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Classical Exchangeability

Definition
A sequence of (classical) random variables x1, 22, ... is said to be
exchangeable if

E(z;1)Zi2) * * * Titm)) = E(Zo(1)To(i2)) * * * Ta(i(n)))

for every n € N, i(1),...,i(n) € N and every permutation o of IN.

v
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v

That is, if the joint distribution of x1, x5 ... is invariant under
re-orderings.
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De Finetti’'s Theorem

Theorem [de Finetti, 1937]

A sequence of random variables x1, 2o, ... is exchangeable if and only
if the random variables are conditionally independent and identically
distributed over its tail o-algebra.
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De Finetti’'s Theorem

Theorem [de Finetti, 1937]

A sequence of random variables x1, 2o, ... is exchangeable if and only
if the random variables are conditionally independent and identically
distributed over its tail o-algebra.

Definition

The tail o-algebra is the intersection of the g-algebras generated by
{zN,ZN+1,...} as N goes to oco.
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De Finetti’'s Theorem

Theorem [de Finetti, 1937]

A sequence of random variables x1, 2o, ... is exchangeable if and only
if the random variables are conditionally independent and identically
distributed over its tail o-algebra.

Definition

The tail o-algebra is the intersection of the g-algebras generated by
{zN,ZN+1,...} as N goes to oco.

Thus, the expectation E can be seen as an integral (w.r.t. a
probability measure on the tail algebra) — that is, as a sort of convex
combination — of expectations with respect to which the random
variables x1, s, ... are independent and identically distributed

(i.i.d.).
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Symmetric states

Stgrmer extended this result to the realm of C*—algebras.

Definition

Consider the minimal tensor product B = ®Q)7° A of a C*-algebra A
with itself infinitely many times. A state on B is said to be
symmetric if it is invariant under the action of the group S, by
permutations of tensor factors.
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Symmetric states

Stgrmer extended this result to the realm of C*—algebras.

Definition

Consider the minimal tensor product B = ®Q)7° A of a C*-algebra A
with itself infinitely many times. A state on B is said to be
symmetric if it is invariant under the action of the group S, by
permutations of tensor factors.

Note that the set SS(A) of symmetric states on B is a closed,
convex set in the set S(B) of all states on B.
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Symmetric states

Stgrmer extended this result to the realm of C*—algebras.

Definition

Consider the minimal tensor product B = ®Q)7° A of a C*-algebra A
with itself infinitely many times. A state on B is said to be
symmetric if it is invariant under the action of the group S, by
permutations of tensor factors.

Note that the set SS(A) of symmetric states on B is a closed,
convex set in the set S(B) of all states on B.

Theorem [Stgrmer, 1969]

The extreme points of SS(A) are the infinite tensor product states,
i.e. those of the form ®{°¢ for ¢ € S(A) a state of A. Moreover,
SS(A) is a Choquet simplex, so every symmetric state on B is an
integral w.r.t. a unique probability measure of infinite tensor product
states.
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The quantum permutation group of Shuzhou Wang [1998]

The quantum permutation group A,(n)

As(n) is the universal unital C*—algebra generated by a family of
projections (u; j)1<i j<n Subject to the relations

Vi Zuiyj =1 and VJ Zui,j =1. (1)
J i

It is a compact quantum group (with comultiplication, counit and
antipode).
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The quantum permutation group of Shuzhou Wang [1998]

The quantum permutation group A,(n)

As(n) is the universal unital C*—algebra generated by a family of
projections (u; j)1<i j<n Subject to the relations

Vi Zum =1 and VJ Zui,j =1. (1)
J %

It is a compact quantum group (with comultiplication, counit and
antipode).

Abelianization of A4(n)

The universal unital C*—algebra generated by commuting projections
@;, ; satisfying the relations analogous to (1) is isomorphic to C(S),),
the continuous functions of the permutation group S,,, with

{Li,j = 1{permutations sending ji}- Thus, C(Sn) is a quotient of As(n)

by a *-homomorphism sending u; ; to u; ;.

v
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Fully noncommutative version of permutation invariance

Invariance under quantum permutations

In a C*-noncommutative probability space (A4, ¢), the joint
distribution of family x1,...,x, € A is invariant under quantum
permtuations if the natural coaction of As(n) leaves the distribution
unchanged. Concretely, this amounts to:

(1) * * - Tigry) 1

= Yo ) ) m @) Tie)
1<5(1),...,5(k)<n

€ C1 C As(n).

v
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distribution of family x1,...,x, € A is invariant under quantum
permtuations if the natural coaction of As(n) leaves the distribution
unchanged. Concretely, this amounts to:

(1) * * - Tigry) 1

= Do wa) e %E)iE i) Tw)
1<5(1),...,5(k)<n

€ C1 C As(n).

v

Invariance under quantum permutations implies invariance under

usual permuations
by taking the quotient from A,(n) onto C(.S,).
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Quantum exchangeable random variables and the tail

algebra

Definition [Kostler, Speicher '09]

In a C*-noncommutative probability space, a sequence of random
variables (z;)5°, is quantum exchangeable if for every n, the joint
distribution of x1,...,x, is invariant under quantum permutations.
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Quantum exchangeable random variables and the tail

algebra

Definition [Kostler, Speicher '09]

In a C*-noncommutative probability space, a sequence of random
variables (z;)5°, is quantum exchangeable if for every n, the joint
distribution of x1,...,x, is invariant under quantum permutations.

The tail algebra of the sequence is

T = ﬂ W*{zn,oNy15---})-

N=1
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Quantum exchangeable random variables and the tail
algebra

Definition [Kostler, Speicher '09]

In a C*-noncommutative probability space, a sequence of random
variables (z;)5°, is quantum exchangeable if for every n, the joint
distribution of x1,...,x, is invariant under quantum permutations.

The tail algebra of the sequence is

T = ﬂ W*{zn,oNy15---})-
N=1

Proposition [Kostler '10] (existence of conditional expectation)

Let (z;)72, be a quantum exchangeable sequence in a
W*-noncommutative probability space (M, ¢) where ¢ is faithful and
suppose M is generated by the x;. Then there is a unique faithful,
¢—preserving conditional expectation E from M onto T .
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Quantum exchangeable < free with amalgamation over
tail algebra.

Theorem [Kostler, Speicher '09] (A noncommutative analogue of
de Finneti's thoerem)

(x;)22, is a quantum exchangeable sequence if and only if the random
variables are exchangeable and are free with respect to the conditional
expectation FE (i.e., with amalgamation over the tail algebra).
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Quantum exchangeable < free with amalgamation over
tail algebra.

Theorem [Kostler, Speicher '09] (A noncommutative analogue of
de Finneti's thoerem)

(x;)22, is a quantum exchangeable sequence if and only if the random
variables are exchangeable and are free with respect to the conditional
expectation FE (i.e., with amalgamation over the tail algebra).

Theorem [DK]

Given any countably generated von Neumann algebra A and any
faithful state ¥ on A, there is a W*—noncommutative probability
space (M, ¢) with ¢ faithful and with a sequence (z;)2; of random
variables that is quantum exchangeable with respect to ¢, and so
that their tail algebra 7 is a copy of A so that ¢[+ is equal to .
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Change in perspective

Generalize in the direction of C*-algebras, like Stgrmer did

Instead of considering individual random variables, we consider a
unital C*—algebra A and a state ¢ on the universal unital free
product C*-algebra 2 = *7°A, with corresponding embeddings
)\i:A—>Q[, (ZZl)

| \

Definition

A state v is symmetric if it is invariant under the action of the
symmetric group on 2.

v

Let ) be a state on 2l and let 7y, be the GNS representation and M,
the von Neumann algebra generated by the image of .

Proposition [DKW]

If ¢ is symmetric, then there is a conditional expectation from M,
onto the tail algebra Ty = (N—1 W*(U;2ny mp © Ai(4)).
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Definition [DKW]

A state ¢ of 2 is quantum symmetric if the x~homomorphisms \; are
quantum exchangeable with respect to %, in the sense that, for all
neN, ay,...,ap € Aand 1 <i(1),...,i(k) <mn,

YAy (a1) -+ Ay (ax))1
= Z Ui(1),5(1) " Wik),i (k)P (Ajy(a1) - Ay (ak))

1<§(1),-.,5(k)<n
€ C1 C As(n).

| A\

Theorem [DKW]

Let ¢ be a state of 2. Then v is quantum symmetric if and only if it
is symmetric and the images m,, o A;(A) of the copies of A in the von
Neumann algebra M., are free with respect to Ey, (i.e., with
amalgamation over the tail algebra).

A\
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e We don't require faithfulness of ¥ on 2, nor of qﬁ on My, nor of
Ey on My,

e Our proof are similar to those in [Kostler, Speicher '09].

e Also Stephen Curran ['09] considered quantum exchangeability
for sequences of *—homomorphisms of *x-algebras and proved
freeness with amalgamation; he did require faithfulness of a
state, and used different ideas for his proofs.
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Let QSS(A) denote the set of quantum symmetric states on
A = *7°A. It is a closed, convex subset of the set of all states on 2.

Goals

| \

To investigate QSS(A) as a compact, convex subset of S(2), to
characterize its extreme points and to study certain convex subsets:

e the tracial quantum symmetric states
TQSS(A) = QSS(A) NTS(A)

e the central quantum symmetric states
ZQSS(A) ={¥ € QSS(A) [ Ty € Z(My)}

e the tracial central quantum symmetric states

ZTQSS(A) = ZQSS(A) N TQSS(A).

.
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Description of QSS(A) in terms of a single copy of A

There is a bijection V(A) «~ QSS(A)
where V(A) is the set of all quintuples (B, D, E, g, p) such that

e 1p €D C Bis avon Neumann subalgebra and £ : B — D is a
normal conditional expectation

e 0: A — Bis a unital *-homomorphism

e p is a normal state on D such that the state po F of B has
faithful GNS representation

e B=W*(c(A)UD)

e D is the smallest unital von Neumann subalgebra of 5 such that
E(dpo(ai)dy - --o(ayn)d,) € D for all ai,...,a, € A and all
do,...,d, €D.

The bijection takes (B,D, E,0,p) € V(A), constructs the W*—free
product (M, F') = (xp)7°(B, E') with amalgamation over D, and
yields the quantum symmetric state po E o (x}°0) on 20 = %{°A.
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Description of QSS(A) (2)

The correspondence V(A) — QSS(A)

The bijection takes (B, D, E, o, p) € V(A), constructs the W*—free
product (M, F') = (xp)3°(B, E') with amalgamation over D, and
yields the quantum symmetric state po E o (x7°0) on 2 = %{° A.

Under the bijection:

from (B,D, E, 0, p) H D ‘ M ‘ *°0 ‘ F ‘ poF
from GNS rep of 1 Ty My | Ey )
(tail alg.) (exp. onto
tail alg.)
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Description of QSS(A) (2)

The correspondence V(A) — QSS(A)

The bijection takes (B, D, E, o, p) € V(A), constructs the W*—free
product (M, F') = (xp)3°(B, E') with amalgamation over D, and
yields the quantum symmetric state po E o (x7°0) on 2 = %{° A.

| \

Under the bijection:

from (B,D, E, 0, p) H D ‘ M ‘ *°0 ‘ F ‘ poF
from GNS rep of ¢ Ty My | 7y Ey 1[}
(tail alg.) (exp. onto
tail alg.)

Technically, we need to let V(A) be the set of equivalence classes of
quintuples, up to a natural notion of equivalence. Also, to avoid set
theoretic difficulties we need to (and we can) restrict to B3 that are

represented on some specific Hilbert space.
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Theorem [DKW]|

¥ € QSS(A) is an extreme point of QSS(A) if and only if the
restriction of ¢ to the tail algebra is a pure state.
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Theorem [DKW]|

¥ € QSS(A) is an extreme point of QSS(A) if and only if the
restriction of ¢ to the tail algebra is a pure state.

Since the restriction of 1& to the tail algebra 7y, is a normal state, this
is equivalent to its support projection being a minimal projection of

Typ-
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Central quantum symmetric states

Recall ¢ € ZQSS(A) means the tail algebra 7y lies in the center of
My, and ZTQSS(A) is the set of tracial ones.

Theorem [DKW]|

e ZQSS(A) is a closed face of QSS(A) and is a Choquet simplex
whose extreme points are the free product states:

9e(ZQSS(A)) = {+7°¢ | ¢ € S(A)}

o ZTQSS(A) is a closed face of ZQSS(A) and is a Choquet
simplex whose extreme points are the free product traces:

8. (ZTQSS(A)) = {+°7 | 7 € TS(A)}.
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Central quantum symmetric states

Recall ¢ € ZQSS(A) means the tail algebra 7y lies in the center of
My, and ZTQSS(A) is the set of tracial ones.

Theorem [DKW]|

e ZQSS(A) is a closed face of QSS(A) and is a Choquet simplex
whose extreme points are the free product states:

9e(ZQSS(A)) = {+7°¢ | ¢ € S(A)}

o ZTQSS(A) is a closed face of ZQSS(A) and is a Choquet
simplex whose extreme points are the free product traces:

8. (ZTQSS(A)) = {+°7 | 7 € TS(A)}.

Choquet's theorem, then, implies that every element of ZQSS(A) is
the barycenter of a unique probability measure on 9.(ZQSS(A)), and
likewise for ZTQSS(A).
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Central quantum symmetric states

Recall ¢ € ZQSS(A) means the tail algebra 7y lies in the center of
My, and ZTQSS(A) is the set of tracial ones.

Theorem [DKW]|

e ZQSS(A) is a closed face of QSS(A) and is a Choquet simplex
whose extreme points are the free product states:

9e(ZQSS(A)) = {+7°¢ | ¢ € S(A)}

o ZTQSS(A) is a closed face of ZQSS(A) and is a Choquet
simplex whose extreme points are the free product traces:

8. (ZTQSS(A)) = {+°7 | 7 € TS(A)}.

Choquet's theorem, then, implies that every element of ZQSS(A) is
the barycenter of a unique probability measure on 9.(ZQSS(A)), and
likewise for ZTQSS(A). These are Bauer simplices, because their
sets of extreme points are closed.
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Tracial quantum symmetric states

Proposition [DKW]

TQSS(A) is in correspondence with the set of quintuples
(B,D, E,o,p) € V(A) such that po E is a trace on B (which, then,
must be faithful).
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Tracial quantum symmetric states

Proposition [DKW]

TQSS(A) is in correspondence with the set of quintuples
(B,D, E,o,p) € V(A) such that po E is a trace on B (which, then,
must be faithful).

In [DKW] we also found a (somewhat clumsy) characterization of the
exteme points of TQSS(A).
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Tracial quantum symmetric states (2)

A better characterization of extreme points of TQSS(A):

Theorem [DDM]

Let v € TQSS(A) correspond to quintuple (B,D, E, 0, p). (This
implies My, = (*p){°B and the tail algebra 7y, corresponds to D.)
Then the following are equivalent:

e 1) is an extreme point of TQSS(A)
e 1 is an extreme point of T'S(A)
e DNZ(B) =Cl.
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Tracial quantum symmetric states (2)

A better characterization of extreme points of TQSS(A):

Theorem [DDM]

Let v € TQSS(A) correspond to quintuple (B,D, E, 0, p). (This
implies My, = (%p)7°B and the tail algebra 7, corresponds to D.)
Then the following are equivalent:

e 1) is an extreme point of TQSS(A)
e 1 is an extreme point of T'S(A)
e DNZ(B) =Cl.

Corollary [DDM]
TQSS(A) is a Choquet simplex and is a face of 7°'S().
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Tracial quantum symmetric states (2)

A better characterization of extreme points of TQSS(A):

Theorem [DDM]

Let v € TQSS(A) correspond to quintuple (B,D, E, 0, p). (This
implies My, = (%p)7°B and the tail algebra 7, corresponds to D.)
Then the following are equivalent:

e 1) is an extreme point of TQSS(A)
e 1 is an extreme point of T'S(A)
e DNZ(B) =Cl.

Corollary [DDM]
TQSS(A) is a Choquet simplex and is a face of 7°'S().

The key to the proof is to show Z((*p){°B) = Z(B) N D.
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Tracial quantum symmetric states (3)

Theorem [DDM]
The extreme points of TQSS(A) form a dense subset of TQSS(A).

Dykema (TAMU) Quantum Symmetric States Large N, 2014 20 / 22



Tracial quantum symmetric states (3)

Theorem [DDM]
The extreme points of TQSS(A) form a dense subset of TQSS(A).

Thus, if A is separable and A # C, then TQSS(A) is the Poulsen
simplex (the unique metrizable simplex of more than one point whose
extreme points are dense).

Dykema (TAMU) Quantum Symmetric States Large N, 2014 20 / 22



Tracial quantum symmetric states (3)

Theorem [DDM]
The extreme points of TQSS(A) form a dense subset of TQSS(A).

Thus, if A is separable and A # C, then TQSS(A) is the Poulsen
simplex (the unique metrizable simplex of more than one point whose
extreme points are dense).

Key idea of proof: perturb an arbitrary i) € TQSS(A) with a
multiplicative free Brownian motion to get extreme points in

TQSS(A).
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Tracial quantum symmetric states (3)

Let v € TQSS(A), and let (B, D, E, o, p) be the corresponding
quintuple. (Thus, we have o : A — B, (My, Ey) = (xp)°(B, E),
and the tail algebra is D.)

Let (U¢)i>0 be a multiplicative free Brownian motion in L(Fy), let
B =B L(Fy) and let oy(-) = Ufo(-)Us.
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Tracial quantum symmetric states (3)

Let v € TQSS(A), and let (B, D, E, o, p) be the corresponding
quintuple. (Thus, we have o : A — B, (My, Ey) = (xp)°(B, E),
and the tail algebra is D.)

Let (U¢)i>0 be a multiplicative free Brownian motion in L(Fy), let
B =B L(Fy) and let oy(-) = Ufo(-)Us.

By the free L>° Burkholder—Gundy inequality [Biane, Speicher '98],
limy o U, — 1] = 0.
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Tracial quantum symmetric states (4)

Recall, ) «~ (B, D, E, 0, p).
We have B = B * L(Fo) and 04(-) = Ufo(-)Uy.
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Tracial quantum symmetric states (4)

Recall, ) «~ (B, D, E, 0, p).
We have B = B * L(Fy.) and o4(+) = Ufo(-)Uy.
Welet E=Eo Eg : B — D, where EE is the canonical conditional
expectation from B onto B. We let
(M, F) = (+p)7°(B, E)

and consider the state ¢y = po Fo (x°0¢) on .
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Tracial quantum symmetric states (4)

Recall, ) «~ (B, D, E, 0, p).
We have B = B * L(Fy.) and o4(+) = Ufo(-)Uy.
Welet E=Eo Eg : B — D, where EE is the canonical conditional
expectation from B onto B. We let
(M, F) = (+p)7°(B, E)
and consider the state ¢; = po F o (¥2°0;) on 2.

Using freeness, we have 1), € TQSS(A), and using U; — 1, we have
Yr — 1 in weak™ topology as t — 0.
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and consider the state ¢y = po Fo (x°0¢) on .

Using freeness, we have 1), € TQSS(A), and using U; — 1, we have
Yr — 1 in weak™ topology as t — 0.

We show that the tail algebra of 1, is a subalgebra of D.
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Tracial quantum symmetric states (4)

Recall, ) «~ (B, D, E, 0, p).
We have B = B * L(Fy.) and o4(+) = Ufo(-)Uy.

Welet E=Eo Eg B — D, where Eg is the canonical conditional
expectation from B onto B. We let

(M, F) = (+p)°(B, E)
and consider the state ¢y = po Fo (x°0¢) on .

Using freeness, we have 1), € TQSS(A), and using U; — 1, we have
Yr — 1 in weak™ topology as t — 0.

We show that the tail algebra of 1, is a subalgebra of D.

Using results of [Voiculescu '99] on liberation Fisher information, it
follows that D N oy (A)’ = C1. Thus, the center of My, is trivial and
¢ is an extreme point of TQSS(A).
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