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Overview

1 Introduction to classical and free transport

● Classical transport
● Previous results on free monotone transport
● First formal equation for free infinitesimally monotone

transport

2 Classes of non-commutative functions.

● Analytic functions with expectation.
● Haagerup tensor product valued free difference quotient
● C k -functions with expectation and stability properties.

3 Regularity of diffusion and transport

● Notions of non-commutative convexity and uniqueness of τV
● Regularity of free SDEs
● Construction of transport maps.
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1.1 Classical Transport

A transport map F ∶ IRn → IRn between µ and ν is a map such
that F∗µ = ν i.e. for any h positive measurable

∫ h(x)dν(x) = ∫ h(F (x))dµ(x).

For dµ = 1
ZV

exp(−V (x))dx to dν = 1
ZW

exp(−W (x))dx . Let

JF stand for the Jacobian (derivative) of F . Then the
transport equation reads:

det(JF (x)) = C exp(W (F (x)) −V (x)).

F is not determined by this equation (compose with measure
preserving maps). If one looks for F = ∇g then one gets a
more restrictive equation called Monge-Ampere equation :

det(J∇g(x)) = C exp(W (∇g(x)) −V (x)).
It is fully non-linear (i.e non-linear in the second order
derivative).

Yoann Dabrowski Free Transport for convex potentials



1.1 Classical Transport

A transport map F ∶ IRn → IRn between µ and ν is a map such
that F∗µ = ν i.e. for any h positive measurable

∫ h(x)dν(x) = ∫ h(F (x))dµ(x).

For dµ = 1
ZV

exp(−V (x))dx to dν = 1
ZW

exp(−W (x))dx . Let

JF stand for the Jacobian (derivative) of F . Then the
transport equation reads:

det(JF (x)) = C exp(W (F (x)) −V (x)).

F is not determined by this equation (compose with measure
preserving maps). If one looks for F = ∇g then one gets a
more restrictive equation called Monge-Ampere equation :

det(J∇g(x)) = C exp(W (∇g(x)) −V (x)).
It is fully non-linear (i.e non-linear in the second order
derivative).

Yoann Dabrowski Free Transport for convex potentials



1.1 Classical transport: infinitesimally monotone variant

Take µt a path of measure, µ0 = µ,µ1 = ν, say
dµt = exp(−Wt(x))dx ,Wt(x) = ((1 − t)V (x)) + tW (x)
One can look for transport maps Ft between µ0 and µt .
Differentiating the transport equation, one gets :

Tr[JḞt(x)(JFt)−1(x)] = (W−V )(Ft(x))+∑
i

∂xi (Wt)(Ft(x))Ḟ i
t (x).

One can look for
Ḟt = ∇gt(Ft(x)),

(infinitesimal monotonicity) so that
JḞt = (J∇gt(Ft(x)))J(Ft(x)) and

(∆gt)(Ft(x)) −∇Wt(Ft(x)).∇gt(Ft(x)) = (W −V )(Ft(x))
which is linear involving the generator LWt = ∆ −∇Wt .∇ of
the diffusion with stationary measure µt .
This defines an evolution equation for Ft with gt determined
by a Laplace type PDE. We will try to solve the free analogue
of this problem.
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1.2 Free Gibbs state with potentials

Recall the free analogue of dµ = 1
Z exp(−V (x))dx is a law τV

limit of 1
ZN,V

exp(−NTr(V (M)))dLeb(M) on hermitian

matrices.
When V is a small perturbation of quadratic
[Guionnet,Maurel-Segala] or (c,M) convex
[Guionnet,Shlyakhtenko], τV is the unique solution of the
Schwinger-Dyson equation

τ ⊗ τ(∂iP) = τ((DiV )P) ∀P ∈ lC⟨X1, ...,Xn⟩.
D = (D1, . . . ,Dm) denotes the cyclic gradient which is linear
and given, for any monomial P, by

DiP = ∑
P=P1XiP2

P2P1,

and where ∂i denotes the free difference quotient ∂ such that :

∂iP = ∑
P=P1XiP2

P1 ⊗ P2 .

For V0 = 1
2 ∑X 2

j , τV0 is the standard semicircular distribution.Yoann Dabrowski Free Transport for convex potentials



1.2 Previous Results on free monotone transport

Shlyakhtenko and Guionnet solve the following free Monge
Ampere equation :

(1⊗τ+τ⊗1)Tr log JDg = S [{W (Dg(X ))} − 1

2
∑X 2

j ] (1)

for transport between law with potential V0 = 1
2 ∑X 2

j and
potential W (S means modulo commutators.)

Theorem (Guionnet-Shlyakhtenko 2012)

If ∣∣W −V0∣∣R small enough, there exists an analytic solution g to 1
such that Dg(X1, ...,Xn) is invertible analytic and have law τW if
(X1, ...,Xn) are semicircular variables. Thus
W ∗(τV0) ≃ W ∗(τW ),C∗(τV0) ≃ C∗(τW )

There are generalizations to the type III case [Brent Nelson]

Goal : going beyond small perturbations of semicircular
systems and get the isomorphism for W ”regular convex.”
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1.3 Infinitesimal free monotone transport

If we look for a path of transport maps Ft from τV to
τWt ,Wt = tW + (1 − t)V with

Ḟt = Dgt(Ft),

to get an autonomous (infinitesimally monotone equation) one are
reduced to take gt satisfying :

(1⊗ τ + τ ⊗ 1)Tr(JDgt(Ft))

= S [∑
i

∂iWt(Ft(X ))#Digt(X ) + (W −V )(Ft)]
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1.3 Infinitesimal free monotone transport

● Problem: the generator of the free diffusion is

LWt g =∑
i

m ○ (1⊗ τ ⊗ 1)∂i ⊗ 1∂ig − ∂i(g)#DiWt .

(with (a⊗ b)#c = acb) and the equation above reads :

(LWt g)(Ft) +∑
i

(τ ○m ⊗ 1) ○ ((123).∂i ⊗ 1∂ig)(Ft)

= (W −V )(Ft) + [P,Q]

● We have to find a better adapted differential calculus to
remove the supplementary second order term.
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2.1 Analytic functions with expectation

● If one looks at the construction of [Guionnet-Shlyakhtenko
2012], the transport map Dg is of the form

∑P0,...,Pn
aP0,...,PnP0τ(P1)...τ(Pn) , i.e. a Power series variant

of the space considered in [Cebron2013] (when B = lC)

B{X1, ...,Xn} = B⟨X1, ...,Xn⟩⊗ S(B⟨X1, ...,Xn⟩)

● As in [Cebron2013], on analytic variants of B{X1, ...,Xn}, free
diffusion equations are really semigroups with generator
∆V = LV + δV with δV the derivation with

δV (P0) = 0, δV (τ(Pi)) = τ(LV (Pi)).

● If one considers also a full cyclic gradient

Di(P0τ(P1)...τ(Pn)) ∶=
n

∑
j=0

Di(Pj)∏
k≠j
τ(Pk),

then Di∆0 = ∆0Di and, formally, with Ḟt = Dgt(Ft), then
(∆Wt g)(Ft) = (W −V )(Ft) + commutatiors
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2.1 Calculus on analytic functions with expectation

● Beyond the full cyclic gradients, there are 2 other natural
”derivations” on B{X1, ...,Xn}, the ordinary difference
quotient

∂i(P0τ(P1)...τ(Pn)) = ∂i(P0)τ(P1)...τ(Pn)).

It is unavoidable since it is involved in the transport equation.

● There is also the full differential dX as a function of X ′
i s and a

partial one d with a term involving ∂ removed.

● The second one a priori well commutes with conditional
expectation on part of the variables, but for ∂i , this depends
on the space of value. This is okay on subspaces of
L2(M)⊗ L2(M) for free variables. But one may need a space
where (a⊗ b)#c ↦ acb can be extended to control
Lipschitzness properties since

F (X ) − F (Y ) =∑
i

∂iF (X ,Y )#(Xi −Yi).
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2.2 Reminder on Haagerup tensor product of C ∗ algebras
A,B ,C ...

.

∣∣U ∣∣A⊗hB = inf{∣∣∑
i

xix
∗
i ∣∣1/2∣∣∑

i

y∗i yi ∣∣1/2 ∶ U =∑
i

xi ⊗ yi}.

Theorem (cf. e.g. Pisier’s Book)

1 For any C∗ algebra C the multiplication map extends to a
completely contractive map m ∶ C ⊗h C → C

2 ⊗h is functorial and injective, i.e. for any C∗ algebras
C ⊂ C ′,B, we have C ⊗h B ⊂ C ′ ⊗h B,B ⊗h C ⊂ B ⊗h C ′

isometrically. Moreover [Blecher] if M finite W ∗ alg
M ⊗h M ⊂ M ⊗min M ⊂ L2(M ⊗M).

One can also consider a cyclic variant

∣∣∑ a1 ⊗ ...⊗ an∣∣A⊗hc n ∶= max
σ∈Cn

∣∣∑ aσ(1) ⊗ ...⊗ aσ(n)∣∣A⊗hn .
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2.3 C k-functions (with expectation)

● Fix A = B ∗W ∗(St , t > 0),
U ⊂ An

R = {(X1, ...,Xn),Xi = X ∗
i ∈ A, ∣∣Xi ∣∣ ≤ R}. For X ∈ U

P ∈ B{X1, ...,Xn}, one considers P(X ) = P(τX ,X ).

● We define, for l ≤ k , C k
c (A,U ∶ B) as a completion of

B⟨X1, ...,Xn⟩ for the norm (if U large enough)
supX∈U ∥P∥k,Xwith :

∥P∥k,X =
⎛
⎝
∥P(X )∥A +

k

∑
l=1

∑
i∈[1,n]l

∥∂ li (P)(X )∥A⊗hc (l+1)

⎞
⎠
.

● We define C k,l
tr ,c(A,U ∶ B) as the separation completion of the

space of maps X ∈ U ↦ P(τx) ∈ B⟨X1, ...,Xn⟩, for
P ∈ B{X1, ...,Xn} for the seminorm :

∥P∥k,l ,U = sup
X∈U

∥P∥k,X +
l

∑
p=1

sup
X∈U

⎛
⎝

sup
H∈An

1

∥Dp
HP∥k−p,X

⎞
⎠
.
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2.3 C k-functions and stability properties

● We define similarly a more ad hoc space C k,l
tr ,V ,c(A,U ∶ B) as

above for the seminorms :

∣∣P ∣∣
C k,l
tr,V ,c

(A,U ∶B) = ∣∣ι(P)∣∣k,l ,U + ∣∣δV (P)∣∣C∗

tr (A,U)

+
l−1

∑
p=0

sup
Q ∈ (Ck−1,p

tr (A,Um−1
∶ B))1

m ≥ 2

∣∣Di ,Q(X ′)(P)∣∣k−1,p,Um,tr .

● We have a stability by composition :

Lemma

Wih conditions on U ⊂ An
R ,U

′ ⊂ An
S (P,Q1, ...,Qn)↦ P(Q1, ...,Qn)

extends continuously to Q1, ...,Qn ∈ C k,l
tr (A,U ∶ B) with

∣∣Qi ∣∣0,0,U < S and any P ∈ C k,l
tr ,c(A,U ′ ∶ B) with value in

C k,l
tr ,c(A,U ∶ B), Lipschitz in Q if P ∈ C k+1,l+1

tr ,c . and also extends to

C k
c (A,U ′ ∶ B) × (C k,l

tr ,V (A,U ∶ B,ED))n → C k,l
tr ,V for any l ≥ 1.
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2.3 C k-functions and stability properties

Let B = B ∗W ∗(St , t > 0) and for S = {St , t > 0}, let
C k,l
tr ,V ,c(A,U ∶ B,S ) the closure of elements coming from

B{X1, ...,Xn,St , t > 0} in C k,l
tr ,V ,c(A,U ∶ B) then we have a stability

by conditional expectation.

Proposition

For any k , l and U ⊂ An
R,conj (resp. U ⊂ An

R,conj2, if k ≥ 4)
EB ∶ B → B gives a contraction
C k,l
tr ,V (A,U ∶ B,S )→ C k,l

tr ,V (A,U ∶ B). and we have compositions

on C k,l
tr ,V (A,U ∶ B ∶ S )) as before.
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3.1 Notions of non-commutative convexity and
consequences

● For V ∈ lC⟨X1, ...,Xn⟩, convexity of Tr(V ) on all matrix spaces
is in general not enough. In [GuionnetShlyakhtenkoGAFA], is
considered the notion of (c,M) covexity (which is not clearly
stable by cyclic perturbation), we will prefer a variant based
on Haagerup tensor product.

Definition

V = V ∗ ∈ C 2
c (A,U ∶ B), is said generalized (c ,M)-convex if for any

X ∈ U, A = (∂iDjV ) − cId ≥ 0, in Mn(C⊗hc2 with C = C 0
c (A,U ∶ B),

in the sense of one of the following equivalent assertions

1 A = A∗ ∈ Mn(C⊗hc2) has a semigroup of contraction e−At

2 A = A∗ ∈ Mn(C⊗hc2) has a resolvent familly for all α > 0, α +A is
invertible in Mn(C⊗hc2) and ∣∣ α

α+A
∣∣ ≤ 1.
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3.1 Notions of non-commutative convexity and
consequences

The following result is similar to the result of
[GuionnetShlyakhtenkoGAFA] for (c,M) convexity.

Proposition

Assume V ∈ C 2
c (A,M ∶ B), is generalized (c,M)-convex and

assume there exists XV = (XV
1 , ...,X

V
n ) satisfying Schwinger Dyson

(SDV ) with potential V , with ∣∣XV
i ∣∣ ≤ M/3. Then for any

X = (X1, ...,Xn), with ∣∣Xi ∣∣ ≤ M/3, the SDE

Xt = X + St − ∫
t

0

1

2
DV (Xu)du

has a unique globally defined solution such that
∣∣XV

t −Xt ∣∣ ≤ e−ct/2∣∣XV −X ∣∣. Especially the solution of SDV is
unique.
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3.2 Regularity of free SDEs and semigroups

Let An
M,V ,conj the subset of the product of n open balls of radius M

in A having conjugates variables and such that

∣∣Xt(X0)∣∣ < M.

Proposition

Under the hypothesis of our previous proposition with
V ∈ C k+2

c (A,U ∶ B),
Xt(X0,{Ss , s ∈ [0, t]}) ∈ C k,k

tr ,V ,c(A,U ∶ B ∶ S ). Moreover, there
exists a finite constant C such that :

(∣∣Xt ∣∣k,k,An
M,V ,conj

− ∣∣Xt ∣∣0,0,An
M,V ,conj

) ≤ Ce−ct/2.

Finally the map ϕV
t defined, for P ∈ C k,k

tr ,V ,c(A,An
M,V ,conj ∶ B) by

(ϕV
t (P))(X0) = τ(P(Xt)∣X0),

defines a semigoup there.
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3.3 Construction of transport maps.

Proposition

Let Vα = αW + (1 − α)V satisfy the hypothesis of our previous
proposition for any α ∈ [0,1] and Vα ∈ C 6

c (A,M ∶ B) (generalized
(c,M) convex. Let

gα =
1

2 ∫
∞

0
[ϕαt (W ) − τ(ϕαt (W ))]dt ∈ C 4,4

tr ,Vα
(A,An

M,Vα,conj).

Then gα satisfies the equation: ∆Vαgα = (W − τVα(W )).
Moreover the differential equation

d

dα
Fα = Dgα(Fα) = (D1gα(Fα), ...,Dngα(Fα))

has a unique solution with the initial condition F0 = X on a small
time [0, α0] and can be extended to [0, α + α0[ as long as
Fβ(X ) ∈ An

M,Vβ ,conj
,∀β ∈ [0, α[.
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3.3 Construction of transport maps.

Proposition

With the assumptions above, Fβ(X1, ...,Xn) has law τVβ for any
β ∈ [0, α + α0[ if (X1, ...,Xn) has law τV . Especially
C∗(τV ) ≃ C∗(τW ),W ∗(τV ) ≃ W ∗(τW )

The key lemma is as follows :

Lemma

For Fα constructed above, then Uα = J ∗
Fα

(1⊗ 1) −DVα(Fα)
exists and satisfies the differential equation in L∞

d

dα
Uα = −J Dgα#Uα − [dDgα(τFα).(Uα)](Fα).

As a consequence, if U0 = 0, then Uα = 0,∀α ∈ [0,1].
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Conclusion

1 The previous considerations can be applied to some cases
relative to a subalgebra D, i.e. when we consider the
Schwinger-Dyson equation :

τ((1⊗ ED)(∂iP)) = τ((DiV )P) ∀P ∈ B⟨X1, ...,Xn⟩.
2 The general theory of C k maps works well if one uses

D ′ ∩M⊗ehDn with the extended Haagerup product when D,M
von Neumann algebras studied by [Magajna]. At the end one
needs a strong assumption on D ⊂ B for instance valid when
B is a crossed product of a trace preserving action of a
countable discrete group Γ on D.

3 One of my motivations is to transport free brownian motions
(relative to D in presence of a initial condition algebra B) to
(weak) solutions of SDEs. (free version of Feyel-Usthunel)

4 The next step is to try solving really Monge -ampere equation
for convex potentials, and then beyond the convex case.
Again, the key step should be the study of a linearized pb.
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