Then \(\forall n \geq N \), we have \(\|g - g_n\| \leq \varepsilon \).

Rem. We cannot weaken any of the highlighted assumptions:

- Consider \(g_n(x) = \frac{x}{n} \in C(\mathbb{R}) \) and \(g(x) = 1 \).

Then \(g_n, g \in C(\mathbb{R}) \), \(g_n \not\to g \) pointwise but \(\|g_n - g\| = 1 \).

- Consider \(g_n(x) = 1 - x^n \) on \([0,1]\). Then \(g_n \not\to g \) pointwise but \(g_n \to g \) uniformly.

- It can be shown that \(\sum_{n=1}^{\infty} \sin(nx) \) converges \(\forall x \in [-\pi, \pi] \), but the limit is discontinuous.
Ex

(1) Let \(I_n = \int_0^1 (1-x^n) \, dx \). Integration by parts shows \(I_n = \frac{2^n}{2n-1} I_{n-1} \).

Together with \(I_0 = 1 \), we get

\[
\int_0^1 (1-x^n) \, dx = \frac{(2n)(2n-2) \cdots 2}{(2n-1)(2n-3) \cdots 1}.
\]

(2) \(\forall n \geq N, \) notice that for \(x \in [0, \sqrt{N}] \),

\[
\left(n \frac{x^2}{n+1} \right)^{n+1} = \left(1 - \frac{x^2}{n+1} \right)^n
\]

\[\geq \left(1 - \frac{n+1}{n} \cdot \frac{x^2}{n+1} \right)^n = \left(1 - \frac{x^2}{n} \right)^n.\]

By Dini's theorem, on \([0, \sqrt{N}] \), \(\left(1 - \frac{x^2}{n} \right)^n \to e^{-x^2} \) uniformly.

(3) Thus we have

\[
\int_0^{\sqrt{N}} e^{-x^2} \, dx = \lim_{n \to \infty} \int_0^{\sqrt{n}} \left(1 - \frac{x^2}{n} \right)^n \, dx.
\]

On the other hand, since \(\left(1 - \frac{x^2}{n} \right)^n \leq e^{-x^2} \) on \([0, \sqrt{n}] \),

\[
\int_0^{\sqrt{n}} \left(1 - \frac{x^2}{n} \right)^n \, dx \leq \int_0^{\sqrt{n}} e^{-x^2} \, dx \leq \int_0^{\infty} e^{-x^2} \, dx.
\]

Combining,

\[
\int_0^{\sqrt{n}} e^{-x^2} \, dx \leq \liminf_{n \to \infty} \int_0^{\sqrt{n}} \left(1 - \frac{x^2}{n} \right)^n \, dx
\]

\[\leq \limsup_{n \to \infty} \int_0^{\sqrt{n}} \left(1 - \frac{x^2}{n} \right)^n \, dx \leq \int_0^{\infty} e^{-x^2} \, dx.
\]

Take \(N \to \infty \) to conclude:

\[
\lim_{n \to \infty} \int_0^{\sqrt{n}} \left(1 - \frac{x^2}{n} \right)^n \, dx = \int_0^{\infty} e^{-x^2} \, dx.
\]

But since \(\int_0^{\sqrt{n}} \left(1 - \frac{x^2}{n} \right)^n \, dx = \sqrt{n} \frac{(2n)(2n-2) \cdots 2}{(2n-1)(2n-3) \cdots 1} \), we get

\[
\lim_{n \to \infty} \sqrt{n} \frac{(2n)(2n-2) \cdots 2}{(2n-1)(2n-3) \cdots 1} = \frac{\sqrt{\pi}}{2}.
\]