
MATH 131B
2ND PRACTICE MIDTERM

Problem 1. State the book’s definition of:
(a) A complete metric space
(b)
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and
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(c) Convergence of a series of real numbers
(d) Normed vector space; Banach space
Problem 2. Let � be a metric space with a metric � . Let ��� and ��� be two Cauchy sequences in� . Show that

����� ����������������� �"! exists. Note: we do not assume that � is complete.
Problem 3. Let � be the usual Eucledian metric on # . We say that a subset � $%# is closed if
whenever �&��'�� and �&�)( �*'*# , then ��'+� . Show that a subset � $%# is complete with
respect to � if and only if it is closed.
Problem 4. Let ,.-"#0/1(2#3/ be given by
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Show that there is a unique point �5��HI���"HG!J'K# / with the property that ,L�5��HI���"H�!M7N�5�&HI���"HG! .
Problem 5. State and prove that Banach contraction principle.
Problem 6. Let OP,3OP� and OP,3O�Q be norms on the space RTSU;D��@WV of continuous functions on the
interval SX;
��@WV , given by:
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Show that the two norms are not equivalent.
Problem 7. Let de7 ����������	gf � and

f 7 ���������
hf � . Show that de7 f
if and only if

f � converges,
and moreover that if this is the case, then

f �i( f
.

Problem 8. State and prove the comparison test.
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