(1) Which of the following functions are power functions? Explain your reasoning.

(a) \(f(x) = 2x^2 - 1 \)
(b) \(f(x) = (2x^2)^3 \)
(c) \(f(x) = x^{3x} \)
(d) \(f(x) = 2 \cdot 3^x \)
(e) \(f(x) = \frac{x^2}{3\sqrt{x}} \)

(2) Scientists studying a certain species found that the length \(L \) (in feet) and weight \(W \) (in pounds) was related by \(L = aW^b \), where \(a \) and \(b \) are numbers.

(a) If given various data points \((W, L)\), to use a linear regression, would you consider a semi-log plot or a log-log plot?

(b) Suppose the following points \((W, L)\) are given: \((1, 2.3), (2, 9.2), (3, 20.7), (4, 36.8)\), draw either a semi-log plot or a log-log plot (whichever one you chose in (a)).

(c) Find \(a \) and \(b \) using your plot.

(3) Sketch the graphs of the following functions (Hint: Start with a “parent” graph and use graph transformations)

(a) \(f(x) = 1 - e^{-x} \)
(b) \(f(x) = (x - 2)^2 + 3 \)
(c) \(f(x) = \sqrt{x} - 2 \)
(d) \(f(x) = 2\cos(3x) - 1 \)
(e) \(f(x) = \frac{1}{x^2} + 4 \)
(f) \(f(x) = \ln(1 - x) \)

(4) Find an exponential function going through the points \((0, 3)\) and \((2, 12)\).

(5) Suppose you put $500 dollars into an account which gives 20% annual interest.

(a) Find the amount in the account after 1 year. After 2 years? After \(t \) years?

(b) Repeat part (a) under the assumption that the interest is compounded twice a year.

(c) How much money is in the account after \(t \) years if the interest is compounded \(n \) times a year.

(d) As \(n \) gets larger and larger, the amount of money in the account after 1 year tends to a specific number. Find that number.

(6) Evaluate:

(a) \(\log_2(1/4) \)
(b) \(\log_5(125) \)

(7) Solve for \(x \):
(a) $2 = e^{x+2}$
(b) $2 = 4 \ln(2x) - 2$
(c) $3 - \log_2(x) = 5$

(8) The half life of a certain substance is 2 days. If you start out with 100 grams of the substance:

(a) How much of the substance is left after t days?
(b) After how many days will 10 grams of the substance be remaining?
(c) You want to perform an experiment with the substance, but you cannot perform it until 70% of the substance has decayed. How long do you have to wait?

(9) For each of the following difference equations: find x_2, then find the equilibria.

(a) $x_{n+1} = x_n^2, x_0 = 2$
(b) $x_{n+1} = \frac{1}{x_n}, x_0 = 2$
(c) $x_{n+1} = \sqrt{x_n + 2}, x_0 = 0$

(10) John takes out a loan from a bank at 2% interest per month. He will be able to pay back 20 dollars per month. Let the initial loan amount be L, and let x_n be the amount of money John still owes after n months (so $x_0 = L$).

(a) Find x_2 in terms of L.
(b) Find a difference equation relating x_{n+1} and x_n.
(c) Find the equilibria of this system.
(d) Interpret this result (i.e. what will happen if the initial loan amount is bigger than or less than this equilibrium)? (Hint: use cobwebbing)
Answers:

(1) (a) No
(b) Yes
(c) No
(d) No
(e) Yes

(2) (a) log-log
(b) Draw the points (√W, √L)
(c) a = 2.3 and b = 2

(3) Check with graphing calculator or WolframAlpha

(4) \(f(x) = 3 \cdot 2^x \)

(5) (a) After 1 year: 600 dollars, after 2 years: 720 dollars, after \(t \) years: \(500(1.2)^t \) dollars.
(b) After 1 year: \(500(1.1)^2 \) dollars, after 2 years: \(500(1.1)^4 \) dollars, after \(t \) years: \(500(1.1)^{2t} \) dollars.
(c) \(500 \left(1 + \frac{2}{n} \right)^n \) dollars.
(d) \(500e^{-2} \) dollars.

(6) (a) −2
(b) 3

(7) (a) ln(2) − 2
(b) \(e/2 \)
(c) 1/4

(8) (a) \(100(1/2)^{t/2} \)
(b) \(2\ln(1/10)/\ln(1/2) \) days (simplified)
(c) \(2\ln(3/10)/\ln(1/2) \) days.

(9) (a) \(x_2 = 16 \), equilibria 0 and 1
(b) \(x_2 = 2 \), equilibria at \(\pm 1 \).
(c) \(x_2 = \sqrt{2 + \sqrt{2}} \), equilibrium at 2

(10) (a) \(x_2 = 1.02(1.02L - 20) - 20 \)
(b) \(x_{n+1} = 1.02x_n - 20 \)
(c) equilibrium at 1000.
(d) If the initial \(L \) is less than 1000, then John will be able to pay off his loans. Otherwise, he will not be able to, and he will get more and more in debt.