Example

Define $\log : (0, \infty) \rightarrow \mathbb{R}$ by $\log(x) = \int_1^x \frac{dt}{t}$. Prove:

(a) \log is increasing.

(b) $\log(xy) = \log(x) + \log(y)$

(c) $\log'(x) = \frac{1}{x}$

(d) $\log(1) = 0$.

Solution

(a) Since $\log(x) = \frac{t}{\log x} > 0$, \log is strictly increasing.

(b) $\log(xy) = \int_1^{xy} \frac{dt}{t} = \int_1^x \frac{dt}{t} + \int_x^{xy} \frac{dt}{t}$

\[= \log(x) + \int_x^{xy} \frac{1}{t} \cdot \frac{d(t/x)}{dt} dt.\]

So with $\phi(t) = \frac{t}{x}$, we have by Change of Variable,

\[= \log(x) + \int_{\phi(x)}^{\phi(xy)} \frac{dt}{t} = \log(x) + \int_1^{y} \frac{dt}{t} = \log(x) + \log(y).\]

(d) $\log(1) = \int_1^1 \frac{dt}{t} = 0$.

Example

Assume that $f : [a, b] \rightarrow \mathbb{R}$ is Riemann integrable and $\forall [c,d] \subseteq [a,b] \exists x^* \in [c,d]$ satisfying $f(x^*) = 0$.

(a) Show that $\int_a^b f = 0$.

(b) Is f need to be zero?

(c) If f is continuous, is f zero?

Sol

(a) For any partition $P = \{ a = x_0 < \ldots < x_n = b \}$, $\exists x^* \in [x_0, x_1]$ s.t.

\[f(x^*) = 0.\]

\[\inf_{x \in [x_0, x_1]} f(x) \leq f(x^*) = 0 \leq \sup_{x \in [x_0, x_1]} f(x).\]
Implies that
\[L(f; P) \leq 0 \leq U(f; P) \]
\[\Rightarrow \int_a^b f \leq 0 \leq \int_a^b f. \]
Since \(\int_a^b f = \int_a^b f = \int_a^b f \), we have \(\int_a^b f = 0 \).

(b) No. Consider \(f : [0, 1] \to \mathbb{R} \) defined by
\[f(x) = \begin{cases} 1, & x = \frac{1}{n} \text{ for some } n = 1, 2, \ldots \\ 0, & \text{otherwise.} \end{cases} \]
Then \(\forall \delta > 0 \), \(f \) is piecewise continuous on \([0, 1]\) and hence integrable by Exercise 2.7 (or Proposition 2.8). Also \(f \) satisfies the condition, so \(\int_0^1 f = 0 \). On the other hand, \(f \) is not zero.

(c) Yes. Let \(x_0 \in [a, b] \). Then \(x_n = x_0 + \frac{1}{n} \to x_0 \) and for each \(n \), (\(n \) large so that \(x_n \leq b \)), \(\exists x_n^* \in [x_0, x_n] \) s.t. \(f(x_n^*) = 0 \). Now \(x_n^* \to x_0 \) and by continuity,
\[f(x_0) = \lim_{n \to \infty} f(x_n^*) = 0. \]
The case \(x_0 = b \) is also easily checked. So \(f \equiv 0 \).

\[\square \]

Exercise

Let \(f : [a, b] \to \mathbb{R} \) be continuous.

(a) (Mean Value Thm) \(\exists c \in [a, b] \) s.t. \(\int_a^b f(x) \, dx = f(c) \cdot (b-a) \).

(b) (2nd Mean Value Thm) Let \(g : [a, b] \to [0, \infty) \) be Riemann integrable.
\[\exists c \in [a, b] \text{ s.t. } \int_a^b f(x)g(x) \, dx = f(c) \int_a^b g(x) \, dx. \]

Sol. (a) is a special case of (b). So it suffices to prove (b). But if we write \(m = \min_{x \in [a,b]} f(x) \), \(M = \max_{x \in [a,b]} f(x) \), then by Maximum Principle, \(\exists x^*, y^* \) s.t. \(m = f(x^*) \) and \(M = f(y^*) \). Then
\[\int_a^b mg(x) \, dx \leq \int_a^b f(x)g(x) \, dx \leq \int_a^b Mg(x) \, dx. \]
So if \(\int_a^b g(x) \, dx = 0 \), then we can pick any \(c \in [a,b] \) and we have

\[
\int_a^b f(x) g(x) \, dx = 0 = f(c) \int_a^b g(x) \, dx.
\]

If \(\int_a^b g(x) \, dx \neq 0 \), then by \(g \geq 0 \) we have \(\int_a^b g(x) \, dx > 0 \). So

\[
f(x^*) = m \leq \frac{\int_a^b f(x) g(x) \, dx}{\int_a^b g(x) \, dx} \leq M = f(y^*)
\]

\(\Rightarrow \) By Intermediate Value Thm., \(\exists c \in [x^*, y^*] \subset [a,b] \) s.t.

\[
f(c) = \frac{\int_a^b f(x) g(x) \, dx}{\int_a^b g(x) \, dx},
\]

\[\text{Counterexamples}\]

(1) If \(f_n : [0,1] \to \mathbb{R} \) is integrable and \(f_n = \lim_{n \to \infty} f_n(x) \) exists, still it is not guaranteed that \(f \) is Riemann integrable.

(2) If \(f_n : [0,1] \to \mathbb{R} \) is Riemann integrable and \(f(x) = \lim_{n \to \infty} f_n(x) \) exists and is Riemann integrable, still we can have

\[
\lim_{n \to \infty} \int_0^1 f_n(x) \, dx \neq \int_0^1 \lim_{n \to \infty} f_n(x) \, dx.
\]

(3) But if we add the assumption that \(f_n \) are uniformly bounded: \(\exists M > 0 \) s.t. \(|f_n(x)| \leq M \) for all \(n \) and \(x \), then if \(f(x) = \lim_{n \to \infty} f_n(x) \) is Riemann integrable, we have

\[
\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \int_0^1 \lim_{n \to \infty} f_n(x) \, dx.
\]

(Bounded convergence thm.) Proof of this fact is not easy, and if we learn Lebesgue integral this follows much easily.
HW9.5 Let $f : [0,1] \rightarrow \mathbb{R}$ be continuous and $f(x) \geq 0 \ \forall x \in [0,1]$, and $\int_0^1 f = 0$. Show that $f(x) = 0 \ \forall x \in [0,1]$.

S1 1) Assume otherwise. $\exists x^* \in [0,1]$ s.t. $f(x^*) \neq 0$ ($\Rightarrow f(x^*) > 0$).

Then with $\varepsilon = \frac{1}{2} f(x^*)$, $\exists \delta > 0$ s.t.

$$|x-x^*| < \delta, \ x \in [0,1] \Rightarrow |f(x) - f(x^*)| < \varepsilon$$

$$\Rightarrow f(x) > f(x^*) - \varepsilon = \varepsilon.$$

In particular, if we write $[0,1] \cap [x^*-\frac{\delta}{2}, x^*+\frac{\delta}{2}] = [c,d]$, then

$f(x) \geq \varepsilon$ on $[c,d]$. So

$$0 = \int_0^1 f \geq \int_c^d \varepsilon = \varepsilon(d-c) > 0, \ \neq 0.$$

S1 2) Let $F(x) = \int_0^x f$ for $0 \leq x \leq 1$. Then $f \geq 0$ shows that

$$0 \leq \int_0^x f \leq \int_0^1 f = 0$$

$$\Rightarrow F(x) = 0. \ \text{So it follows from FTC that}$$

$$f(x) = F'(x) = 0.$$

Example (Fundamental Theorem of Calculus of Variations) If $f : [a,b] \rightarrow \mathbb{R}$ is continuous and $\int_a^b fg = 0$ for every continuous function g on $[a,b]$ with $g(a) = g(b) = 0$, then $f = 0$. on $[a,b]$.

Sol 1) Put $g(x) = (x-a)(b-x)f(x)$. Then $f(x)g(x) = (x-a)(b-x)f(x)^2 \geq 0$ on $[a,b]$ and $\int_a^b fg = 0$ implies that $f(x)g(x) = 0$ on $[a,b]$. This implies that $f(x) = 0$ on (a,b), and hence on $[a,b]$ by continuity. \(\square\)