Generalized Brownian motions with multiple processes

Adam Merberg

University of California, Berkeley

25 March 2014

Adam Merberg (UC Berkeley)

Multiple generalized Brownian motions

< 口 > < 同

► < ∃ ►</p>

25 March 2014 1 / 25

- The famous example of generalized Brownian motion is the *q*-semicircular operators on the *q*-Fock space of Bożejko and Speicher.
- Guță and Maassen developed a theory of generalized Brownian motion based on a symmetric Fock space construction.
- Guță did a partial generalization of the theory of Guță and Maassen to multiple processes indexed by some set *I*.
- I'll discuss ideas that arise in the spirit of these works of Guță and Guță and Maassen.

イロト 不得下 イヨト イヨト

Fix an index set $\mathcal I.$ It will be convenient to call the elements of $\mathcal I$ colors.

Definition

- Let $\mathcal{P}_2(2n)$ be the set of pair partitions of [2n], i.e. partitions of [2n] into blocks of size 2.
- $\mathcal{P}_2^{\mathcal{I}}(2n) := \{(\mathcal{V}, c) : \mathcal{V} \in \mathcal{P}_2(2n), c : \mathcal{V} \to \mathcal{I}\}$ is the set of \mathcal{I} -indexed pair partitions.
- Let $\mathcal{P}_2^{\mathcal{I}}(\infty) := \bigcup_{n=1}^{\infty} \mathcal{P}_2^{\mathcal{I}}(2n).$

Colored pair partitions

We can draw colored pair partitions:

•
$$\mathcal{I} = \{1, 2\}$$

•
$$\mathcal{V} = \{(1,4), (2,5), (3,6)\}$$

- c((1,4)) = c((3,6)) = 2 and c((2,5)) = 1.
- $\bullet \ \text{solid} \ \textbf{red} \leftrightarrow 1 \in \mathcal{I}$
- dotted blue $\leftrightarrow 2 \in \mathcal{I}$

Suppose that for each $\mathbf{n}: \mathcal{I} \to \mathbb{N} \cup \{0\}$ with finitely many nonzero values, $V_{\mathbf{n}}$ is a complex Hilbert space with a unitary representation $U_{\mathbf{n}}$ of

$$S_{\mathsf{n}} := \prod_{b \in \mathcal{I}} S_{\mathsf{n}(b)}$$

If ${\mathcal H}$ is a complex Hilbert space, define a Fock space by

$$\mathcal{F}_{V}(\mathcal{H}) := \bigoplus_{\mathbf{n}} \frac{1}{\mathbf{n}!} V_{\mathbf{n}} \otimes_{s} \bigotimes_{b \in \mathcal{I}} \mathcal{H}^{\otimes \mathbf{n}(b)}$$

where \otimes_s means the subspace of vectors fixed by the action of S_n given by $U_n \otimes \tilde{U}_n$, where $\tilde{U}_n(\pi)$ permutes the vectors according to π , and $\mathbf{n}! := \prod_{b \in \mathcal{I}} n(a)!$ and $\frac{1}{\mathbf{n}!}$ refers to the inner product. Write $v \otimes_s f$ for the projection of $v \otimes f \in V_n \otimes \bigotimes_{a \in \mathcal{I}} \mathcal{H}^{\otimes \mathbf{n}(a)}$ onto $V_n \otimes_s \bigotimes_{a \in \mathcal{I}} \mathcal{H}^{\otimes \mathbf{n}(a)}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆ ○ ◆

Creation and annihilation operators

Assume for $b \in \mathcal{I}$ we have $j_b : V_n \to V_{n+\delta_b}$ (where $\delta_b(b') = \delta_{b'b}$) with

$$j_b \cdot U_{\mathbf{n}}(\sigma) = U_{\mathbf{n}+\delta_b}(\iota_{\mathbf{n}}^{(b)}(\sigma)) \cdot j_b, \qquad (1)$$

where $\iota_{\mathbf{n}}^{(b)}$ is the natural embedding $S_{\mathbf{n}} \hookrightarrow S_{\mathbf{n}+\delta_b}$. Define $\left(r_b^{(\mathbf{n})}\right)^*(h)$

$$(r_b^{(\mathbf{n})})^*(h): \bigotimes_{a\in\mathcal{I}}\mathcal{H}^{\otimes \mathbf{n}(a)} \to \bigotimes_{a\in\mathcal{I}}\mathcal{H}^{\otimes \mathbf{n}(a)+\delta_{a,b}}$$

acting as right creation operator on *b*-colored part $\mathcal{H}^{\otimes n(b)}$. The action on a vector $v \otimes_s \mathbf{f}$ of the creation operator $(a_b^{V,j})^*(h)$ is given by

$$(a_b^{V,j})^*(h)v_{\mathbf{n}}\otimes_s \mathbf{f} = \mathbf{n}(b)(j_bv_{\mathbf{n}})\otimes_s (r_b^{\mathbf{n}})^*(h)\mathbf{f}.$$

The annihilation operator $a_b^{V,j}(h)$ is the adjoint of $(a_b^{V,j})^*(h)$. Denote by $\mathcal{C}_{V,j}(\mathcal{H})$ the *-algebra generated by the operators $a_b^{V,j}(f)$ and $(a_b^{V,j})^*(h)$ for $h \in \mathcal{H}$, and $b \in \mathcal{I}$.

Adam Merberg (UC Berkeley)

Vacuum states of symmetric Fock spaces

Write

$$a_{b}^{V,j,e}(f) = \begin{cases} a_{b}^{V,j}(f), & \text{if } e = 1\\ \left(a_{b}^{V,j}\right)^{*}(f), & \text{if } e = 2 \end{cases}$$

Theorem

Let (U_n, V_n) be representations of S_n with maps $j_b : V_n \to V_{n+\delta_b}$ satisfying the intertwining relation. Let $\xi_V \in V_0$ be a unit vector and let $\rho_{V,j}$ be the vector state of $\xi_V \otimes_s \Omega$ on $\mathcal{C}_{V,j}(\mathcal{H})$. There is a $\mathbf{t}_{V,j} : \mathcal{P}_2^{\mathcal{I}}(\infty) \to \mathbb{C}$ such that

$$\rho_{V,j}\left(\prod_{k=1}^{m} a_{b_k}^{V,j,e_k}(f_k)\right) = \sum_{(\mathcal{V},c)\in\mathcal{P}_2^{\mathcal{I}}(m)} \mathbf{t}_{V,j}((\mathcal{V},c)) \prod_{(l,r)\in\mathcal{V}} \langle f_l,f_r \rangle \,\delta_{b_l,b_r} B_{e_le_r},$$

where $e_k \in \{1,2\}$ and

$$B := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Adam Merberg (UC Berkeley)

Multiple generalized Brownian motions

Remark

A state satisfying this pairing prescription is called a Fock state.

Example

The vacuum state on the algebra of *q*-creation and annihilation operators is a Fock state with $|\mathcal{I}| = 1$ and $\mathbf{t}(\mathcal{V}) = q^{cr(\mathcal{V})}$.

Corollary

The restriction of $\rho_{V,j}$ to the algebra $\mathcal{A}_{V,j}(\mathcal{H})$ generated by the operators $\omega_b(e) := a_b^{V,j}(e) + (a_b^{V,j})^*(e)$ is

$$\tilde{\rho}_{\mathbf{t}}\left(\prod_{k=1}^{m}\omega_{i_{k}}(f_{k})\right)=\sum_{(\mathcal{V},c)\in\mathcal{P}_{2}^{\mathcal{I}}(m)}\mathbf{t}_{\mathcal{V},j}((\mathcal{V},c))\prod_{(l,r)\in\mathcal{V}}\langle f_{l},f_{r}\rangle\,\delta_{i_{l},i_{r}}.$$

< 67 ▶

- A spherical representation of (G × G, G) (where G → G × G with the diagonal embedding) is an irreducible unitary representation of G × G with a non-zero G-fixed vector.
- The spherical representations of $(G \times G, G)$ are closely related to finite factor representations of G.
- Goal: construct a generalized Brownian motion associated to a spherical representation of $(S_{\infty} \times S_{\infty}, S_{\infty})$.

イロト 不得下 イヨト イヨト 二日

The characters of S_∞ are given by a famous theorem.

Theorem (Thoma 1964)

The normalized finite characters of S_∞ are given by the formula

$$\phi_{\alpha,\beta}(\sigma) = \prod_{m \ge 2} \left(\sum_{i=1}^{\infty} \alpha_i^m + (-1)^{m+1} \sum_{i=1}^{\infty} \beta_i^m \right)^{\rho_m(\sigma)}$$
(2)

・ロト ・ 一 ・ ・ ヨ ト ・ ヨ ・ ・ ク へ つ

where $\rho_m(\sigma)$ is the number of cycles of length m in the permutation σ , and $(\alpha_i)_{i=1}^{\infty}$ and $(\beta_i)_{i=1}^{\infty}$ are decreasing sequences of nonnegative real numbers such that $\sum_i \alpha_i + \sum_i \beta_i \leq 1$.

Vershik-Kerov representations of S_n

We'll discuss the case $\sum \alpha_n = 1$.

Notation

Fix a decreasing sequence (α_n) with $\sum \alpha_n = 1$. Define a measure μ on \mathbb{N} by $\mu(n) = \alpha_n$. Let $\mathcal{X}_n = \prod_{i=1}^n \mathbb{N}$ with the product measure. Let S_n act on \mathcal{X}_n by $\sigma(x_1, \ldots, x_n) = (x_{\sigma^{-1}(1)}, \ldots, x_{\sigma^{-1}(n)})$. For $x, y \in \mathcal{X}_n$, say that $x \sim y$ if there exists $\sigma \in S_n$ such that $x = \sigma y$. Let $\tilde{\mathcal{X}}_n = \{(x, y) \in \mathcal{X}_n \times \mathcal{X}_n : x \sim y\}$. The Hilbert space $V_n^{(\alpha)}$ defined by $V_n^{(\alpha)} := \left\{ f : \tilde{\mathcal{X}}_n \to \mathbb{C} | \infty > \| f \|^2 = \int_{\mathcal{X}_n} \sum_{y \sim x} |f(x, y)|^2 dm_n^{(\alpha)}(x) \right\}$

carries a unitary representation $U_n^{(\alpha)}$ of S_n given by

$$(U_n^{(\alpha)}(\sigma)h)(x,y)=h(\sigma^{-1}x,y).$$

3

Image: A marked and A marked

Denote by $\mathbf{1}_n$ the indicator function of the diagonal $\{(x, x)\} \subset \tilde{\mathcal{X}}_n$.

Theorem (Vershik, Kerov 1982) On $V_n^{(\alpha)}$, $\left\langle U_n^{(\alpha)}(\sigma)\mathbf{1}_n, \mathbf{1}_n \right\rangle = \phi_\alpha(\sigma).$ (3) For $n = \infty$ we get the representation of S_∞ associated to ϕ_α in the convex

hull of $\mathbf{1}_{\infty}$.

12 / 25

Generalized Brownian motions associated to factor representations of S_∞

There is a natural embedding $j^{\alpha}: V_n^{(\alpha)} \to V_{n+1}^{(\alpha)}$ satisfying the necessary intertwining relation:

$$\delta_{((x_1,\ldots,x_n),(y_1,\ldots,y_n))} \mapsto \sum_{z \in \mathbb{Z}} \delta_{((x_1,\ldots,x_n,z),(y_1,\ldots,y_n,z))}.$$
 (4)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Bożejko and Guţă used these representations of the S_n to construct generalized Brownian motions associated to factor representations of S_{∞} . They were able to compute the associated function on (one-colored) pair partitions.

Cycles of pair partitions

Bożejko and Guță introduced the notion of the cycle decomposition of a pair partition. Denote by $\hat{\mathcal{V}}$ the unique noncrossing pair partition such that the set of left points of $\mathcal{V} \in \mathcal{P}_2(\infty)$ and $\hat{\mathcal{V}}$ coincide. The cycle decomposition of $\mathcal{V} \in \mathcal{P}_2(2n)$ can be interpreted in terms of the multigraph $G_{\mathcal{V}}$ with vertices [2n] and edge set $\mathcal{V} \coprod \hat{\mathcal{V}}$.

 $G_{\mathcal{V}}$ is a union of vertex-disjoint cycles, a cycle of \mathcal{V} is a set of the form $C \cap \mathcal{V}$ where C is a cycle of $G_{\mathcal{V}}$.

Adam Merberg (UC Berkeley)

Multiple generalized Brownian motions

25 March 2014 14 / 25

Notation

Denote by $\rho_m(\mathcal{V})$ the number of cycles of \mathcal{V} of length m.

Theorem (Bożejko, Guță 2002)

The function on $\mathcal{P}_2(\infty)$ associated to the representations of Vershik and Kerov is given by

$$\mathbf{t}_{\alpha,\beta}(\mathcal{V}) = \prod_{m\geq 2} \left(\sum_{i=1}^{\infty} \alpha_i^m + (-1)^{m+1} \sum_{i=1}^{\infty} \beta_i^m \right)^{\rho_m(\mathcal{V})}.$$
 (5)

- The Hilbert space $V_n^{(\alpha)}$ consists of functions on certain pairs of *n*-tuples of natural numbers.
- With one color, S_n acted on $V_n^{(\alpha)}$ by permuting the left *n*-tuple.
- The group $S_n \times S_n$ acts on $V_n^{(\alpha)}$ with one copy permuting the left *n*-tuple and the other copy permuting the right *n*-tuple.
- For a symmetric Fock space indexed by $\mathcal{I} = \{1, 2\}$, we need representations of $S_{n(1)} \times S_{n(2)}$, even when $n(1) \neq n(2)$.
- Take $m = \max(\mathbf{n}(1), \mathbf{n}(2))$. Then we have a representation of $S_{\mathbf{n}(1)} \times S_{\mathbf{n}(2)}$ on $V_{\mathbf{n}}^{(\alpha)} := V_{m}^{(\alpha)}$ by restriction.
- If $\mathbf{n}(2) > \mathbf{n}(1)$ then $j_1^{(\alpha)} : V_{\mathbf{n}}^{(\alpha)} \to V_{\mathbf{n}+\delta_1}^{(\alpha)}$ is the identity map.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

Associating a graph to a 2-colored pair partition

- Given $(\mathcal{V}, c) \in \mathcal{P}_2^{\mathcal{I}}(2n)$, we can define a multigraph $G_{(\mathcal{V}, c)}$ with vertices [2n].
- The pairs of \mathcal{V} give half of the edges, and the color function c extends to a color function on all of the edges.
- The definition is quite technical, but an example might offer some intuition.

Figure : $G_{(\mathcal{V},c)}$ for $(\mathcal{V},c) \in \mathcal{P}_2^{\mathcal{I}}(10)$ with $\mathcal{V} = \{(1,5), (2,8), (3,6), (4,10), (7,9)\}$ and c((1,5)) = c((2,8)) = c((7,9)) = 1 and c((3,6)) = c((4,10)) = 2.

The idea of the graph

- Right points correspond to creation operators, left points to annihilation operators.
- Applying 2-colored creation operator (corresponding to 10) to the vacuum vector gives an element of

$$V_{0,1}^{(\alpha)} \otimes_{s} \mathcal{H}^{\otimes 0} \otimes \mathcal{H}^{\otimes 1} = V_{1}^{(\alpha)} \otimes_{s} \mathcal{H}^{\otimes 0} \otimes \mathcal{H}^{\otimes 1}.$$
(6)

• Next applying a 1-colored creation operator (corresponding to 9) to the result gives an element of

$$V_{1,1}^{(\alpha)} \otimes_{s} \mathcal{H}^{\otimes 1} \otimes \mathcal{H}^{\otimes 1} = V_{1}^{(\alpha)} \otimes_{s} \mathcal{H}^{\otimes 1} \otimes \mathcal{H}^{\otimes 1}.$$
(7)

We still have a function on 1-tuples!

 Edge between 9 and 10 keeps track of where elements are added to or removed from the tuples.

Adam Merberg (UC Berkeley)

- In general, we can define a multigraph $G_{(\mathcal{V},c)}$ and extend the color function c to the edges.
- $G_{(\mathcal{V},c)}$ is a union of vertex-disjoint cycles, and each cycle has edges of both colors.
- In the one-color case we used cycle length, but here we consider the number of maximal monochrome paths in each cycle.
- The number of maximal monochrome paths in a cycle is always even. Denote by $\gamma_m(G_{(\mathcal{V},c)})$ the number of cycles of a 2-colored graph $G_{(\mathcal{V},c)}$ with 2m maximal monochrome paths. Equivalently, $\gamma_m(G_{(\mathcal{V},c)})$ is the number of cycles of $G_{(\mathcal{V},c)}$ having m maximal monochrome paths of each color.

▲ロト ▲圖ト ▲画ト ▲画ト 二直 - のへで

Theorem (M 2014)

The vacuum state of the Fock space $\mathcal{F}_{V^{(\alpha,\beta)},j^{(\alpha,\beta)}}(\mathcal{H})$ on the algebra of creation and annihilation operators is the Fock state arising from the function $\mathbf{t}_{\alpha,\beta}: \mathcal{P}_2^{\mathcal{I}}(\infty) \to \mathbb{C}$ given by

$$\mathbf{t}_{\alpha,\beta}((\mathcal{V},c)) := \prod_{m \ge 2} \left(\sum_{i=1}^{\infty} \alpha_i^m + (-1)^{m+1} \sum_{i=1}^{\infty} \beta_i^m \right)^{\gamma_m(\mathcal{G}_{(\mathcal{V},c)})}.$$
 (8)

Bibliography I

Stephen Avsec.

New examples of exchangeable noncommutative brownian motions. In Workshop on Analytic, Stochastic, and Operator Algebraic Aspects of Noncommutative Distributions and Free Probability, Fields Institute, July 2013.

Marek Bożejko and Mădălin Guță.

Functors of white noise associated to characters of the infinite symmetric group.

Comm. Math. Phys., 229(2):209-227, 2002.

Marek Bożejko and Roland Speicher. An example of a generalized Brownian motion. *Comm. Math. Phys.*, 137(3):519–531, 1991.

Bibliography II

Marek Bożejko and Roland Speicher.

Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces. *Math. Ann.*, 300(1):97–120, 1994.

Marek Bożejko and Roland Speicher.
 Interpolations between bosonic and fermionic relations given by generalized Brownian motions.
 Math. Z., 222(1):135–159, 1996.

Mădălin Guță.

The q-product of generalised Brownian motions.

In *Quantum probability and infinite dimensional analysis (Burg, 2001)*, volume 15 of *QP–PQ: Quantum Probab. White Noise Anal.*, pages 121–134. World Sci. Publ., River Edge, NJ, 2003.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆ ○ ◆

Mădălin Guță and Hans Maassen.

Generalised Brownian motion and second quantisation. *J. Funct. Anal.*, 191(2):241–275, 2002.

Mădălin Guță and Hans Maassen. Symmetric Hilbert spaces arising from species of structures. Math. Z., 239(3):477–513, 2002.

Franz Lehner.

Cumulants in noncommutative probability theory. III. Creation and annihilation operators on Fock spaces.

Infin. Dimens. Anal. Quantum Probab. Relat. Top., 8(3):407–437, 2005.

James A. Mingo and Alexandru Nica.

Crossings of set-partitions and addition of graded-independent random variables.

Internat. J. Math., 8(5):645-664, 1997.

A. Okoun'kov.

On representations of the infinite symmetric group. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 240(Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 2):166–228, 294, 1997.

Grigori Olshanski.

Unitary representations of (g, k)-pairs that are connected with the infinite symmetric group $s(\infty)$.

Leningrad Math. J, 1(4):983–1014, 1990.

イロト 不得下 イヨト イヨト 二日

Elmar Thoma.

Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe. *Math. Z.*, 85:40–61, 1964.

A. M. Vershik and S. V. Kerov.

Characters and factor-representations of the infinite unitary group. *Dokl. Akad. Nauk SSSR*, 267(2):272–276, 1982.

Dan Voiculescu.

Symmetries of some reduced free product C^* -algebras. In Operator algebras and their connections with topology and ergodic theory (Bușteni, 1983), volume 1132 of Lecture Notes in Math., pages

556-588. Springer, Berlin, 1985.