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1. Introduction

We fix a representation ρ̄ : GQ → GL2(F) with F a finite field of character-
istic p, that is of S-type (odd and absolutely irreducible), 2 ≤ k(ρ̄) ≤ p+1 if
p > 2. We assume that ρ̄ has non-solvable image when p = 2, and ρ̄|Q(µp) is
absolutely irreducible when p > 2. For a number field F we set ρ̄F := ρ̄|GF .

In this part we provide proofs of the technical results Theorems 4.1 and 5.1
stated in [35]. We adapt the methods of Wiles, Taylor-Wiles and Kisin (see
[66],[64], [36]) to prove the needed modularity lifting results (see Propositions
9.2 and 9.3, and Theorem 9.7, below). We also need to generalise slightly
Taylor’s potential modularity lifting results in [58] and [59] (see Theorem
6.1 below) to have it in a form suited to our needs.

Modularity lifting results proved here lead to the proof of Theorem 4.1 of
[35]. Modularity lifting results when combined with presentation results for
deformation rings due to Böckle [4] (see Proposition 4.5 below), and Taylor’s
potential version of Serre’s conjecture, lead by the method of [34] and [33] to
the existence of p-adic lifts asserted in Theorem 5.1 of [35] (see Corollary 4.7
below). These lifts are made part of compatible systems using arguments of
Taylor (see 5.3.3 of [63]) and Dieulefait (see [22], [67]).



SERRE’S MODULARITY CONJECTURE 3

1.1. Some features of our work. We remark on the arguments in the
paper which differ from the main references we use:

– The definition of local deformation rings follows [36], but there are some
novelties in the formalism we use and the calculations we make. We also
follow Kisin’s suggestion of working with framed deformations at finite and
infinite place

– We overcome non-neatness problems encountered in proving properties
of spaces of modular forms by the arguments used in [5] (see its appendix).

– We give a different proof, than the ones available in the literature,
of the positivity of the dimension of certain global deformation rings (see
Proposition 4.5). This is needed in our method for producing characteristic
0 lifts of global mod p Galois representations with prescribed ramification
behaviour. The proof uses more systematically the fact that the global
deformation rings are algebras over appropriate local deformation rings.

– For results about presentations of deformation rings we fix the deter-
minants of the deformations we consider. The reason we succeed in terms
of the numerics in the Wiles’ formula (see (2) of Section 4.2 below) produc-
ing a positive lower bound on the dimension of these rings is the following:
The reduced tangent spaces of the deformation rings we consider, which
parametrise deformations that in particular have fixed determinants, are
isomorphic to the images of appropriate cohomology groups with Ad0(ρ̄)
coefficients in related cohomology groups with Ad(ρ̄) coefficients.

– We arrive at what has turned out to be the main innovation of the
paper: the patching argument to prove modularity of 2-adic lifts. For p = 2
when doing the patching of deformation and Hecke rings in §9.1, we fix de-
terminants locally at places in the set S for which the local deformation rings
are put in the coefficients (see §9.1). As in [21], we do not fix determinant
locally at auxiliary primes. We do this because, as F. Diamond pointed out
to us during the refereeing of the paper, for p = 2, the usual argument for
getting auxiliary primes fixing the determinant does not work. We then need
to prove equality of dimensions of rings obtained by patching deformation
rings and Hecke rings, fixing the determinant. To be sure that fixing the
determinant gives the right number of relations, we use twists. We need to
impose a further condition on the auxiliary primes Qn in the Taylor-Wiles
patching argument, to make certain class groups grow (which allows us to
use the formalism that we introduce in §2.4, 2.5 and 2.6), which is one of
the novel features of the work here (cf. §5.5). We find it miraculous that
the method of Wiles and Taylor-Wiles in [66] and [64] can be made to work
with modifications in extremis. (For a sketch of the proof, the reader might
look at [68].)

That it suffices to prove modularity of Galois representations after solvable
base change is exploited extensively here following the work of Skinner-Wiles
in [57].
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The debt that this paper owes to the work of Wiles, Taylor-Wiles, Skinner-
Wiles, Diamond, Fujiwara and Kisin (see [66],[64],[57],[17], [36]) on modu-
larity lifting theorems, and the work of Taylor on the potential version of
Serre’s conjecture (see [58],[59]) will be readily visible to readers. The work
in the present paper, both directly and through the use of the references just
cited would not be possible without the work, in the arithmetic theory of
modular forms, and in the theory of local and global Galois representations,
of Fontaine (see [26], [25] for example), Hida (see [28],[29] for example),
Mazur (see [43],[44] for example) and Ribet (see [52] for example) in the
last three decades of the last century. In another direction, the base change
results of Saito, Shintani and Langlands have been crucial (see [40]). The
results attaching modular forms to Galois representations of the last fifteen
years, starting with the work of Wiles in [66], are based on the theoretical
foundations provided by these works.

1.2. Notation. We let p be a rational prime. Let E be a finite extension
of Qp and call O the ring of integers of E. Let π be a uniformizer of O and
let F be the residue field.

For F a number field, Q ⊂ F ⊂ Q, we write GF for the Galois group
of Q/F . For v a prime/place of F , we mean by Dv (resp., Iv when v is
a finite place) a decomposition (resp., inertia) subgroup of GF at v. We
denote by N(v) the cardinality of the residue field kv at v. We denote by Fv
a completion of F at v and denote by OFv the ring of integers of Fv, and
sometimes suppress F from the notation. We denote OFp = ΠvOFv with
the product over places v of F above a prime p of Q. For each place p of Q,
we fix embeddings ιp of Q in its completions Qp.

Denote by χp the p-adic cyclotomic character, and ωp the Teichmüller lift
of the mod p cyclotomic character χp (the latter being the reduction mod p of
χp). By abuse of notation we also denote by ωp the `-adic character ι`ι−1

p (ωp)
for any prime `: this should not cause confusion as from the context it will
be clear where the character is valued. We also denote by ωp,2 a fundamental
character of level 2 (valued in F∗p2) of Ip: it factors through the quotient of
Ip that is isomorphic to F∗p2 . We denote by the same symbol its Teichmüller
lift, and also all its `-adic incarnations ι`ι−1

p (ωp,2) . For a number field F

we denote the restriction of a character of Gal(Q̄/Q) to GF by the same
symbol. We denote by AF the adeles of F .

Consider a totally real number field F . Recall that in [61], 2-dimensional
p-adic representations ρπ of GF are associated to cuspidal automorphic
representations π of GL2(AF ) that are discrete series at infinity of weight
(k, · · · , k), k ≥ 2. We say that such forms are of (parallel) weight k. We say
that ρ : GF → GL2(O), with O the ring of integers of a finite extension of
Qp, is modular if it is isomorphic to (an integral model of) such a ρπ. For
a place v above p, we say that the local component πv at v of π is ordinary
if the local L-series L(πv, s) = 1

(1−αvq−s)(1−βvq−s) , where q is the cardinality
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of the residue field at v, with one of ιp(αv), ιp(βv) ∈ Qp a unit. If πv is
ordinary, so is ρπ|Dv in the sense of Definition 3.4 below.

A compatible system of 2-dimensional representations of GF is said to
be modular if one member of the system is modular ; then all members
are also modular. We say that ρ̄ : GF → GL2(F), with F a finite field of
characteristic p, is modular if either it is irreducible and isomorphic to the
reduction of (an integral model of) such a ρπ modulo the maximal ideal of
O, or it is reducible and totally odd (i.e., det(ρ̄(c)) = −1 for all complex
conjugations c ∈ GF ). We denote by Ad0(ρ̄) the trace zero matrices of
Ad(ρ̄) = M2(F) and regard it as a GF -module via the composition of ρ̄ with
the conjugation action of GL2(F) on M2(F). We oftentimes suppress ρ̄ from
the notation, as we work with a fixed one, and write Ad0(ρ̄) or Ad(ρ̄) as
Ad0 and Ad.

For a local field F we denote by WF the Weil group of F and normalise
the isomorphism F ∗ ' WF of local class field theory by demanding that a
uniformiser is sent to an arithmetic Frobenius.

For a number field we recall the isomorphism of global class field theory

A∗
F /F

∗(F ∗∞)0 ' Gab
F

that is compatible with the isomorphism of local class field theory.
If O is the ring of integers of a finite extension of Qp, we will consider

arithmetic characters ψ : A∗
F /F

∗(F ∗∞)0 → O∗ such that for an open compact
subgroup U of (A∞

F )∗, ψ(u) = N(up)t for u ∈ U , with up the projection of
u to the places above p, N the norm map (the product of the local norms),
and t an integer. We fix such a character ψ. These give rise to a Galois
representation ρψ : GF → O∗ that is of the form χ−tp ε with ε a finite order
character. When F ∗(F ∗∞) lies in the kernel of ψ, we consider ψ as a character
ψ : F ∗\(A∞

F )∗ → O∗, and the corresponding ρψ is then totally even.
If F ′/F is a finite extension and NF ′/F is the corresponding norm we will

sometimes denote ψ and its composition with NF ′/F by the same symbol,
or sometimes by ψF ′ . We will also allow ourselves to use the isomorphism
of local and global class field theory to identify characters of GF and of the
idele class group in the global case and characters of the Weil group WF and
of F ∗ in the local case.

2. Deformation rings: the general framework

References for this section are [45] and §2 of [36].
Let p, E, O, π and F be like in 1.2.

2.1. CNLO-algebras. Denote by CNLO the category whose objects are
complete, Noetherian, local O-algebras, with a fixed isomorphism of the
residue field to F, and whose maps are local O-algebra homomorphisms.
Given A ∈ CNLO we denote by mA, or sometimes simply by m, its maximal
ideal.
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Let A be a CNLO-algebra. We denote by SpA the functor of points defined
by A, i.e. for any CNLO-algebra B, SpA(B) is the set HomCNLO(A,B). In
particular, the morphism A → F defines the unique point in SpA(F) ; we
note it ξA,F. If one associates to A the functor SpA, one gets a contravari-
ant equivalence of the category of CNLO-algebras into the sub-category of
functors from CNLO-algebras to sets which are representable. If X is a func-
tor from CNLO-algebras to sets which is representable, we note A(X) the
CNLO-algebra that represents X i.e. is such that X = SpA(X). We shall say
that X has property P if A(X) has. For example, we shall say that X → Y
is smooth if A(Y )→ A(X) is (formally) smooth.

Let A be a CNLO-algebra. We denote by tA the (relative) tangent space.
Let F[ε] be the dual number algebra (ε2 = 0). As a set, tA identifies to
SpA(F[ε]). There is a natural bijection of tA to HomF(mA/(m2

A + πA),F),
and tA inherits a structure of F-vector space. The 0 of tA corresponds to the
compositum of ξA,F with the unique CNLO-morphism F → F[ε]. We write
t∗A the cotangent space i.e. the dual vector space HomF(tA,F). We can also
identify tA to the F-vector space of O-derivations of A with values in F.

As A is noetherian, the tangent and cotangent spaces are finite dimen-
sional. If (xi) are finitely many elements in mA such that their images in
t∗A generate t∗A, (xi) generates A as a topological O-algebra, and A is the
quotient of O[[Xi]] by the morphism that sends Xi to xi.

Let f : A → B be a morphism of CNLO-algebras. The morphism f
induces morphisms of F-vector spaces t(f) : tB → tA and t∗(f) : t∗A → t∗B.
The relative tangent space tB/A is the kernel of t(f). The relative cotangent
space is the cokernel of t∗(f). We see that tB/A identifies to the A-derivations
of B with values in F.

Let A, B1 and B2 be CNLO-algebras with morphisms A→ B1 and A→
B2. The completed tensor product C := B1⊗̂AB2 is a CNLO-algebra. To
see this, one remarks that its quotient by m := mB1 ⊗A B2 + B1 ⊗ mB2 is
naturally isomorphic to F. As F∗ embeds in C and C is complete for its
m-adic topology, every element of C which is not in m is invertible and C is
local. It is by definition complete. As C is a quotient of O[[X1, . . . , Xd1+d2 ]],
di = dimF(tBi), C is noetherian. For D a CNLO-algebra, one has a natural
bijection of SpC(D) to SpB1

(D) ×SpA(D) SpB2
(D). To give oneself an A-

derivation dC of C with values in F is the same as to give oneself an A-
derivations dB1 and dB2 with values in F (by the formula dC(b1 ⊗ b2) =
b2dB1(b1) + b1dB2(b2)). It follows that tC/A identifies to the direct sum
tB1/A ⊕ tB2/A.

A morphism f : B → C of CNLO-algebras is called a closed immersion if
it is surjective. If f is a closed immersion, it is clear that for every CNLO-
algebra A, the map SpC(A)→ SpB(A) is injective. The converse is also true,
as one sees easily using the surjectivity of SpC(A) → SpB(A) for A = F[ε]
([45]).
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2.2. Lifts and deformations of representations of profinite groups.
Let G be a profinite group satisfying the p-finiteness property 1.1. of [45],
i.e. for any open subgroup G′ of G, there are only finitely many continuous
morphisms from G′ to Z/pZ. Let d ≥ 1 be an integer and ρ̄ : G → GLd(F)
be a continuous representation. In this paragraph, we compare lifts and
deformations of ρ̄. This paragraph is not used in our proof of modularity
results, but the link between the two points of view seems to us interesting
to be spelled out.

If A is a CNLO algebra, a lift ρ of ρ̄ with values in A is a continuous
morphism G → GLd(A) such that its reduction G → GLd(F) is ρ̄. One
defines in an obvious way a functor D� : CNLO → SETS such that D�(A)
is the set of lifts ρ of ρ̄ to GLd(A). By a theorem of Grothendieck (18
of [45]), the functor D� is representable by a CNLO-algebra that we note
R�. We note ρ�

univ : G → GLd(R�) the universal lift. The relative tangent
space is the F-vector space of 1-cocyles Z1(G,Ad) where Ad is the adjoint
representation of ρ̄. For each g ∈ G, the entries of the matrix ρ�

univ(g) are
functions in R�: these functions topologically generate R� over O as follows
from the description of the tangent space.

A deformation of ρ̄ is an equivalence set of lifts, two lifts being equivalent
if they are conjugate by a matrix of the kernel GLd(A)1 of the morphism
GLd(A) → GLd(F). We note A 7→ D(A) the functor of deformations of ρ̄.
We also call a lift a framed deformation. One has a natural morphism of
functors D� → D and a natural action of (GLd)1 on D�. For each A, D(A)
is identified with the set of orbits of GLd(A)1 in D�(A).

The functorD has a hull that is unique up to isomorphism. More precisely,
there is a CNLO algebra R and a versal deformation ρvers : GF → GLd(R).
Let, as in the preceding section, SpR be the functor represented by R. One
has a natural morphism of functors SpR → D which is smooth. For each A
and each deformation ρ ∈ D(A), one has a point ξ ∈ SpR(A) such that ρ
is equivalent to the compositum of ρvers : G → GLd(R) with the morphism
GLd(R) → GLd(A) induced by ξ. Furthermore, if A = F[ε]/ε2 is the dual
numbers algebra, then D(A) is isomorphic as an F-vector space to the tan-
gent space tR of R. We express this by saying that R is universal for lifts to
dual numbers. The tangent space tR is naturally isomorphic to the F-vector
space H1(G,Ad).

Let us apply the versal property to the deformation defined by the uni-
versal lift ρ�

univ. One gets a point ξ ∈ SpR(R�). It defines a morphism of
functors fξ : D� → SpR such that the image of idR� in SpR(R�) is ξ. As
idR� is the point defined by ρ�

univ, one sees that the compositum of fξ with
the natural functor SpR → D is the natural functor D� → D.

Proposition 2.1. The morphism of functors fξ : D� → SpR is smooth. The
morphism ξ : R→ R� is formally smooth of dimension d2−dim(H0(G,Ad)).
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Proof. We have to prove that if A is Artinian object in CNLO which is a
small extension of A, then:

D�(A)→ SpR(A)×SpR(A) D
�(A)

is surjective. Recall that A → A being small means that the morphism of
CNLO-algebras is surjective with principal kernel I such that mAI = (0).

Let us first prove that D�(A) → SpR(A) is surjective. Let us choose
a representative for ρvers. It defines a point in D�(R) i.e. a morphism
R� → R. Let Z1(G,Ad) be the F-vector space of 1-cocycles. The morphism
R� → R induces on tangent spaces a F-linear morphism H1(G,Ad) →
Z1(G,Ad) which is a section of the natural morphism. The morphism ξ
induces on tangent spaces the natural projection Z1(G,Ad) → H1(G,Ad).
So one sees that the compositum R → R� → R induces isomorphisms
on tangent and cotangent spaces. It induces a surjective endomorphism of
R/mn for each integer n, hence an automorphism of R/mn, and hence it
is an automorphism of R that we note a. If we compose R� → R with
a−1, we obtain a section of ξ. The existence of this section implies that
D�(A)→ SpR(A) is surjective.

Let xA ∈ SpR(A) and x�
A
∈ D�(A) having the same image in SpR(A). Let

us prove that they come from a z ∈ D�(A). We just proved that there exists
y ∈ D�(A) lifting xA. The image y of y in D�(A) and x�

A
have the same

images in D(A). So there exists g ∈ GLd(A)1 such that x�
A

= g y. Lifting
g to g ∈ GLd(A)1, one gets z̃ = gy ∈ D�(A) which is a lift of x�

A
. As xA

and fξ(z̃) have the same image in SpR(A), there exists δ ∈ I ⊗F H
1(G,Ad)

such that fξ(z̃) = xA + δ. Let δ̂ be a lift of δ in I ⊗F Z
1(G,Ad). One has

fξ(z̃− δ̂) = xA and the image of z := z̃− δ̂ in D�(A) is x�
A
. This proves the

smoothness.
As ξ is formally smooth, the relative dimension of ξ is the dimension of the

relative tangent space, i.e. the dimension of the 1-coboundaries B1(G,Ad),
which is d2 − dim(H0(G,Ad)). This proves the proposition. �

Let X be a deformation condition as in 18 of [45]. The deformations
that satisfy this condition define a subfunctor DX ⊂ D which is relatively
representable. Let SpR,X be the subfunctor of SpR defined by SpR,X =
SpR×DDX . For each A, SpR,X(A) is the inverse image of DX(A) in SpR(A).
The functor SpR,X is represented by a quotient RX of R. In the same way, let
D�
X be the subfunctor of framed deformations with condition X i.e. D�

X(A)
is the inverse image of DX(A) in D�(A). One sees that D�

X is represented
by a quotient R�

X of R�. By restriction to SpR,X , the proposition implies

that RX → R
�
X is also formally smooth of dimension d2 − dim(H0(G,Ad)).

2.3. Points and tensor products of CNLO algebras. We will need the
following well-known proposition (similar to Lemma 3.4.12. of [36]).
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Proposition 2.2. i) Let R be a flat CNLO-algebra. Then, there exist a
finite extension E′ of E such that R has a point with values in the ring of
integers of E′. Every maximal ideal of R[1/p] is the image of the generic
point of a local morphism : Spec(O′)→ Spec(R) over Spec(O).

ii) Let I be a finite set and Ri, i ∈ I, be CNLO-algebras which have a
point with values in O, are domains, (hence are flat over O), and are such
that Ri[1/p] is regular. Then the completed tensor product of the Ri satisfies
the same properties.

Proof. Let us prove i).
Let d be the dimension of the special fiber R/πR of R. By flatness, the

absolute dimension of R is d+ 1. Let x̄1, . . . , x̄d be a system of parameters
of R/πR and let be x1, . . . , xd be elements of R which reduces to x̄1, . . . , x̄d.
The elements π, x1, . . . , xd form a system of parameters of R. Let R′ be
R/(x1, . . . , xd). It is of dimension 1. Let Q be a minimal prime ideal of
R′ such that R′/Q is of dimension 1. As R′/(Q, π) is of finite length, and
R′/Q is separate and complete for the π-adic topology and is of dimension
1, R′/Q is a finitely generated O-module which is not of finite length. It is
finite as an O-module and has a non-empty generic fiber. Its normalization
is the ring of integers O′ of a finite extension of E. We see that R has a
point with values in O′.

Let Q be a maximal ideal of R[1/p] and let QR = Q ∩ R. The CNLO-
algebra R/QR is flat. By what we just proved, it has a point ξ with values
in O′ for E′ a finite extension of E. The image of the generic point of ξ is
Q, as Q is maximal. This finishes the proof of i).

Let us prove ii). Let R̂ be the complete tensor product of the Ri. We saw
in the preceeding section that R̂ is a CNLO. Let, for each i, ξi : Ri → O a
point of Ri with values in O. Let Pi be the kernel of ξi. Let ξ and P be the
point

∏
i ξi and the ideal defining it. Let S be the completion of (⊗iRi)[1/p]

at ξ[1/p]. As the Ri[1/p] are regular, S is isomorphic to E[[X1, . . . , Xd]] with
d =

∑
i di, di being the relative dimension of Ri. The ring Ri is complete

for the Pi topology. It follows from a theorem of Chevalley (cor. 5 of th.
13 chapter 8.5. of [69]) that the Pi topology on Ri is the same as the
topology defined by the P̃ni , where P̃ni = Pni [1/p] ∩Ri. As ⊗iRi/P̃ni injects
in ⊗iRi/Pni [1/p] for all n, we see that R̂ injects in S. This implies that R̂ is
a domain. By i), the maximal ideals of R̂[1/p] correspond to points of the
Ri with values in the ring of integers O′ of a finite extension E′ of E. The
completion of R̂[1/p] at such a point is a power series ring E′[[X1, . . . , Xd]].
This proves that R̂[1/p] is regular (prop. 28.M. of [41]). �

The next proposition shows that the points with values in the rings of
integers O′ of finite extensions of K determine a flat and reduced quotient
of a CNLO algebra.

Corollary 2.3. Let R be a CNLO-algebra and R′ be a quotient of R which
is flat and reduced. Let I be the kernel of the map R → R′. Then I is the
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intersection of the kernels of the local O-algebra morphisms R → O′ which
factor through R′.

Proof. Let us call f the map R→ R′ and I ′ ⊂ R′ the intersection of kernels
of the morphisms R′ → O′. We have I = f−1(I ′), so we have to prove that
I ′ = (0). As R′ is flat over O, this is equivalent to I ′[1/p] = (0). As R′

is noetherian and p belongs to the radical of R′, R′[1/p] is a Jacobson ring
(cor. 10.5.8. of EGA 4 part 3). As R′[1/p] is reduced, it then follows from
the i) of the proposition that I ′[1/p] = (0).

�

Definition 2.4. Let R be a CNLO-algebra, and X a set of local O-algebra
morphisms R → O′ where O′ runs through the ring of integers of all fi-
nite extensions of the fraction field of O. We say that a flat and reduced
quotient R′ = R/I of R classifies the morphisms in X if the set of local
O-algebra morphisms R′ → O′ is identified with X. By the corollary above
I is identified with the intersection of the kernels of elements in X.

2.4. Quotients by group actions for functors represented by CNLO
algebras. Let G be a functor from CNLO-algebras to sets which is repre-
sentable by the CNLO-algebra A(G). A group structure on G is the data for
every CNLO-algebra A, of a group structure on G(A) such that for A→ A′,
the map G(A)→ G(A′) is a morphism of groups. Such a structure is defined
by morphisms A(G) → A(G)⊗̂OA(G), A(G) → A(G) and A(G) → O, cor-
responding to the product in G, the map g 7→ g−1, and the neutral element,
satisfying the usual compatibilities.

Let X be a representable functor from CNLO-algebras to sets. We define
in a similar way an action of G on X. We say that the action of G on X
is free if the map G × X → X × X corresponding to (g, x) 7→ (x, gx) is a
closed immersion i.e. for every A, G(A) acts on X(A) without fixed points.

Let O be the functor of orbits from CNLO-algebras to set which associates
to A the set of orbits ofG(A) acting onX(A). We call A(X)0 the sub-algebra
of A(X) of elements a such that γ(a) = 1 ⊗ a, where γ is the morphism
A(X) → A(G)⊗̂OA(X) defined by the morphism (g, x) 7→ gx from G ×X
to X. The functions a ∈ A(X)0 are the functions on X that are constant on
orbits, i.e. such that for every CNLO-algebra A, g ∈ G(A) and x ∈ X(A),
one has a(gx) = a(x).

The map G × G → G defining the product in G defines a morphism of
F-vector spaces tG ⊕ tG → tG. In the identification of tG with the group
G(F[ε]), this morphism corresponds with the addition in tG. To see it, first,
the identity in G(F[ε]) is the point obtained by composing 1G ∈ G(O) with
O → F→ F[ε]. It follows that it coincides with the 0 in tG. Then, for l ∈ tG,
(0, l) and (l, 0) go to l as 1× g = g × 1 = g.

In the same way, the map G×X → X defines a morphism tG⊕ tX → tX .
For x ∈ tX , the image of (0, x) is x, as (1G, x) 7→ x. Let o be the morphism
tG → tX which associates to l the image of (l, 0) in tX by the map tG⊕tX →
tX . The image of (l, x) by the same map is o(l) + x. The map o identifies
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with the map which associates to l ∈ G(F[ε]) the point lξX,F[ε] ∈ X(F[ε]),
where ξX,F[ε] is obtained by composing the unique point ξX,F ∈ X(F) with
the morphism of CNLO-algebras F ↪→ F[ε]. It follows that if the action of G
on X is free, the map o is injective, so we get an embedding tG ↪→ tX . The
quotient tX/tG is the biggest quotient of tX on which tG acts trivially.

Proposition 2.5. Let G be a group acting on X as above. One supposes
that G is smooth and that the action of G on X is free. Then, A(X)0 is a
CNLO-algebra and the functor of orbits is represented by A(X)0. The map
X → O is smooth. The tangent space tO is naturally isomorphic to tX/tG
so that the map tX → tO identifies with the quotient map tX → tX/tG. Let
GO = O ×G. The map GO ×O X → X makes X a torsor over O of group
GO (the natural map GO×OX → X×OX is an isomorphism). This torsor
is trivial and there exists an isomorphism of X with O ×G.

Proof. Using Schlessinger theorem (th. 2.11 of [55]), to prove (pro)-representability
of the functor O by a CNLO-algebra, it suffices to check the two following
conditions:

- 1) if B1, B2 and A are CNLO-algebras which are Artinian with mor-
phisms B1 → A and B2 → A, B1 → A being surjective, the natural map

O(B1 ×A B2)→ O(B1)×O(A) O(B2)

is bijective;
- 2) 1) being established, one has a natural structure of F-vector space on

O(F[ε]) (lemma 2.10 of [55]); the condition 2) is that this F-vector space is
finite dimensional.

Let us prove 1) and first the surjectivity of the above map. Let x1 ∈ O(B1)
and x2 ∈ O(B2) have the same image xA in O(A). Let xi ∈ X(Bi) in the
orbits O(Bi). There exists gA ∈ G(A) such that, if xi,A are the images of xi
in X(A), we have gAx1,A = x2,A. As G is smooth and B1 → A is surjective,
there exists g1 ∈ G(B1) whose image in G(A) is gA. Let x′1 = g1x1. Then
x′1 and x2 have the same images in X(A) and the couple (x′1, x2) defines
an element in X(B1 ×A B2) whose orbit maps to (x1, x2). This proves the
surjectivity.

Let us prove the injectivity. Let (x1, x2) and (x′1, x
′
2) in X(B1×AB2) have

the same images in O(B1) ×O(A) O(B2). There exist gi ∈ G(Bi) such that
x′i = gixi. If we write ∗A for the images by the maps induced by Bi → A,
we have x1,A = x2,A and x′1,A = x′2,A. If we denote xi,A = xA and x′i,A = x′A,
we see that x′A = g1,AxA = g2,AxA. As the action is free, this implies that
g1,A = g2,A. We see that (g1, g2) is an element g of G(B1 ×A B2). We
have (x′1, x

′
2) = g(x1, x2) and (x1, x2) and (x′1, x

′
2) have the same image in

O(B1 ×A B2). This proves injectivity.
Let us prove 2). The map X(F[ε]) → O(F[ε]) is surjective (by definition

of O) and is a morphism of F-vector spaces (as X → O is a morphism of
functors). In other words, tX → tO is a surjective morphism of F-vector
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spaces. It follows that tO is finite dimensional. The representability of O is
proved.

Let us prove that X → O is smooth. Let B → A be a surjective map
of Artinian CNLO-algebras. Let xA ∈ X(A) and oB ∈ O(B) which have
the same images in O(A). We have to prove that there exists xB ∈ X(B)
which maps to xA and oB in the maps X(B) → X(A) and X(B) → O(B)
respectively. Let õB be an element of X(B) in the orbit oB. If õBA is the
image of õB in O(A), there exists gA ∈ G(A) such that xA = gAõBA. As G
is smooth, there exists gB ∈ G(B) whose image in G(A) is gA. We can take
xB = gB õB. This proves the smoothness of X → O.

It is clear that the orbits of tG acting on tX identifies to the quotient
tX/tG. This proves the description of the tangent spaces.

As X → O is smooth, it has a section s. This allows to define a map
f : X → G by sending, for any Artinian A, xA ∈ X(A) to the element
gA ∈ G(A) such that xA = gAs(xA) where xA is the image of xA in O(A).
The morphism X → G×O which associates to xA the couple (f(xA), xA) is
obviously an isomorphism. This proves that X is a torsor on O with group
GO and that this torsor is trivial.

We are left to prove that the affine algebra A(O) identifies to A(X)0. We
have seen that X with its G action is isomorphic to GO = G×O. We have
to prove that if a is a function on GO which is such that a(g′g) = a(g) for
any A(O)-algebra B which is CNLO and Artinian, each g and g′ in G(B),
then a is a constant of GO → O i.e. belongs to A(O). But this is clear.
This ends the proof of the proposition. �

2.5. Diagonalizable groups. Let a be an abelian finitely generated group
whose torsion is of order a power of p. We define the diagonalizable group
with character group a in the CNLO category as the completion of the usual
diagonalizable group ([15] exp.8) at the neutral element of the special fiber.
We note it (a)∗. If we have an action of (a)∗ on a representable set X in the
CNLO category, we define as in the previous section the algebra A(X)0 of
functions on X that are constant in the orbits of (a)∗.

Proposition 2.6. Let X be a representable set in CNLO and D = (a)∗ be
a diagonalizable group in CNLO acting freely on X. Then :

1) A quotient D\X exists in CNLO (i.e. the morphism X → D\X is
universal for D-morphisms X → Y with the action of D on Y trivial). The
morphism X → D\X makes X a torsor under DD\X . The affine algebra of
D\X is A(X)0.

2) If a→ a′ is a surjective morphism, so D′ = (a′)∗ is a closed subgroup of
D, D′\X has a natural free action of D/D′ and D\X is naturally isomorphic
to the quotient of D′\X by the action of D/D′.

Proof. In case a is without torsion, 1) is a special case of proposition 2.5.
In case a is torsion, it is finite and of order a power of p. The affine algebra
of the diagonalizable group of character group a in the category of group
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schemes over O is a CNLO-algebra. It follows that it coincides with the
affine algebra A((a)∗). The case where a is finite then follows from th. 5.1.
of [15] exp.8. Then, the proofs of general case of 1) and of 2) is a “dévissage
de routine”. �

2.6. Truncations and chunks. Let m be an integer ≥ 1. Let CNL[m]
O be

the full subcategory of CNLO-algebras whose objects are CNLO-algebras A
such that mm

A = (0). Such algebras are Artinian. For A a CNLO-algebra,
we note A[m] the CNL[m]

O -algebra A/mm
A . We see that A 7→ A[m] defines a

functor from CNLO-algebras to CNL[m]
O -algebras. We have an isomorphism

between the restrictions to the category CNL[m]
O of the functors of points SpA

and SpA[m] . If A represents the functor X we denote by X [m] the functor
represented by A[m]. We say that A[m] is obtained by truncation of level m
from A. If X = X [m], any CNLO map X → Y factors through Y [m]. A map
X → Y is a closed immersion if and only if the maps X [m] → Y [m] are for
all m (resp. if the map X [m] → Y [m] is an immersion for some m ≥ 2) :
this follows from the fact that A(Y )→ A(X) is surjective if and only if the
A(Y )[m] → A(X)[m] is surjective for some m ≥ 2.

One has to be careful that if A1 and A2 are CNL[m]
O -algebras, A1⊗OA2 is

not necessarily a CNL[m]
O -algebra. The restriction of the functor SpA1

×SpA2

to CNL[m]
O -algebras is represented by (A1 ⊗O A2)[m].

This leads to the definition of a group chunk of level m. It is given by a
CNL[m]

O -algebra A(G) and a morphism (G ×G)[m] → G, a map “g 7→ g−1”
from G to G and a “neutral element” in G(O[m]) which satisfy commutative
diagrams which are similar to the usual commutative diagrams of the def-
inition of a group scheme. Such a group chunk defines a functor of groups
on CNL[m]

O .
Let G be a representable group chunk of level m and X be a representable

set of level m. We define in a similar way a group action chunk as being
a map (G × X)[m] → X satisfying analogue of usual compatibilities. The
map (g, x) 7→ (gx, x) defines a map (G × X)[m] → X × X that factors
through (X × X)[m]. One says that the group chunk action is free if the
map (G×X)[m] → (X ×X)[m] is a closed immersion.

If G is a representable group in CNLO, we get by reduction a group chunk
G[m] of level m. Idem if G acts on a representable X.

Let G be a group acting on a set X which are representable in CNLO. The
data of the truncated group actions of level m, for all m, determines G, X
and the action of G on X. The algebras A(G) and A(X) are the projective
limits of the A(G[m]) and A(X [m]). The action is free if and only if the group
action chunks are. This follows from the fact that G × X → X × X is a
closed immersion if and only if the (G×X)[m] → (X ×X)[m] are.
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We shall need two technical results. The first one allows to construct
group actions as inductive limit of group action chunks. The second one
allows to construct actions of tori.

Let G be a representable group in CNLO. Suppose we have for each m a
CNL[m]

O -algebra Am, with morphisms πm : Am+1 → Am. Call Xm := SpAm .
One supposes that one has a CNLO-algebra C and surjective morphisms
C → Am that are compatible with the morphisms πm. Let A∞ be the
projective limit of the Am, so that A∞ is a CNLO-algebra. If X∞ is the
functor SpA∞ , one has natural immersions Xm → X

[m]
∞ .

Let for each m be a group action chunk of level m of G[m] on Xm, with
compatibility with the map G[m] → G[m+1] and the map Xm → Xm+1

induced by πm.

Proposition 2.7. Then we have a unique group action of G on X∞ such
that for each m the group action chunk of level m of G[m] on X

[m]
∞ is com-

patible with the given group action chunk of G[m] on Xm via the immersion
Xm → X

[m]
∞ . If the group action chunks of G[m] on Xm are free, so is the

action of G on X∞.

Proof. This follows easily from the facts:
– for each m there exists an n such that X [m]

∞ ↪→ Xn (this allows us to
replace the Xm by the X [m]

∞ );
– we have immersions G[m]×X [m]

∞ → (G[2m]×X [2m]
∞ )[2m] that allow us to

define the map (G×X∞)→ X∞. �

Proposition 2.8. Let T = (Zt)∗ be the (split) torus of dimension t. Let
m ≥ 0 be an integer and let Tpm ↪→ T be the closed subgroup ((Z/pmZ)t)∗.
Then, the closed immersion Tpm ↪→ T induces an isomorphism of truncated
group schemes T

[m+1]
pm ' T[m+1].

Proof. It follows from the fact that the polynomial (1+X)p
m−1 that defines

µpm as a closed subscheme of Ĝm := (Z)∗ belongs to the ideal (p,X)m+1. �

2.7. Inertia-rigid deformations. The present paragraph will be applied
to deformations of representations of local Galois groups with finite and
fixed restriction to inertia.

Let G be a profinite group with I ⊂ G a finite normal subgroup such that
the quotient G/I is isomorphic to the free rank one profinite group. Let
F ∈ G be such that the image of F in G/I is a generator of G/I.

Let ρ̄ : G → GLd(F) be a continuous representation. We fix a lift ρ0 :
G→ GLd(O) of ρ̄. Let φ : G→ O∗ be the determinant of ρ0.

LetMφ be the affine O-scheme of finite type whose points with values in
a O-algebra A are the following data:

- DATA : a morphism ρI of I to GLd(A), an element f ∈ GLd(A) which
normalizes ρI(I) and such that int(f)(ρI(τ)) = ρI(int(F )(τ)) for τ ∈ I,



SERRE’S MODULARITY CONJECTURE 15

det(ρI) = φ|I and det(f) = φ(F ), where int(f) and int(F ) are conjugation
by f and F respectively.

Let |I| be the cardinality of I. The map from Mφ to (GLd)|I|+1 which
associates to such a DATA the ρI(τ) with τ ∈ I and f is a closed immersion.
The equations are given by the multiplication table of I, the action of int(F )
on I, and the condition that the determinant is φ.

LetMφ,0 be the closed subscheme ofMφ given by imposing the equality
of the characteristic polynomials PρI(τ) = Pρ0(τ) for all τ ∈ I. Let us denote
by A∗ the affine algebra of M∗. We have a universal DATA with values in
Aφ,0. Let Mφ,0,fl be the closed subscheme of Mφ,0 whose affine algebra is
the quotient of Aφ,0 by its p-torsion.

Lemma 2.9. Let ξρ̄ be the point of Mφ,0 defined by ρ̄. Then, ξρ̄ is a point
of Mφ,0,fl.

Proof. The representation ρ0 defines a point ξ0 ∈ Mφ,0(O). This point
factorizes through Mφ,0,fl. The image of the closed point of Spec(O) is ξρ̄
and lies inMφ,0,fl. �

Let R�
φ,0,fl be the completion of Aφ,0,fl relative to the maximal ideal defined

by ξρ̄. It is a faithfully flat local O-algebra ; we still denote by ξρ̄ its closed
point. The residue field of ξρ̄ is F. So we see that R�

φ,0,fl is an objet of CNLO.

Proposition 2.10. Each irreducible component of Spec(R�
φ,0,fl) is faithfully

flat of absolute dimension d2 ; R�
φ,0,fl[1/p] is regular.

Proof. Let us prove first that the generic fiber Mφ,0[1/p] is smooth over E
of dimension d2 − 1. Let C be the commutant of ρ0|I in Md(O). Let C∗ be
the mutiplicative group of E⊗O C and C∗1 be the subgroup of C∗ of elements
of determinant 1. We also view C∗ and C∗1 as algebraic groups over E. Let
MI be the scheme over E that parametrizes the morphisms of I to (GLd)E
that are conjugate to ρ0|I . It is isomorphic to (GLd)E/C∗. It is smooth of
dimension d2 − dim(C∗). If we forget F , we get a map ofMφ,0[1/p] to MI ;
this map makesMφ,0[1/p] a MI torsor under C∗1 . It follows thatMφ,0[1/p]
is smooth of dimension d2− dim(C∗) + dim(C∗1 ). As the homotheties are in
C∗, we have dim(C∗) = dim(C∗1 )+1, and the relative dimension ofMφ,0[1/p]
is d2 − 1.

The affine algebra ofMφ,0 is finitely generated over O. It follows that it is
excellent (paragraph 34 of [41]). As then, by Grothendieck, the completion
morphism is regular (Theorem 79 of [41]) and Mφ,0[1/p] is smooth over E,
R

�
φ,0,fl[1/p] is regular. As Mφ,0[1/p] is smooth of relative dimension d2 − 1,

each of its irreducible components has dimension d2−1. By faithful flatness,
it follows that each irreducible component of the localization of Aφ,0,fl at ξρ̄
has absolute dimension d2. It follows from Theorem 31.6 of [42] that R�

φ,0,fl

is equidimensional, and each of its irreducible components is of absolute
dimension d2. �
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The tautological DATA with values in Aφ,0,fl extends to a morphism of G
to GLd(R

�
φ,0,fl) as R�

φ,0,fl is a projective limit of artinian O-algebras. It is a
lift of ρ̄. We call it ρX .

LetO′ be the ring of integers of a finite extension E′ of the field of fractions
E of O, and let ξ be a local morphism of R�

φ,0,fl to O′. Composing ρX with

the morphism from GLd(R
�
φ,0,fl) to GLd(O′), we get a lift ρξ of ρ̄⊗ F′ with

values in GLd(O′).

Proposition 2.11. The lifts ρξ are exactly the lifts ρ of ρ̄ with values in
GLd(O′) which have determinant φ and are such that the restriction of ρ⊗E′
to I is conjugate to (ρ0)|I ⊗ E′.

Proof. The proposition follows from the fact that the isomorphism classes of
representations of the finite group I with values in GLd(E′) are determined
by their characters. �

Remark. By Corollary 2.3, the proposition characterises R�
φ,0,fl as a quo-

tient of the universal ring R� for lifts of ρ̄.

2.8. Resolutions of framed deformations. Let G, ρ̄ and R� be as in
2.2. Let R�

X be a non-trivial quotient of R� by an ideal which is stable
by the action of (GLd)1 on R� induced by the conjugation. As in the last
paragraph of 2.2, this defines the subfunctor D�

X of framed deformations
satisfying the condition X.

We will call a smooth resolution of D�
X the data of a flat O-scheme R,

with an O-morphism f : R→ Spec(R�
X) such that:

(1) f is proper with injective structural morphism O
Spec(R

�
X)
→ f∗(OR)

(hence f is surjective);
(2) R[1/p]→ Spec(R�)[1/p] is a closed immersion;
(3) the inverse image Y ⊂ R of the closed point of Spec(R�

X) is geomet-
rically connected;

(4) there is a smooth algebraization of R→ Spec(O).
By a smooth algebraization, we mean a O-scheme R0 which is smooth

of finite type, a closed subscheme Y0 of R0, a O-morphism R → R0 which
sends Y to Y0 and induces an isomorphism of formal schemes between the
completions of R and R0 along Y and Y0 respectively.

Remark. The property (1) implies that Spec(R�
X) is the scheme theoreti-

cal closure of R in Spec(R�). This implies that Spec(R�
X [1/p]) is the scheme

theoretical closure of R[1/p] in Spec(R�[1/p]), and, by (2), the morphism f

induces an isomorphism of R[1/p] to Spec(R�
X [1/p]).

As R is flat over O, we see that R�
X is flat over O. The functor D�

X and
its resolution are determined by the morphism f : R→ Spec(R�). The last
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part of the following proposition shows that one may think of O-points of
R that specialize in Y as data that define lifts of ρ̄ and that the lifts that
come from R in this fashion are the lifts that satisfy the condition X.

Proposition 2.12. Let X be as above a condition on deformations of ρ̄ and
and let R be a smooth resolution of D�

X . Then R
�
X is a domain, R�

X [1/p] is
regular and the relative dimension of R�

X over O is the same as the relative
dimension of R over O. Let O be the ring of integers of an algebraic closure
of O, and let R(O)c be the points that send the closed point of O to Y. Then,
the set of framed deformations D�

X(O) of ρ̄ with values in O that satisfy the
condition X is the image of R(O)c in D�(O).

Proof. Let us first prove that R�
X is a domain. Let R→ Spec(Γ(R,OR))→

Spec(R�
X) be the Stein factorization of f . The morphism R

�
X → Γ(R,OR)

is finite. It is injective as f is injective for structural sheaves. It follows that
Γ(R,OR) is semi-local. As R�

X is complete, Γ(R,OR) is also complete. The
maximal ideals of Γ(R,OR) are in the image of the inverse image Y of the
closed point of Spec(R�

X) in R. As Y is connected, we see that Γ(R,OR)
is local. Besides, by the theorem of formal functions, it is the ring of global
sections of the completion R̂ of R along Y. By (2), this formal scheme
is isomorphic to the completion of the smooth O-scheme R0 along Y0. It
follows that Γ(R,OR) = Γ(R̂,O bR) is normal. As it is a local ring, it is a

domain. As R�
X injects in it, R�

X is a domain.
Let us prove that the relative dimension of R�

X over O is the same as the
relative dimension of R over O. The morphism f induces an isomorphism
of R[1/p] to Spec(R�

X [1/p]). As R�
X is flat over O, the relative dimension of

R
�
X over O is the same as the dimension of R�

X [1/p]. It is the dimension of
R over O.

Let us prove that R�
X [1/p] is regular. Let ℘ ∈ R. Let V (℘) be its closure

in R. By the proper map f , V (℘) maps onto a closed subset of Spec(R�
X).

As R�
X is local, f(V (℘)) contains the closed point, and V (℘) non trivially

intersects Y. Let Q ∈ Y ∩ V (℘), and let U ⊂ R be an affine open set
containing Q. We see that ℘ ∈ U . Furthermore, as Q ∈ V (℘) ∩ U ∩ Y,
℘ belongs to the image of the map from the spectrum of the completion
Γ(U ∩ Y,O bR) of Γ(U ,OR) along U ∩ Y to the spectrum of Γ(U ,OR) (24.B
of [41]). Let ℘̂ in the spectrum of Γ(U ∩ Y,O bR) mapping to ℘. As R0 is
smooth over O, Γ(U ∩ Y,O bR) is regular over O. As the map from the local
ring of R at ℘ to the local ring of R̂ at ℘̂ is faithfully flat, it follows that
the localization of R�

X [1/p] at ℘ is regular (Lemma 33.B of [41]). As this is
true for all ℘ ∈ Spec(R�

X [1/p]), we have proved that R�
X [1/p] is regular.
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Let us prove the description of the points of R�
X given in the statement of

the proposition. It is clear that the image of R(O)c in D�(O) is included in
D�
X(O). Let us prove the opposite inclusion. Let O′ be the ring of integers

of a finite extension E′ of the field of fractions E of O. Let ξ : Spec(O′)→
Spec(R�

X) be a local homomorphism. Let ξη be the generic fiber of ξ. As
f induces an isomorphism of R[1/p] to Spec(R�

X [1/p]), we can view ξη as a
point yη of R with values in E′. By properness, yη extends to a point of R
with values in O′. The closed point of Spec(O′) has image in Y. This ends
the proof of the proposition. �

3. Structure of certain local deformation rings

In this section, F, O, E and π are as in the previous one. In particular,
F is a finite field of characteristic p. Let q be a prime. Consider a local
field Fv, finite extension of Qq, with Dv = Gal(Qq/Fv), and a continuous
representation ρ̄v : Dv → GL2(F).

In results below about presentations of deformation rings (see Section 4)
and R = T theorems (see Propositions 9.2 and 9.3 in Section 9.1), we need
information about certain local deformation rings R�,ψ

v which are quotients
of R�,ψ

v . These classify, in the sense of Definition 2.4, a set of morphisms
such that corresponding p-adic Galois representations satisfy prescribed con-
ditions Xv, including fixed determinant φ = ψχp. In the theorem below, we
state the needed information for R̄�,ψ

v that arises from prescribed conditions
that we refer to by a name, and which is explained when we treat the differ-
ent cases. Thus the morphisms R̄�,ψ

v → O′, with O′ the ring of integers of a
finite extension E′ of E, correspond to liftings which satisfy the prescribed
conditions.

Theorem 3.1. We make the assumption that, when v is above p, Fv is
unramified over Qp and, if furthermore ρ̄v is irreducible, Fv is Qp. We also
suppose that in case 3.3.3 of v not above p, Fv = Qq.

The rings R̄�,ψ
v have the following properties:

• v =∞, odd deformations: R̄�,ψ
v is a domain, flat over O of relative

dimension 2 , and R̄�,ψ
v [1p ] is regular.

• v above p, low weight crystalline deformations, semistable weight 2
deformations, weight 2 deformations crystalline over Qnr

p (µp): R̄
�,ψ
v

is a domain (see remark below), flat over O of relative dimension
3 + [Fv : Qp], and R̄�,ψ

v [1p ] is regular.

• v a finite place not above p and semistable deformations: R̄�,ψ
v is

a domain (see remark below), flat over O, of relative dimension 3,
and R̄�,ψ

v [1p ] is regular.



SERRE’S MODULARITY CONJECTURE 19

• v a finite place not above p, inertia-rigid deformations: R̄�,ψ
v is flat

over O, with each component of relative dimension 3, and R̄�,ψ
v [1p ]

is regular.
Thus in particular by Proposition 2.2 we know in each of the cases that

R̄�,ψ
v has points with values in the ring of integers of a finite extension of

Qp.

Remarks. The hypothesis Fv = Qq in case 3.3.3 does not have a conceptual
origin. For simplicity we only treat the cases we need.

In fact in all cases considered in the theorem, the local deformation rings
turn out to be domains. As the calculations to prove this are more elaborate,
and we do not need this finer information, we content ourselves with proving
the theorem. We stress that in the definitions below, we have to make some
choices to guarantee that R̄�,ψ

v is a domain. When k(ρ̄v) = p and ρ̄v is
unramified non scalar, we choose one of the two characters and consider
ordinary lifts with unramified quotient reducing to the eigenspace for this
eigenvalue (§3.6). When p = 2 and we are in the v above p semistable weight
2 case (§3.2.6) or in the v not above p twist of semistable case (§3.3.4), we
have to choose the character γv. See also the inertia rigid case, cf. §3.3.2.

The proof of the theorem will take up the rest of the section.
We will need the following proposition.

Proposition 3.2. Let us suppose that the conditions Xv are one of those
of Theorem 3.1. After possibly replacing O by the ring of integers of a finite
extension of E, we have :

- (i) the completed tensor product R̄�,loc,ψ := ⊗̂v∈SR̄�,ψ
v is flat over O,

each of its components is of relative dimension 3|S|, and R̄�,loc,ψ[1/p] is
regular ;

- (ii) if further for finite places in S not above p the corresponding defor-
mation problem considered is of semistable type then it is also a domain.

Proof. The proposition follows from the proposition of section 2.3 and from
Theorem 3.1, noticing that the part of the tensor product coming from
infinite places contributes 2[F : Q] to the relative dimension and the part
above p contributes 3|Sp| + [F : Q], where Sp is the number of places of F
above p. �

In the next paragraphs, we will denote by V a free O-module of rank d
and for A an O-algebra, we write VA for A⊗O V ; V∗ will be the underlying
space of the lifts of ρ̄v. We will call e1, e2 a basis of VF, and e1, e2 a lift of
this basis.

3.1. The case v =∞. We recall that our notation for Gal(C/R) is D∞ and
that c is the complex conjugation. We give ourselves ρ̄∞ : D∞ → GLV (F) =
GL2(F). We suppose that ρ̄ is odd i.e. det(ρ̄(c)) = −1.
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Proposition 3.3. There is a flat and reduced CNLO algebra R
�,ψ
∞ which

classifies (in the sense of Definition 2.4) the odd lifts of ρ̄∞. If ρ̄(c) 6= id (it
is always the case if p 6= 2), R�,ψ

∞ is formally smooth of relative dimension
2. If p = 2 and ρ̄(c) = id, R�,ψ

∞ is a domain of relative dimension 2 with
regular generic fiber.

Proof. We will see that the ring R�,ψ
∞ is the completion of the ring of func-

tions of the affine scheme of 2 × 2 matrices of characteristic polynomial
X2 − 1 at the point defined by ρ̄∞. We surely could give a shorter proof of
the proposition using this. We give a proof using resolutions (Section 2.8)
to show how it works. Let M = ρ̄(c) ∈ GL2(F).

If p 6= 2, and if A is an O-algebra, let M ∈ GL2(A) be matrix with
characteristic polynomial X2 − 1. We have a decomposition : V = L1 ⊕ L2

with L1 and L2 lines that are the eigenspaces for M for eigenvalues 1 and
−1 respectively. Let D∗ be the O-scheme of diagonal matrices relatively to
this decomposition. The quotient GL2/D

∗ is isomorphic to the open subset
of P1× P1 which is the complement of the diagonal. It is smooth of relative
dimension 2. The matrix M defines a closed point ξM of GL2/D

∗. The

O-algebra R�,ψ
∞ is the completion of the local ring of GL2/D

∗ at this point.
Let p = 2. Let us construct a smooth resolution which is an isomorphism

if M is not the identity.
Let M2 be the O-scheme which represents linear automorphisms of V

whose square is id andM(X2−1) be its closed subscheme which represents
those whose characteristic polynomial is X2 − 1. The matrix M defines a
point ξM ∈ M(X2 − 1)(F). We can choose the basis e1, e2 of VF such that
M is either id or: (

1 1
0 1

)
.

The universal ring for framed deformations R�
∞ is the completion of the

local ring ofM2 at ξM .
Let R0 be the closed subscheme ofM(X2−1)×O (P1)O which represents

pairs (M,L), where M ∈ M(X2 − 1) and L a submodule of V such that
V/L is a locally free module of rank 1 ; we furthermore ask that M(L) = L
and that M acts as id on L.

The first projection f1 is projective. Let us prove that it induces an
isomorphism of the open subschemes of R0 andM(X2 − 1) where M 6= id.
We have to see that, if A a local O-algebra with residue field k(A), and if
MA ∈M(X2−1)(A) is such that the imageMk(A) ofMA inM(X2−1)(k(A))
is not the identity, there exists a unique line L in VA such that MA acts as
identity on L. This follows by elementary linear algebra from det(MA−id) =
0 and rank(Mk(A) − id) = 1.

The only point of M(X2 − 1) such that M = id is the identity in the
special fiber (M = id implies that det(M) = 1 = −1). We see that f1
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induces an isomorphism of the generic fibers and above the complement of
identity in the special fiber. It contracts id × P1 in the special fiber to the
point id ∈ M(X2 − 1)(F). We call f0 the morphism from R0 to M2 which
is the compositum of the first projection f1 and the closed immersion of
M(X2 − 1) in M2. The second projection makes R0 a torsor on P1 under
Hom(V/L,L). We see that R0 is smooth over O of relative dimension 2.

We claim that the scheme theoretical image of f0 is M(X2 − 1). This is
because f1 is surjective being proper with dense image and M(X2 − 1) is
integral (it is the quadric of equationX2

11+X12X21 = 1, Xij being the entries
of M). We define R�,ψ

∞ as the completion of the local ring ofM(X2− 1) at
ξM . We define R and f as the base change by Spec(R�,ψ

∞ )→M2 of R0 and

f0. As R0 is smooth over O and Spec(R�,ψ
∞ )→M2 is flat, R is flat over O.

If M 6= id, ξM belongs to the open subscheme ofM(X2− 1) above which

f1 is an isomorphism and R�,ψ
∞ is formally smooth of dimension 2 over O.

Let us suppose that M = id and let us check that we get a smooth
resolution as defined in §2.8. First, Spec(R�,ψ

∞ ) → Spec(R�) is obviously
(GL2)1-equivariant. The condition (1) is satisfied as the analogous condition
is satisfied by R0, f1 and M(X2 − 1), and by flatness of the completion.
We saw that f0[1/2] is a closed immersion. This also holds for f and the
hypothesis (2) is satisfied. The inverse image Y of ξM in R is (idV ,P1). It is
geometrically connected. We already saw that R0 is smooth over O. Thus,
(3) and (4) follow by construction of R0 and R.

It follows that the conclusions of Proposition 2.12 are satisfied: R�,ψ
∞ is a

domain, faithfully flat over O of relative dimension 2, with regular generic
fiber.

Let us come back to the general hypotheses of the proposition. Let O be
the ring of integers of an algebraic closure E of E. To finish the proof of the
proposition, we have to prove that the points of Sp(R�,ψ

∞ )(O), correspond
to odd lifts of ρ̄. By Proposition 2.12 these points correspond to matrices
M of GL2(O) that lift M , have characteristic polynomial X2 − 1 and are
such that there exists a line L of VO which is a direct factor and on which
M acts as identity. For M with characteristic polynomial X2 − 1, the line
L which is the intersection of the eigenspace for eigenvalue 1 in VE with VO
satisfy these conditions. That finishes the proof. �

Remark. If p = 2 and M = Id, it is not difficult to see that R�,ψ
∞ is

isomorphic to O[[X1, X2, X3]]/(X2
1 + X2X3 + 2X1). Thus it is a relative

complete intersection.

3.2. The case of v above p.

3.2.1. Local behaviour at p of p-adic Galois representations. It is convenient
to make the following definition.
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Definition 3.4. 1. Suppose V is a 2-dimensional continuous representation
with coefficients in E of GF with E,F finite extensions of Qp. We say that
V is of weight k if for all embeddings ι : E ↪→ Cp, V ⊗E Cp = Cp⊕Cp(k−1)
as GF -modules.

2. Suppose V is a continuous representation, with V a free rank 2 module
over a CNLO-algebra R, of GF with F a finite extension of Qp.We say that
V is ordinary if there is a free, rank one submodule W of V that is GF
stable, such that V/W is free of rank one over R with trivial action of the
inertia IF of GF and the action of an open subgroup of IF on W is by χap,
for a rational integer a ≥ 0.

We have the following presumably well-known lemma; recall that we have
fixed ρ̄.

Lemma 3.5. Let F be an unramified extension of Qp, V a 2-dimensional
vector space over a p-adic field E and ρ : GF → Aut(V ) a continuous
representation that lifts ρ̄. Then:

(i) if V is crystalline of weight k such that 2 ≤ k ≤ p, V is ordinary if
residually it is ordinary. The same is true for 2 ≤ k ≤ p+ 1 if F = Qp.

(ii) if V is semistable non crystalline of weight 2, then V is ordinary.
(iii) if V is of weight 2 and crystalline over Qnr

p (µp), then V is ordinary,
if residually it is ordinary.

Proof. We sketch a proof of the first part of (i). It has been suggested to us
by F. Diamond.

Let V be a 2-dimensional crystalline representation of weight k with co-
efficients E. The restriction to inertia of the determinant detE is χk−1

p . It
will be enough to show that V has a non-trivial unramified quotient as a
Qp[GF ]-module, as then it does so also as a E[GF ]-module. Let D(V ) be
the filtered Dieudonné module associated to V by Fontaine and Laffaille
([26]). Let M be a strongly divisible lattice in D(V ). If k 6= p, we take
M corresponding to a lattice lifting ρ̄. In any case V (M) has a non-trivial
unramified quotient as a Fp[GF ]-module, where V (M) is the Galois repre-
sentation associated by Fontaine-Laffaille [26] to M . (If k = p, then V (M)
has unramified Fp[GF ]-semisimplification). Therefore M has a non-trivial
subobject N such that Fil1(N) = 0. (If k = p, then were this not so, by
0.9. of [26], we would get Filp−1(M) = M leading to a contradiction). It
follows that M has a non-trivial subobject N such that Fil1(N) = 0 (on not-
ing for example that the OF -summand on which the semilinear Frobenius
φ : M →M is invertible is non-trivial. : see for example [46]). Therefore V
has a non-trivial unramified Qp[GF ]-quotient.

Thus the first part of (i) is proved. The second part is a result of [3]. Part
(ii) is an easy exercise on filtered Dieudonné modules. Part (iii) is proved
in [13] (Lemma 2.1.2.). �

3.2.2. Types of deformations. In this section, we consider a representation
ρ̄v : Dv → GL2(F), where Dv is the Galois group of a finite unramified



SERRE’S MODULARITY CONJECTURE 23

extension Fv of Qp if ρ̄v is reducible, and Fv = Qp if ρ̄v is irreducible.
We also assume Fv = Qp if k(ρ̄v) = p + 1 when we consider crystalline
deformations. If Fv = Qp, we set v = p. We denote by Iv the inertia
subgroup (or Ip if Fv = Qp). Furthermore, we impose that, if p 6= 2, the
Serre weight k(ρ̄v) satisfies 2 ≤ k(ρ̄v) ≤ p + 1. If ρ̄v is reducible and Fv is
not Qp, we mean by this that (ρ̄v)|Iv is ordinary (see previous paragraph)
with det((ρ̄v)|Iv) a power of the cyclotomic character.

There are two types of deformation rings we consider in this paragraph
which are denote by R̄�,ψ

v , and in the two cases the O′ valued morphisms
(which R̄�,ψ

v classifies) give rise to lifts ρv of ρ̄v that are of the following
kind:

(i) Weight 2 deformations. For p 6= 2, the lifts ρv are potentially semistable
of weight 2, have fixed determinant φ = ψχp, and with inertial Weil-Deligne
parameter (ωk(ρ̄)−2

p ⊕ 1, 0) if k(ρ̄v) 6= p+ 1 and (id, N) , with N a non-zero
nilpotent matrix, if k(ρ̄v) = p + 1. For p = 2, we consider lifts that are
crystalline of weight 2 (equivalently Barsotti-Tate with det(ρv)|Iv = χp) if
k(ρ̄v) = 2, and semistable of weight 2 if k(ρ̄v) = 4, and with fixed determi-
nant of the form ψχ2.

Note that by Lemma 3.5 of Section 3.2.1, if ρ̄v|Iv is of the form(
χk−1
p ∗
0 1

)
,

with 2 ≤ k ≤ p+ 1, then such a lift ρv is of the form(
ωk−2
p χp ∗

0 1

)
,

with the further condition that when ρ̄v is finite flat at v (which can occur
only when k = 2), ρv|Iv is crystalline of weight 2.

(ii) Low weight crystalline deformations. We assume k(ρ̄v) = 2 if p = 2.
Note that if k(ρ̄v) = p+ 1, then ρ̄v|Iv is of the form(

χp ∗
0 1

)
.

The lifts ρv of ρ̄v have fixed determinant φ = ψχp and such that ρv is:
(a) crystalline of weight k(ρ̄v) if k(ρ̄v) ≤ p (i.e. comes from a Fontaine-

Laffaille module, [26]).
(b) if k(ρ̄v) = p+ 1, then ρv|Iv is of the form(

χpp ∗
0 1

)
.

If ρ̄v is unramified (this implies that k(ρ̄) = p) and there are exactly
two lines stabilised by ρ̄v, and thus ρ̄v = η̄1 ⊕ η̄2 with η̄i distinct unramified
characters, we choose one of these characters and consider only lifts on whose
unramified quotient the action of Dv reduces to the chosen character.
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Note that whenever ρ̄v is reducible the lifts that we consider are ordinary.
The conditions that we impose on ρv determine the character det(ρv|Iv) and
we require ψ to be such that the restriction of χpψ to Iv coincides with this
character.

Now we prove properties of the corresponding deformation rings.

3.2.3. ρ̄v irreducible, low weight crystalline case. We suppose that the repre-
sentation ρ̄p ofDv = Dp = GQp is irreducible of weight k ≤ p and we consider
lifts that are crystalline of weight k. The deformation ring is smooth over
O of dimension 1 : this follows from Fontaine-Laffaille theory as in [49] (or
[20]). There the case k(ρ̄p) = p and the case p = 2 is excluded, but as ρ̄p
is irreducible the argument extends. The argument relies on the fact that
the filtered Dieudonné module has the following description. It has a basis
v1, v2 with v2 generating Filk−1 and the matrix of φ is:(

λ pk−1

α 0

)
with α a unit determined by the determinant and λ any element of the

maximal ideal of the coefficient ring.
It follows from Proposition 2.1 that the framed deformation ring is smooth

of dimension 4 over O. In this case, the endomorphism ring of ρ̄p is F, and
in fact the proposition 2.1 is obvious as the universal framed deformation
scheme is the completion of a torsor above the universal deformation scheme
under PGL2.

3.2.4. ρ̄v irreducible, weight 2 deformations. If p = 2, we have k(ρ̄v) = 2
and we are in the crystalline case, that we just handled. We suppose p 6= 2.

Let Rψv be the universal deformation ring with fixed determinant and Rψv
be its quotient by the intersection of the prime ideals ℘ kernel of the mor-
phisms R→ O′, O′ ring of integers of a finite extension E′ of E, correspond-
ing to deformations that are of the type required. Savitt proved that, pro-
vided that O is sufficiently big, this ring is isomorphic to O[[T1, T2]]/(T1T2−
p) (3 of th. 6.22 of [54]). Furthermore, for every morphism of Rψv to the
ring O′ of integers of a finite extension E′ of E, the corresponding deforma-
tion is of the type required (th. 6.24). By the (obvious case of) Proposi-
tion 2.1, the corresponding framed deformation ring R̄�,ψ is isomorphic to
O[[T1, T2, T3, T4, T5]]/(T1T2 − p).

3.2.5. ρ̄v ordinary with k(ρ̄v) ≤ p and low weight crystalline or weight 2
potentially Barsotti-Tate lifts. We remind the reader that Dv = GFv with
Fv an unramified extension of Qp. We suppose that k(ρ̄v) ≤ p dealing with
the k(ρ̄v) = p+ 1 case in 3.2.6 and 3.2.7. We recall that if ρ̄v is unramified,
we have k(ρ̄v) = p.

Proposition 3.6. There are flat and reduced CNLO-algebras R�,ψ
v which

classify weight 2 and low-weight crystalline framed deformations (3.2.2).
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R
�,ψ
v is a domain, of relative dimension 3 + [F : Qp], with regular generic

fiber, and if either ρ̄v is ramified or ρ̄v is isomorphic to η1 ⊕ η2 with η1 and
η2 two distinct unramified characters, R�,ψ

v is formally smooth.

Proof. We write the fixed determinant φ = ψχp as χ1η where χ1 is a charac-
ter of the Galois group of the cyclotomic extension and η is unramified. The
character χ1 is χk(ρ̄)−1

p in the crystalline case, and χpω
k(ρ̄)−2
p in the weight

2 case. One supposes that ρ̄v is of the form(
χ1 η1 ∗

0 η2

)
,

with η1 and η2 unramified. The conditions impose that the lifts that we
consider are of the form (

χ1 η1 ∗
0 η2

)
,

with η1 and η2 unramified lifts of η1 and η2, and η1η2 = η.
Let A = O[[T ]] and let [η1] be the Teichmüller lift of η1. Let ηT : Dv →

(1 + TO[[T ]])∗ be the unramified character which factors through the Zp
unramified extension of Fv and sends the Frobenius to 1+T . Let η1 = [η1]ηT
and let η2 be the unramified character defined by η = η1η2. We see A as the
affine algebra of deformations of the character η1χ1 whose restriction to the
inertia Iv coincides with χ1; η1χ1 is the universal character. We write Ξ for
χ1η1η

−1
2 .

Let B be a CNLO A-algebra and N be a finitely generated B-module.
Let M = N(Ξ). Let Z1(M) be the B-module of continuous 1-cocycles of
Dv with values in M . If k(ρ̄v) = 2 (and so χ1 = χp) let us denote by Z1

f (M)
be the submodule of finite cocyles. To explain what we mean by finite, let
Fnr be the maximal unramified extension of Fv. The restriction of Ξ to Iv
is equal to the cyclotomic character χp. One has a morphism, that we call
vZ , of B-modules

vZ : Z1(M)→ H1
cont(Dv,M)→ H1

cont(Iv, N(χp))→ N,

where the last arrow is the map given by Kummer theory

H1
cont(Iv, N(χp)) ' (F ∗nr ⊗N)b,

where b is the mB-adic completion, composed with the map (F ∗nr ⊗ N)b→
N which is the completion of the map v ⊗ id with v the valuation of F ∗nr

normalized by v(p) = 1. A finite cocyle is a cocycle whose image in N is
trivial. If k(ρ̄v) > 2, we set Z1

f (M) = Z1(M).

Lemma 3.7. The B-module Z1
f (B(Ξ)) is free of rank 1+[Fv : Qp]; morever

Z1
f (N(Ξ)) = Z1

f (B(Ξ))⊗B N .

Proof. Since Z1
f (N(Ξ)) = lim←−nZ

1
f ((N/m

n
BN)(Ξ)), we reduce the lemma to

the case where B is of finite length.
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We then view N 7→ Z1
f (Dv, N(Ξ)) as a functor from the category of finite

B-modules to itself. We call it F . We claim that the lemma follows from
the assertion

|F(N)| = |N |1+[F :Qp],

for each finite A-module N .
Indeed, then, as F is left exact, it is exact, and for each N the natural

morphism N ⊗B F(B)→ F(N) is surjective. By Nakayama’s lemma, F(B)
is finite free of the correct rank, the morphisms N ⊗B F(B) → F(N) are
isomorphisms and the lemma is proved assuming the assertion.

We prove the assertion. We have, with the notation M = N(Ξ):

|Z1(Dv,M)| = |H1(Dv,M)| |M | |H0(Dv,M)|−1.

It follows using Euler characteristic and duality that

(∗) |Z1(Dv,M)| = |M |1+[F :Qp] |H0(Dv,M
∗)|.

IfN∨ = HomO(N,E/O), we haveM∗ = N∨(χpΞ−1) and χpΞ−1 = χpχ
−1
1 η−1

1 η2.
For k(ρ̄v) 6= 2 (thus p 6= 2), the restriction of χpχ−1

1 η−1
1 η2 to the inertia Iv

has non trivial reduction and the group H0(Dv,M
∗) is trivial. The lemma

follows in this case.
Suppose that k(ρ̄v) = 2. The map :

H1(Dv,M)→
(
H1(Iv, N(χp))(η1η

−1
2 )
)Dv

is surjective, as H2(Gal(Fnr/Fv), N(Ξ)Iv) is trivial, since N(Ξ) is torsion.
Let us note η̃ = η1η

−1
2 . Kummer theory gives an identification of the right

hand side : (
H1(Iv, N(χp))(η̃)

)Dv ' ((F ∗nr ⊗N)(η̃))Dv .
As Galois module, F ∗nr is isomorphic to Z × U , U units of Fnr. Thus the
map:

((F ∗nr ⊗N)(η̃))Dv → (N(η̃))Dv

is surjective. Finally, we see that the map :

Z1(Dv, N(Ξ))→ (N(η̃))Dv

is surjective. This implies that :

|Z1
f (Dv, N(Ξ))| = |Z1(Dv, N(Ξ))| | (N(η̃))Dv |−1.

With formula (*), we see that :

|Z1
f (Dv,M)| = |N |1+[F :Qp],

and the lemma is proved. �

We now complete the proof of Proposition 3.6. Recall that R�,ψ
v is the

universal ring for framed deformations of ρ̄v with fixed determinant φ =
ψχp = χ1η. Let us call ρuniv

v : Dv → GL2(R
�,ψ
v ) the corresponding framed

deformation. We recall that we have fixed a free O-module V of rank 2
which is the underlying space of the Galois representations that we consider:
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by a representation with values in GL2(B) for a O-algebra B we mean a
representation in AutB(B ⊗O V ).

Recall that A = O[[T ]] and we have continuous characters η1χ1 and η2

of Dv with values in A∗. Let Z1
f be the vector bundle over Spec(A) whose

sections are the elements of the free A-module Z1
f (A(Ξ)). Thus for any A-

algebra A′ and any point z ∈ Z1
f (A

′), we get a 1-cocycle az ∈ Z1(A′(Ξ)).
Let BAA be the scheme over Spec(A) of bases (u1, u2) of A⊗O V . The map
which sends (u1, u2) to the line L1 generated by u1 makes BAA a torsor over
(P1)A of group the Borel group BA of upper triangular matrices in (GL2)A.
For A′ an A-algebra, g ∈ B(A′) and B = (u1, u2) a basis of A′ ⊗O V , the

basis gB is (α′u1, β
′u1 + δ′u2) where

(
α′ β′

0 δ′

)
is the inverse of g. For

z as above and a basis B = (u1, u2) of A′ ⊗O V , we have a representation
ρz,B : Dv → AutA′(A′ ⊗O V ) which has matrix :(

χ1η1 η2az
0 η2

)
.

We have a natural action of the Borel BA on Z1
f by affine automorphisms

such that if b ∈ B(A′), one has ρbz,bB = ρz,B. It is given by the formula :

for g =
(
α β
0 δ

)
∈ B(A′), one has agz = βδ−1(1 − Ξ) + αδ−1az. Taking

the quotient of Z1
f ×Spec(A) BAA by the diagonal action of BA, we get an

affine bundle Ef over (P1)A. For A′ an A-algebra and e ∈ Ef (A′), we define
ρe : Dv → GL2(A′) as the representation ρz,B, for any basis B = (u1, u2) of
A′ ⊗O V such that u1 is a generator of the image of e in P1(A′), and (z,B)
being the point ∈ (Z1

f ×Spec(A) BAA)(A′) defined by e and B.
We have the following description of the vector bundle of translations

of the affine bundle Ef . Let L the tautological line bundle on (P1)O. On
BAA, the line bundle Hom(V/L,L) is naturally isomorphic to the trivial
line bundle. It allows to define the bundle on BAA whose global sections is
Z1
f (Dv,Hom(V/L,L)(Ξ)). It clearly descends to a vector bundle on (P1)A

that we note Z̃1
f ; it is the vector bundle of translations of the affine bundle

Ef .
Let R′ be the closed subscheme of Ef ×Spec(O) Spec(R�,ψ

v ) defined by the
equality of Galois representations : ρe = ρuniv

v .
We claim that the morphism R′ → (P1)A ×Spec(O) Spec(R�,ψ

v ) is still a
closed immersion. To see that, let U be one of the two open affines of the
standard open covering of (P1)A, U ′ the inverse image of U in Ef ; U ′ is affine.
Let x be a point of (U ′ ×Spec(O) Spec(R�,ψ

v )) ∩ R′ with values in Spec(A′),
for A′ an O-algebra. Let A(U) and A(U ′) be the affine algebras. One has
to prove that the image of A(U) ⊗O R�,ψ

v in A′ coincide with the image of
A(U ′) ⊗O R�,ψ

v in A′. We choose a basis (u1, u2) of A(U) ⊗O R�,ψ
v ⊗O V

such that u1 is the line defined by the tautological point of U with values
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in A(U). Let
(
∗ B
0 C

)
be the representation ρuniv

v in the basis (u1, u2).

The cocycle a ∈ Z1
f (A

′) defined by the point Spec(A′) → Ef and the basis

(u1, u2) is equal to the image of BC−1 ∈ Z1
f (R

�,ψ
v ) in Z1

f (A
′). As the image

of A(U ′)⊗OR�,ψ
v in A′ is generated over the image of A(U)⊗OR�,ψ

v in A′ by
the values of a, we see that the images of A(U)⊗OR�,ψ

v and of A(U ′)⊗OR�,ψ
v

in A′ coincide. This proves the claim.
Unless ρ̄v is isomorphic to a direct sum of two non isomorphic unramified

representations of dimension 1, we let R = R′ and we define R�,ψ
v as the

affine algebra of the scheme theoretical image of R in Spec(R�,ψ
v ). The

projection R→ Spec(R�,ψ
v ) is proper and surjective.

Let us first suppose that either k(ρ̄v) 6= p or k(ρ̄v) = p and ρ̄v is ramified.
We claim that in these cases, the projection R → Spec(R�,ψ

v ) is an iso-
morphism. One has to prove that, if S is any R

�,ψ
v -algebra, and if ρv,S

is the Galois representation ρuniv
v ⊗

R�,ψ
v

S, there is a unique line L in the
underlying space S ⊗O V of ρv,S on which the inertia subgroup Iv acts by
the character χ1 and the projective coordinates of L can be expressed by
functions in S. To see this, let σ ∈ Iv such that:

- χ1(σ) 6= 1 if k(ρ̄v) 6= p, where χ1 is the reduction of χ1 ;
- ρ̄v(σ) 6= id if k(ρ̄v) = p.
The matrix M(σ) = (mi,j(σ)) of ρuniv

v (σ) − χ1(σ)id in the fixed basis
(e1, e2) of the underlying space V has determinant 0 and its reduction has
rank 1. Thus one of mi,j(σ) is a unit in R̄�,ψ

V and this proves the claim.
It follows that ρ̄ defines a point ē of Ef and R identifies to the completion

of Ef at ē. More precisely, let L the unique line of VF on which Iv acts by the
character χ1. Let L̂ be the formal scheme of lines that reduce to L : it is the
completion of (P1)A at the point ξL of the special fiber that corresponds to
L. It is formally smooth over Specf(O) of dimension 2. Let X = Specf(A).
We have the map from Specf(R�,ψ

v ) to X which maps (ρv, L) to the character
giving the action of Dv on L (recall that we see A as the affine algebra of
deformations of characters of Dv). The map Specf(R�,ψ

v ) → L̂ is a torsor
under the completion of Z̃1

f along the zero section of its fiber at ξL. As Z1
f

is free over A of rank 1 + [F : Qp], we see that R�,ψ
v is formally smooth of

relative dimension 3 + [F : Qp] over O.
Let us now consider the case k(ρ̄) = p and ρ̄v ' η1⊕η2, with η1 and η2 two

distinct unramified characters. Recall that we have chosen one of them, say
η1. One sees that R′ has two closed points, (L1, ρ̄v) and (L2, ρ̄v) where L1

and L2 are the eigenspaces of VF corresponding respectively to η1 and η2. We
see that R′ is the spectrum of a semilocal ring. We call R the spectrum of
the local ring of R′ at the closed point corresponding to L1. We define R�,ψ

v

as the affine algebra of the scheme theoretical image of R in Spec(R�,ψ
v ).
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We claim that the natural map R→ Spec(R�,ψ
v ) is an isomorphism. To see

this, let as above S be a R�,ψ
v algebra and ρv,S = ρuniv

v ⊗
R�,ψ
v

S. If F ∈ Dv

projects to the Frobenius in the unramified quotient of Dv, the characteristic
polynomial of ρuniv(F ) has one unique root λ1 in the complete local ringR�,ψ

v

which reduces to η1(F ). We define the line L as the eigenspace of ρv,S(F )
for the eigenvalue λ1. The line L reduces to L1 and we prove the claim as
in the previous case using the matrix of ρv,S(F ) − λ1id. Finally, thanks to
Lemma 3.7, we have that R is formally smooth over O of relative dimension
3 + [F : Qp].

Let us now suppose that ρ̄v is unramified and ρ̄v acts by homotheties on
the semisimplification of ρ̄v. Let us check that R is a smooth resolution
(2.8).

We already noticed that f : R → Spec(R�,ψ
v ) is proper and surjective.

By the definition of scheme theoretical closure, f has an injective structural
morphism and we get property (1) of the definition of smooth resolution.

There exists σ ∈ Iv such that χ1(σ) − 1 is invertible in E. It follows
that if A′ is a E-algebra, and (ρv, L) is a point of R(A′) with values in A,
the line L is determined by ρv(σ). It follows as above that the projection
R[1/p]→ Spec(R�,ψ

v [1/p]) is a closed immersion. We get (2).
The inverse image Y of the closed point of Spec(R�,ψ

v ) in R is isomorphic
to (P1)F if Dv acts by homotheties, and is a point corresponding to the
unique line stabilized by ρ̄v if Dv does not act by homotheties. In either
case, it is connected and we get (3).

It remains to produce a smooth algebraization. Let A0 = O[T ] and let
Z0 be a free A0-module of rank 1 + [Fv,Qp]. By the lemma below, one can
find an element m0 of Z0 with an isomorphism of A⊗A0 Z0 with Z1

f (A(Ξ))
sending m0 to the cocycle Ξ− 1. We define R0 as the affine bundle E0 over
(P1)A0 which is defined by gluing A0[λ1]⊗A0 Z0 and A0[λ2]⊗A0 Z0, λ1 being
the usual coordinate on A1 and λ2 the usual coordinate on (P1)− {∞}, by
the formula for changing charts : z2 = λ1m0 − λ2

1z1. It is not difficult to
get an isomorphism from Ef to the affine bundle which is obtained by the
same way gluing A[λ1]⊗A Z1

f (A(Ξ)) and A[λ2]⊗A Z1
f (A(Ξ)) by the formula

z2 = λ1(Ξ− 1)− λ2
1z1. Thus, one gets an isomorphism :

R0 ×(P1)A0
(P1)A ' Ef

that sends m0 to Ξ− 1.
We define the closed subscheme Y0 :
– if Dv does not act as homotheties in ρ̄, Y0 is the closed point of the

special fiber of R0 which is defined by T 7→ 0, the Galois stable line L ⊂ VF
and, for a basis (u1, u2) of VF with u1 ∈ L, by the cocycle defining ρ̄ ;

– if Dv acts by homotheties in ρ̄, let (P1)F ↪→ (P1)A0 be defined by A0 → F
sending π and T to 0. As Ξ− 1 ∈ mAZ

1
f (A(Ξ)), m0 ∈ (π, T )Z0 and one sees
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that the restriction of R0 to (P1)F is a vector bundle. The subscheme Y0 is
the zero section of this vector bundle.

We define the map R → R0 as the compositum of the projection R →
Ef with the map Ef → R0. We have a natural isomorphism between the
completions of R0 and R along respectively Y0 and Y. This proves the
proposition, granted the promised lemma below. �

Lemma 3.8. Let M0 be a free A0-module of finite type. Let M = A⊗A0 M0

and m ∈ M . Then, there exists an m0 ∈ M0 and an isomorphism A ⊗A0

M0 'M sending m0 to m.

Proof. Let (e1, . . . , er) a basis of M0 and let m =
∑r

i=1 aiei. Obviously,
the lemma reduces to the case where some ai, say a1, is not divisible by
the uniformizer π of O. Let K be the fraction field of A. Let B be the
automorphism of K ⊗A M which sends m to

∑r
i=1 a

′
iei and fixes ei for

i ≥ 2. One has B(e1) = a′1a
−1
1 e1 +

∑r
i=2(a

′
i − ai)a

−1
1 ei. By the Weierstrass

preparation and division theorems, we can find a′i ∈ A0 such that a′1a
−1
1 ∈ A∗

and (a′i − ai)a
−1
1 ∈ A. Then B ∈ GLr(A). This proves the lemma. �

3.2.6. ρ̄v reducible and semistable weight 2 deformations. Suppose ρ̄v is of
the form (

γ̄vχ̄p ∗
0 γ̄v

)
,

with γ̄v an unramified character, then ρ|Fv is of the form(
γvχp ∗

0 γv

)
,

where γv is a fixed unramified character of Dv that lifts γ̄v and such that
γ2
vχp = φ.
The argument is as in the last paragraph. For an O-algebra B and a

B-module N which are finite, the cocycles group Z1(Dv, N(χp)) is by (*) of
the proof of the lemma of the last paragraph of cardinality |N |2+[F :Qp]. We
get a smooth resolution R.

Unless p = 2 and Dv acts by homotheties, the morphism from R to
Spec(R�,ψ) is an isomorphism ; R is a torsor over the completion of (P1)F
along the point corresponding to the unique stable line of ρ̄ with structural
group the completion of a free module of rank 2 + [F : Qp] along the zero
section of its special fiber. The ring R

�,ψ
v is formally smooth over O of

relative dimension 3 + [F : Qp].
When p = 2 and Dv acts by homotheties, R is torsor over the completion

of (P1)O along its special fiber with structural group the completion of a free
module of rank 2 + [F : Qp] along the zero section of its special fiber. By
Proposition 2.12, the ring R�,ψ

v is a domain, faithfully flat over O of relative
dimension 3 + [F : Qp], and with regular generic fiber.
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3.2.7. The case k(ρ̄) = p + 1, p 6= 2; crystalline lifts of weight p + 1. By
[3], we know that such lifts are ordinary (Lemma 3.5, recall that we are
supposing Fv = Qp). Ordinary lifts of weight p + 1 are the lifts that are
extensions of an unramified free rank one representation by a free rank one
representation with action of Iv by χpp. Let us analyse the deformation ring of
such lifts (and now we suppose that the ground field is Fv a finite unramified
extension of Qp). Let us prove that the corresponding framed deformation
ring R�,ψ

v is formally smooth over O of relative dimension 3 + [Fv : Qp] i.e.
is isomorphic to O[[T1, . . . , T3+[Fv :Qp]]].

First we prove that the relative tangent space is of dimension 3+[Fv : Qp].
For that, we note that, for A a CNLO-algebra with πA = (0), the framed
deformations with values in A that we consider are the same as we were
considering in the previous paragraph. This proves the claim by the same
calculation as in the last paragraph. As χ̄pp ≡ χ̄p mod.π, one has to prove
that if: (

η1χ̄p η2a
0 η2

)
,

is a Dv-representation with values in A with πA = (0) and η1 and η2 un-
ramified, then η1 = η2. If F is an element of Dv that maps to the Frobenius,
and vZ : Z1(A(Ξ))→ A is the map defined in 3.2.5, with Ξ = χ̄pη1η

−1
2 , one

has vZ(a) = vZ(a ◦ int(F )) = η1(F )η2(F )−1vZ(a). As the cocycle a has a
très ramifiée reduction in F, vZ(A) is a unit in A and we get η1(F ) = η2(F ).

To prove the formal smoothness of R�,ψ
v over O, we have to extend a lift

ρA of the required type with values in GL2(A), for A a finite CNLO-algebra,
to a lift ρA′ of the required type with values in GL2(A′), for A′ a small
extension of A. One first lifts the line LA stabilized by Dv to a line LA′ . If
the characters giving the action on LA and (A ⊗O V )/LA are respectively
χppη1 and η2, we claim that there exists a lift of η1η

−1
2 such that the cocycle

giving the extension lifts ; that proves the existence of ρA′ .
We prove the existence of such a lift of η1η

−1
2 . In a convenient basis, ρA

is, after a suitable twist, of the form(
δ a
0 1

)
,

where δ : Dv → A∗ is a character whose reduction modulo mA is χp and
whose restriction to Iv is the compositum of χpp : Dv → O∗ and O∗ → A∗.
Let δ̂ be a lift of δ to (A′)∗ whose restriction to Iv is in the same way
the compositum of χpp : Dv → O∗ and O∗ → (A′)∗. Let γ : Dv → F
be an unramified character. We define the character δγ : Dv → (A′)∗ by
δγ(σ) = 1 + eγ(σ) where e is a generator of the ideal Ker(A′ → A). Write
fγ for the connecting homomorphism H1(A(δ)) → H2(F(χp)) arising from
the exact sequence

0→ F(χp)→ A′(δ̂δγ)→ A(δ)→ 0



32 CHANDRASHEKHAR KHARE AND J-P. WINTENBERGER

(the cohomology is for the group Dv). As H2(F(χp)) is of dimension 1, fγ
is either 0 or is surjective. In the first case we get the existence of ρA′ . Let
us suppose that fγ is surjective. We have the exact sequence

0→ H1(F(χp))→ H1(A′(δ̂δγ))→ H1(A(δ))→ H2(F(χp))→ 0.

Let us again denote by a the class in H1(A(δ))) of the cocycle a. A direct
calculation gives that fγ(a) − f0(a) is the cup product of γ ∈ H1(F) and
the reduction a ∈ H1(F(χp)) of a. As a is ”très ramifié”, class field theory
implies that, if γ is non zero, this cup product is non zero. We find a (unique)
γ1 such that the fγ1(a) = 0. This implies that a lifts to an â ∈ H1(A′(δ̂δγ1)).
This proves the claim.

Remark. It is not difficult to see using the proof above that the map
Specf(R�,ψ

v ) → X which corresponds to associating to ρ the character de-
scribing the action of Dv on the stable line is not formally smooth.

3.3. The case of a finite place v not above p. Let q be the residue
characteristic of v. We fix the determinant φ. In §3.3.1 to 3.3.3, after
possibly enlarging O, we construct a lift ρ0 : Dv → GL2(O) of ρ̄v with
ρ0(Iv) finite and with determinant φ. We consider inertia-rigid lifts (§2.7),
i.e. lifts whose restriction of inertia is conjugate to the restriction of ρ0 to
inertia and whose determinant is φ. The corresponding affine CNLO-algebra
has the required properties by Propositions 2.10 and 2.11.

3.3.1. Inertially finite deformations: minimally ramified lifts. We consider
minimal lifts as we define below (see also [18] for the case p 6= 2). We exclude
the case that projectively ρ̄v(Iv) is cyclic of order p as that is treated in
3.3.4. For p 6= 2, or p = 2 and the projective image of Iv is not dihedral,
minimal lifts ρ satisfy ρ̄v(Iv) = ρ(Iv). In all cases, the restriction to Iv of
the determinant of a minimal lift is the Teichmüller lift and the conductor
of a minimal lift equals the conductor of ρ̄v.

We construct the required lift ρ0 of ρ̄v. We distinguish 2 cases.
- the projective image of Iv has order prime to p. As ρ̄v(Iv) has order prime

to p, there is a lift ρI of (ρ̄v)|Iv in GL2(O) such that ρ̄v(Iv) is isomorphic
to ρI(Iv). The lift ρI is unique up to conjugation. Let F ∈ Dv be a lift
of the Frobenius. The representation ρ̄v ◦ int(F ) is isomorphic to ρ̄v. It
follows that ρI is isomorphic to ρI ◦ int(F ). Let g be such an isomorphism.
Let ḡ be the reduction of g; ḡ−1ρ̄(F ) is in the centralizer of (ρ̄v)|Iv . As
(ρ̄v)|Iv is semisimple, one easily sees that the centralizer of ρI surjects to the
centralizer of (ρ̄v)|Iv . So, we can choose g such that it reduces to ρ̄v(F ). We
extend ρI to Dv by sending F to g, and twist by an unramified character so
that the determinant of ρ0 coincide with φ.

- the projective image G of Iv has order divisible by p and is non-cyclic.
As G is non-cyclic, the image of the wild inertia in G is non-trivial, hence
also the center C of the image of wild inertia.
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Suppose first that C is cyclic. Then C has exactly two fixed points in
P1(Fp), defining two distinct lines L1 and L2 of VF. As G normalizes C, G
stabilizes the set of these two lines; as G is non cyclic it does not fix these
two lines. The group G is a dihedral group of order 2d, with d prime to
p = 2 and q divides d. The representation ρ̄v is isomorphic to the induced
representation IndFvL (γ), for a character γ of GL with values in F2

∗, L a
ramified quadratic extension of Fv. Let δ be a ramified character of GL of
order 2 with values in Q∗

2. Let us call ε the character of Dv = GFv defined
by L. Let us define ρ′0 as IndFvL (γ̂δ), where γ̂ is the Teichmüller lift of γ. We
have

det(ρ′0) = ε× (γ̂ ◦ t)× (δ ◦ t),
where t is the transfer from Dab

v to Gab
L . As the restrictions to Iv of δ ◦ t

and ε coincide, we see that

det(ρ′0)|Iv = (γ̂ ◦ t)|Iv .

It is the Teichmüller lift of det(ρ̄v)|Iv . We define ρ0 as an unramified twist
of ρ′0 whose determinant is φ. As the restriction of δ to inertia is unique, we
see that the restriction of ρ0 to inertia does not depend on the choice of δ.
As γ is wildly ramified and δ is tamely ramified, the conductor of ρ′0 equals
the conductor of ρ̄v.

Suppose now C is non-cyclic. Let c ∈ C be a non trivial element, and L1

and L2 be the two eigenspaces for c; C stabilizes the set of these two lines.
As C is abelian non cyclic, it is of order 4 and is conjugate to the projective
image of the group of matrices(

±1 0
0 ±1

)
,

(
0 ±1
±1 0

)
.

The residual characteristic q of Fv is 2. The normalizer of C in PGL2(Fp)
is isomorphic to the symmetric group S4, p = 3 and G is isomorphic to
A4. The projective image of ρ̄v is contained in the normalizer of C, i.e. in
S4. We have an isomorphic lift of S4: it is given by the normalizer of the
projective image of the above matrices in PGL2(Z3). We define (ρ0)proj as
the lift given by this lift of S4. As p 6= 2, there is a unique lift ρ0 of ρ̄v such
that the projective representation defined by ρ0 coincides with (ρ0)proj and
whose determinant is φ.

3.3.2. Inertially finite deformations: abelian lifts with fixed inertial charac-
ter. We enlarge F so that it contains all the q − 1st roots of 1 of F.

Suppose that, in the basis e1, e2 of VF, ρ̄v is upper triangular and ρ̄|Iv is(
χ ∗
0 1

)
,

where χ arises from a mod. p character of Gal(Fv(µq)/Fv). Let χ be its
Teichmüller lift. This is a power of the character ιpι−1

q (ωq) which we recall
that by our conventions is again denoted by ωq.
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Consider a lift χ′ of χ̄ that is some non trivial power of ωq. We see that,
if pr is the exact p power which divides q − 1, we have, for some integer a :

χ′ = χω
a(q−1)
pr

q . We suppose that the restrictions of χ′ and φ to Iv coincide.
We consider lifts such that ρ⊗E is the sum of two spaces of dimension 1

on which Iv acts by the characters 1 and χ′. In the case χ unramified and
ρ̄v is a direct sum of two unramified distinct characters (the case we call
particular), we furthermore require ρ|Iv to be, in a basis e1, e2 lifting the
basis e1, e2 of the form: (

χ′ ∗
0 1

)
.

As χ′ is invariant by conjugation by Frobenius, the action of Dv in ρ is
abelian and factorizes through the Galois group G of the compositum L of
the maximal unramified extension of Fv with Fv(µq). Unless we are in the
particular case, we are considering inertia-rigid lifts. In the particular case,
the lifts that we consider define an irreducible component of the inertia-rigid
lifts.

One has to prove that there exists such a lift with values in the ring
of integers of a finite extension of E. Let σ be a generator of the inertia
subgroup of G and let us still denote by F the Frobenius of the extension
L/Fv(µq). Let us write ε = χ′(σ). One has to find lifts F and σ of ρ̄(F ) and
ρ̄(σ) respectively such that F and σ commute, the characteristic polynomial
of σ is (X−1)(X−ε), and det(F ) = φ(F ). Granted the first two conditions,
we can realize the third by an unramified twist.

We find F and σ satisfying the first two conditions. If ρ̄(σ) or ρ̄(F ) is
semi-simple and not an homothety, both are semi-simple and the existence
of the lift is clear. Otherwise, it follows from the lemma:

Lemma 3.9. Let: (
1 a
0 1

)
,

(
1 a′

0 1

)
,

be two matrices with coefficient in F. Then, possibly after enlarging O, there
exist lifts of these matrices that commute and the first one has characteristic
polynomial (X − 1)(X − ε).

Proof. One uses the following elementary fact. Let us write v for the val-
uation of O such that v(π) = 1. Let L1 and L2 be lines of the free O-
module V which are direct factors. Let us note v(L1, L2) the least integer
v such that the images of L1 and L2 in V/πv+1 are distinct. Let α be a
unit in O with v(α − 1) > 0. Let g ∈ GL2(E) which has eigenspaces L1

and L2 with eigenvalues 1 and α. Then one has g(V ) = V if and only if
v(L1, L2) ≤ v(α − 1). If v(L1, L2) < v(α − 1), the reduction of g is the
identity ; if v(L1, L2) = v(α− 1), the reduction g of g is unipotent 6= id. In
the last case, the only line fixed by g is the common reduction of L1 and
L2. Furthermore, one obtains all possible such unipotent matrices, either if
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α is fixed, by varying L1 and L2 such that v(L1, L2) = v(α − 1), or else if
L1 and L2 are fixed, by varying α with this condition.

Let us prove the lemma. One lifts the first matrix by a matrix which has
eigenvectors e1 and e1+λe2 with eigenvalues 1 and ε with 0 < v(λ) < v(ε−1)
if a = 0 and v(λ) = v(ε − 1) if a 6= 0. One lifts the second matrix by a
matrix which has the same eigenvectors and the eigenvalues 1 and α with
v(λ) < v(α − 1) if a′ = 0 and v(λ) = v(α − 1) if a′ 6= 0. This proves the
lemma. �

3.3.3. Inertially finite deformations: non-abelian liftings with fixed non-
trivial inertial character. We assume Fv = Qq. Assume that pr|q + 1 for
an integer r > 0, and ρ̄|Dq is up to unramified twist of the form(

χp ∗
0 1

)
,

in the basis e1, e2.
We enlarge F so that it contains all the q2 − 1st roots of 1 of F. We

consider O whose residue field is F and which contains all the q2 − 1st roots
of 1 of Qp.

Let χ′ be some character of level 2 of Iq (it factors through (Fq2)∗ and
not through (Fq)∗) which is of order a power of p.

We construct a lift ρ : Dq → GL2(O′) of ρ̄ of fixed determinant φ = ψχp,
such that ρ|Iq is of the form (

χ′ ∗
0 χ′q

)
,

in a basis lifting the basis e1, e2.
As χ′ is of level 2, χ′ and χ′q are distinct, and we see that for any lift ρ

considered, the restriction to Iq of ρ ⊗ E is isomorphic to a direct sum of
two representations of dimension 1 with characters χ′ and χ′q. It follows
that the lifts considered are inertia-rigid. We prove the existence of such a
lift, the condition on the determinant then being satisfied by an unramified
twist (of course, ψ is such that the restriction of φ to Iq is (χ′)1+q).

Let F ∈ Dq mapping to the Frobenius, let σ be a generator of tame inertia
and let us note ε = χ′(σ).

If p 6= 2, as χp(F ) ≡ −1 mod.p and we can choose the basis of VF such
that the matrix of ρ̄v(F ) is: (

−1 0
0 1

)
.

The matrix for ρ̄(σ) is of the form:(
1 a
0 1

)
.

We choose for ρ(F ) the lift with the same matrix as ρ̄(F ). We choose for
ρ(σ) the matrix which has eigenspaces the lines generated by e1 + λe2 and
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e1 − λe2 with eigenvalues ε and ε−1 = εq. Note that ρ(F ) permutes the two
eigenspaces, so that we have int(ρ(F ))(ρ(σ)) = ρ(σ)q. This matrix ρ(σ) is(

(ε+ ε−1)/2 (ε− ε−1)/2λ
λ(ε− ε−1)/2 (ε+ ε−1)/2

)
.

We choose λ such that 0 < v(λ) < v(ε − ε−1) if a = 0, and if a 6= 0,
v(λ) = v(ε− ε−1) and (ε− ε−1)/2λ ≡ a mod.π.

Let us suppose p = 2. Note that ε 6= −1 as χ′ is of level 2. We choose
ρ(F ) of the form (

−1 z
0 1

)
,

with v(z) > 0 if ρ̄(F ) is the identity matrix, and v(z) = 0 if ρ̄(F ) is
unipotent not equal to identity. We choose z such that v(z) < v(ε2−1). We
choose ρ(σ) with eigenspaces e1 + λe2 and ρ(F )(e1 + λe2) with eigenvalues
ε and ε−1 respectively. The matrix of ρ(σ) in this basis is:(

ε−1 + (ε−ε−1)
(2−λz)

(ε−ε−1)(1−λz)
λ(2−λz)

λ(ε−ε−1)
(2−λz) ε− (ε−ε−1)

(2−λz)

)
.

If ρ̄(σ) = id, we choose λ with v(λ) > 0, 2v(λ) + v(z) < v(ε2 − 1).
This is possible as we have choosen v(z) < v(ε2 − 1). As then we have
v(λ) + v(z) < v(2), we have v(2− λz) = v(λ) + v(z), we see that the above
matrix has reduction id.

If ρ̄(σ) 6= id, we choose λ with 2v(λ) + v(z) = v(ε2 − 1). We have
v(λ) > 0 as we have choosen v(z) < v(ε2 − 1). It follows that v(λz) < v(2)
and v(2 − λz) = v(λ) + v(z). The reduction of the above matrix is upper
triangular unipotent, not equal to identity. If we note, for an element x ∈
K∗, r(x) the reduction of xπ−v(x), the reduction of the upper right term
(ε−ε−1)(1−λz)

λ(2−λz) of the above matrix is r(ε − ε−1)/(r(z)r(λ)2): we see that we
can choose λ such that the reduction of the above matrix is ρ̄(σ).

3.3.4. Twist of semistable deformations. We use the formalism of Section
2.8. Suppose ρ̄|Dv is of the form(

γ̄vχ̄p ∗
0 γ̄v

)
.

We consider liftings ρ of the form(
γvχp ∗

0 γv

)
,

where γv is a fixed character of Dv that lifts γ̄v such that its restriction to
Iv is the Teichmüller lift and γ2

vχp = φ.
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The situation is analogous to the semistable case considered in 3.2.6 ex-
cept the cocycles form an O-module of rank 2. All we have to note is that
for A a finite CNLO-algebra instead of the formula (*) of 3.2.5, we use

|Z1(GF , A(χp))| = |A| |H0(GF , A)| = |A|2.
Furthermore, if ρ̄v is ramified, the conductor of such a lift equals the con-
ductor of ρ̄v.

4. Global deformation rings: basics and presentations

Some references for this section are [43], [14], [4] and [37]
Given F, F ′ number fields with Q ⊂ F ⊂ F ′ ⊂ Q, and a finite set of places

S of F , we denote by GF,S (resp. GF ′,S) the Galois group of the maximal
extension of F (resp. F ′) in Q unramified outside S (resp. places of F ′

above S).
Let F be a totally real number field and let ρ̄F : GF → GL2(F) = GL(VF)

be absolutely irreducible and (totally) odd. We assume that ρ̄ has non-
solvable image when p = 2, and ρ̄|F (µp) is absolutely irreducible when p > 2.
We also write ρ̄ for ρ̄F . We suppose that F is unramified at places above p,
and even split at p if ρ̄ |Dv is irreducible for v a place of F over p. Let O be
the ring of integers of a finite extension of Qp as before.

Let φ = ψχp : GF → O∗ be a totally odd character that lifts det ρ̄F . In
all cases that we will consider, ψ will be arithmetic (1.2). We will consider
deformations of ρ̄ to CNLO-algebras with fixed determinant φ = ψχp, or
deformations where we fix the determinant to be φ locally at places belonging
to a finite set S as below. As we fix ρ̄ we denote Ad(ρ̄) and Ad0(ρ̄) by Ad
and Ad0 as usual.

4.1. Basics.

4.1.1. Various deformation rings. Let W = S ∪ V be a finite set of places
of F , with S and V disjoint, such that ρ̄ and φ are unramified outside the
places in W , such that all infinite places are in S, and all places above p are
in S. Thus we may consider ρ̄ as a representation of GW = GF,W the Galois
group of the maximal extension of F in F unramified outside W .

For v ∈ S consider the CNLO-algebra R�,ψ
v which represents the functor

obtained by assigning to a CNLO-algebra A, the isomorphism classes of lifts
of ρ̄|Dv in GL2(A) having determinant ψχp. We can also say that R�,ψ

v

represents the functor of pairs (VA, βv,A) where VA is a deformation of the
Dv-representation VF to A , having determinant ψχp, and βv,A is a lift of
the chosen basis of VF.

Call R�,loc,ψ
S the completed tensor product ⊗̂v∈SR�,ψ

v . Consider the
CNLO-algebra R�,ψ

S∪V (resp., R�
S∪V ) which represents the functor obtained

by assigning to A, the isomorphism classes of tuples (VA, {βv,A}v∈S) where
VA is a deformation of the GW -representation ρ̄ to A having determinant
ψχp (resp., VA|Dv has determinant ψχp for v ∈ S), and for v ∈ S, βv,A is a
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lift of the chosen basis of VF. Then in a natural way R�,ψ
S∪V (resp., R�

S∪V ) is
a R�,loc,ψ

S -algebra.
For v ∈ S consider one of the quotients R̄�,ψ

v defined in the earlier section
that classifies certain lifts that satisfy a prescribed condition Xv. Let us
write : R̄�,loc,ψ

S := ⊗̂v∈SR̄�,ψ
v .

We consider the CNLO-algebra R̄�,ψ
S∪V = R�,ψ

S∪V ⊗̂R�,loc,ψ
S

R̄�,loc,ψ
S . Analo-

gously we consider R̄�
S∪V = R�

S∪V ⊗̂R�,loc,ψ
S

R̄�,loc,ψ
S .

If A is a CNLO-algebra, then a morphism R�,ψ
S∪V → A of CNLO-algebras

factorises through R̄�,ψ
S∪V if and only if the corresponding local representa-

tions for v ∈ S factorise through the specialisation R�,ψ
v → R̄�,ψ

v .

4.1.2. Relative dimension of framed/unframed deformation rings.

Proposition 4.1. Let R̄ψS∪V (resp., R̄S∪V ) be the subring of R̄�,ψ
S∪V (resp.,

R̄�
S∪V ) generated by the traces of the corresponding universal deformation.

This is the same as the image of the usual (unframed) universal deformation
ring RψS∪V (resp., RS∪V ) in R̄�,ψ

S∪V (resp., R̄�
S∪V ) . Then Specf(R̄�,ψ

S∪V ) (resp.,
Specf(R̄�

S∪V )) is a Specf(R̄ψS∪V )-torsor (resp., Specf(R̄S∪V )-torsor) under
(
∏
v∈S(GL2)1)/Gm and R̄�,ψ

S∪V (resp., R̄�
S∪V ) is a power series ring over

R̄ψS∪V (resp., R̄S∪V ) in 4|S| − 1 variables.

Proof. We will prove the statements only for deformations with fixed deter-
minants. The proof in the other case is similar. Recall that we denote by
GL2(A)1 the kernel of GL2(A) → GL2(F). Note that R�,ψ

S∪V represents the
functor that associates to A equivalence classes of tuples (ρ, (ρv)v∈S , (gv)v∈S)
where ρ (resp. ρv) is a lift of ρ̄ (resp. ρ̄|Dv) to GL2(A) of determinant φ, and
for each v ∈ S, gv is an element of GL2(A)1 such that ρv = int(gv)(ρ|Dv).
Two tuples (ρ, (ρv)v∈S , (gv)v∈S) and (ρ′, (ρ′v)v∈S , (g

′
v)v∈S) are said to be

equivalent if they are conjugate under the action of GL2(A)1 defined by
(ρ, (ρv), (gv)) 7→ (int(g)(ρ), (ρv), (gvg−1)).

Let us call R̃�,ψ
S∪V the CNLO-algebra which classifies such tuples (with-

out going modulo the equivalence relation). Note that Specf(R̃�,ψ
S∪V ) is a

Specf(R�,ψ
S∪V )-torsor under (GL2)1. The action of (GL2)1 commutes with the

action of (hv) ∈
∏
v∈S(GL2)1 defined by (ρ, (ρv), (gv)) 7→ (ρ, int(hv)(ρv), hvgv).

The action of homotheties embedded diagonally in (GL2)1×
∏
v∈S(GL2)1 is

trivial and Specf(R̃�,ψ
S∪V ) is a torsor on Specf(RψS∪V ) with group (GL2)1 ×∏

v∈S(GL2)1/Gm. We denote ˜̄
R�,ψ
S∪V = R̃�,ψ

S∪V ⊗̂R�,loc,ψ
S

R̄�,loc,ψ
S . Then the

proposition follows from the fact that Specf(˜̄R�,ψ
S∪V ) is a torsor on Specf(R̄ψS∪V )

under (GL2)1 ×
∏
v∈S(GL2)1/Gm. �
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4.1.3. Dimension of R̄�,loc,ψ
S . Recall from Theorem 3.1 that we have the

following properties of R̄�,ψ
v for v ∈ S:

• R̄�,ψ
v is flat over O,

• The relative to O dimension of each component of R�,ψ
v is :

- 3 if ` 6= p ;
- 3 + [Fv : Qp] if ` = p ;
- 2 if v is an infinite place.

• R̄�,ψ
v [1p ] is regular.

The completed tensor product R̄�,loc,ψ
S is thus flat over O (see Proposition

2.2), with each component of relative dimension 3|S|, and R̄�,loc,ψ
S [1p ] is

regular (see Proposition 3.2).

4.1.4. Tangent spaces. For a discrete GF -module M on which the action
is unramified outside the finite set of places W , we denote by H∗(W,M)
the cohomology group H∗(GF,W ,M). If for each v ∈ W we are given
a subspace Lv of H∗(Dv,M), we denote by H∗

{Lv}(W,M) the preimage
of the subspace Πv∈WLv ⊂ Πv∈WH

∗(Dv,M) under the restriction map
H∗(W,M)→ Πv∈WH

∗(Dv,M).
We consider the following two situations:
• Case 1. ∗ = 1 and M = Ad0(ρ̄), for any place v ∈ S, Lv is the image

of H0(Dv,Ad/Ad0) in H1(Dv,Ad0). It is either 0 or 1-dimensional
over F, with the latter possibility only when p = 2.For v ∈ V we
take Lv to be all of H1(Dv,Ad0).
• Case 2. ∗ = 1 and M = Ad(ρ̄), for any place v ∈ S, Lv = 0. For
v ∈ V we take Lv to be all of H1(Dv,Ad).

Note that (Ad0)∗ = HomF(Ad0,F) is isomorphic to Ad/Z as aGF -module,
where Z are the scalar matrices in M2(F). For p 6= 2, we have Ad = Ad0⊕Z.
The GF -module Ad/Z is isomorphic to Ad0 when p > 2, and need not be
so when p = 2. (Note that in many references for example [14] what we call
(Ad0)∗(1) is denoted by (Ad0)∗.) We have GF -equivariant perfect pairings
Ad0 × (Ad0)∗(1)→ F(1) and Ad×Ad(1)→ F(1).

We define L⊥v to the annihilator of Lv under the perfect pairing given by
local Tate duality (see Theorem 2.17 of [14] for instance)

H1(Dv,Ad0)×H1(Dv, (Ad0)∗(1))→ F,

and
H1(Dv,Ad)×H1(Dv, (Ad)(1))→ F

respectively.
We denote by the superscript η the image of the corresponding coho-

mology with Ad0(ρ̄)-coefficients in the cohomology with Ad(ρ̄)-coefficients.
Thus the images of the mapsH1(W,Ad0)→ H1(W,Ad) andH1

{Lv}(W,Ad0)→
H1(W,Ad) are denoted by H1(W,Ad0)η and (H1

{Lv}(W,Ad0))η respectively.



40 CHANDRASHEKHAR KHARE AND J-P. WINTENBERGER

(Note that this differs slightly from the notation of [4]: for instance what we
call H1(W,Ad0)η is denoted using the conventions there by H1(W,Ad)η.)

In Case 2 above we denote the correspondingH1
{Lv}(S∪V,Ad) byH1

S−split(V,Ad).
More generally for a discrete GF -module M on which the action is unram-
ified outside a finite set of places W = S ∪ V , and such that for v ∈ S,
Lv = 0, and for v ∈ V , Lv = H1(Gv,M) , we denote by H1

S−split(V,M) the
cohomology group H∗

{Lv}(GF,W ,M).
As notation we denote the dimension over F of a cohomology group con-

sidered above by substituting h for H.

Definition 4.2. For a prime p, define δp = 0 if p > 2 and δ2 = 1.

Then we have the following result.

Lemma 4.3. 1. Consider the exact sequence

0→ H0(W,Ad0)→ H0(W,Ad)→ H0(W,Ad/Ad0)(= F)

→ H1(W,Ad0)→ H1(W,Ad).
The dimension of the kernel of the surjective maps H1(W,Ad0)→ H1(W,Ad0)η

and H1
{Lv}(W,Ad0)→ (H1

{Lv}(W,Ad0))η is δp.

2. (i) For p > 2 we have that H0(GF ,Ad0) = H0(GF , (Ad0)∗(1)) = 0.
(ii) For p = 2 we have that the projective image of ρ̄, denoted by proj.im.(ρ̄),

is G := SL2(F2r) for r > 1. Further H0(G,Ad) = H0(G,Ad0) = Z is 1-
dimensional over F, and H0(G,Ad/Z) = H0(G, (Ad0)∗) = 0.

3. We have
|H0(GF ,Ad0)|

|H0(GF , (Ad0)∗(1))|
= |F|δp .

4. We have an injection H1(GF , Z) ↪→ H1(GF ,Ad).
5. For p = 2, we have from 2 (ii) that the projective image of ρ̄ is

G := SL2(F2r) for r > 1.
(i) We have that H1(G,Ad) = 0.
(ii) The only G-submodules of Ad are 0, Z,Ad0,Ad.

Proof. 1. As ρ̄ is absolutely irreducible, we have H0(GF ,Ad) = F.id = Z.
Also note that F.id is not inside Ad0 if p 6= 2 and F.id ⊂ Ad0 if p = 2. (1)
follows. (See also the exact sequences (7) and (8) of [4].)

2. (i) For p > 2, as ρ̄|F (µp) is absolutely irreducible, both H0(GF ,Ad0)
and H0(GF , (Ad0)∗(1)) are 0 (see proof of Corollary 2.43 of [14]).

(ii) In the case of p = 2, by our assumption that ρ̄ has non-solvable image
and Dickson’s theorem the projective image of ρ̄ is PGL2(F′) ' SL2(F′) for
some F′ ⊂ F, and |F′| = 2r with r > 1.

As ρ̄ is absolutely irreducible, H0(GF ,Ad0) and H0(GF ,Ad) are one-
dimensional over F generated by id.

Let us prove that H0(GF , (Ad0)∗) = H0(GF , (Ad/Z)) is trivial. If not, let
l ∈ Ad whose image in Ad/Z is a non trivial element inH0(GF , (Ad/Z)). Let
g be an element of GF whose image in PGL2(F) is a non trivial semisimple
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element. Let D1 and D2 be the two eigenspaces of ρ̄(g). As the restriction
of Ad(ρ̄)(g) to the plane P generated by id and l is unipotent and 1 is not
an eigenvalue of Ad(ρ̄)(g) acting on Ad/P , we see that P is the subspace of
diagonal matrices relative to the decomposition D1 ⊕D2 of the underlying
space of ρ̄. As P is stable under GF , the set of the two lines D1 and D2 is
stable by GF and ρ̄(GF ) is solvable. This is not the case and (2) is proved.

3. This follows from (2).
4. This is clear for p > 2 and in the case p = 2 follows from the fact that

H0(GF ,Ad/Z) = 0 and the long exact sequence of cohomology.
5. (i) This is Lemma 42 of [21]: in loc. cit. it is proved that given finite

fields F′ ⊂ F with F′ = F2r for some r > 1, then H1(SL2(F′),M2(F)) = 0.
(ii) To see this note that any 1-dimensional module for G = SL2(F2r) (r >

1) is trivial as G is perfect. Note also that the only G-submodules of Ad0 are
0, Z,Ad0. For if V was another G-submodule, then as H0(GF ,Ad0) = Z,
we have dim(V ) = 2, and this would contradict that H0(G, (Ad0)∗) = 0.

If V is now a G-submodule of Ad other than the asserted ones, then
dim(V ) is either 2 or 3. If dim(V ) = 2, then the G-submodule V ∩ Ad0

is non-zero and we see from the list of G-submodules of Ad0 that it can
only be Z. But then V/Z is a one-dimensional G submodule of Ad/Z which
contradicts H0(G,Ad/Z) = 0. If dim(V ) = 3, then V ∩ Ad0 is at least
2-dimensional, and then we see that V = Ad0 by inspection of the list of
G-submodules of Ad0.

�

4.1.5. Number of generators of global/local deformation rings. By arguments
as in the proof of Lemma 3.2.2 of [36] we have:

Lemma 4.4. 1.The minimal number of generators of R�,ψ
S∪V (resp., R̄�,ψ

S∪V )
over R�,loc,ψ

S (resp., R̄�,loc,ψ
S ) is dimF(H1

{Lv}(S∪V,Ad0))−δp+Σv∈SdimF(H0(Dv,Ad))−
dimF(H0(GF ,Ad)).

2. The minimal number of generators of R�
S∪V (resp., R̄�

S∪V ) over R�,loc,ψ
S

(resp., R̄�,loc,ψ
S ) is dimF(H1

S−split(V,Ad))+Σv∈SdimF(H0(Dv,Ad))−dimF(H0(GF ,Ad)).

Proof. We prove only 1. as 2. is similar.
Let mgl (resp. mloc) the maximal ideal of R�,ψ

S∪V (resp. R�,loc,ψ
S ). Let us

prove that the dimension of the relative cotangent space (mgl/m
2
gl)⊗R�,loc,ψ

S

F,

or equivalently that of the relative tangent space HomO((mgl/m
2
gl)⊗R�,loc,ψ

S

F,F), is dimF(H1
{Lv}(S∪V,Ad0))−δp+Σv∈SdimF(H0(Dv,Ad))−dimF(H0(GF ,Ad)).

The relative tangent space T of the previous sentence corresponds to the
set of deformations of VF to finite free, rank 2, dual algebra F[ε]-modules
(ε2 = 0), VF[ε], with prescribed determinant φ, together with a collection of
bases {βv}v∈S lifting the chosen basis of VF, such that for each v ∈ S, the
pair (VF[ε]|Dv , βv) is isomorphic to VF ⊗F F[ε] equipped with the action of
Dv induced by the action on VF and the basis induced by the chosen basis
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of VF. The space of such deformations VF[ε] is given by (H1
{Lv}(W,Ad0))η

whose F-dimension by Lemma 4.3 is dimF(H1
{Lv}(S ∪ V,Ad0)) − δp. After

this the proof is completed just as in [36] by observing that two sets of
choices {βv}v∈S and {β′v}v∈S are equivalent if there is an automorphism
of VF[ε] respecting the action of Dv, reducing to an homothety on VF, and
taking βv to β′v. F. Diamond has remarked that this may be expressed as
the exactness of

0→ H0(GF ,Ad)→
∏
v∈S

H0(Dv,Ad)→ T → H1
{Lv}(W,Ad0)η → 0.

�

4.1.6. Wiles formula. Recall the formula of Wiles (see Theorem 2.19 of [14]).
Consider a module M as above which is finite, and with nM = 0 for some
n ∈ N. Let M∗(1) be the Galois module Hom(M,µn). Then:

(1)
|H1

{Lv}(S ∪ V,M)|
|H1

{L⊥v }
(S ∪ V,M∗(1))|

=
|H0(GF ,M)|
|H0(GF ,M∗(1))|

∏
v∈S

|Lv|
|H0(Dv,M)|

∏
v∈V

|Lv|
|H0(Dv,M)|

In Cases 1 and 2 above this gives:

(2)
|H1

{Lv}(S ∪ V,Ad0)|

|H1
{L⊥v }

(S ∪ V, (Ad0)∗(1))|
=

|H0(GF ,Ad0)|
|H0(GF , (Ad0)∗(1))|

∏
v∈S∪V

|Lv|
|H0(Dv,Ad0)|

(3)
|H1

S−split(V,Ad)|
|H1

V−split(S,Ad(1))|
=
|H0(GF ,Ad)|
|H0(GF ,Ad(1))|

∏
v∈S

1
|H0(Dv,Ad)|

∏
v∈V

|H1(Dv,Ad)|
|H0(Dv,Ad)|

4.2. Presentations. For the rest of this subsection we assume that V is
empty, consider only Ad0 coefficients, and remove V from the notation.

Proposition 4.5. The absolute dimension of R̄ψS is ≥ 1.

Proof. Let

g := dimF(H1
{Lv}(S,Ad0))−δp+Σv∈SdimF(H0(Dv,Ad))−dimF(H0(GF ,Ad))

= dimF(H1
{L⊥v }

(S, (Ad0)∗(1))− dimF(H0(GF ,Ad))

+Σv∈S
(
dimF(H0(Dv,Ad)) + dimF(Lv)− dimF(H0(Dv,Ad0)

)
.

The second equality follows from Wiles’ formula (2), and 3. of Lemma
4.3.

We have the exact sequence :

(0)→ H0(Dv,Ad0)→ H0(Dv,Ad)→ F→ Lv → (0).
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It follows that, in the preceeding formula, each term of the sum over v ∈ S
is 1 and we find :

g = dimF(H1
{L⊥v }

(S, (Ad0)∗(1))) + |S| − 1.

By Lemma 4.4, we have a presentation

R�,ψ
S ' R�,loc,ψ

S [[X1, · · · , Xg]]/J,

which induces an isomorphism on the relative to R�,loc,ψ
S tangent spaces of

R�,loc,ψ
S [[X1, · · · , Xg]] and R�,ψ

S . Let us call r(J) the minimal number of
generators of J : if m is the maximal ideal of R�,loc,ψ

S [[X1, · · · , Xg]], we have
r(J) = dimF(J/mJ).

Lemma 4.6. We have the inequality:

r(J) ≤ dimF(H1
{L⊥v }

(S, (Ad0)∗(1))).

Proof. We prove the lemma. We define a F-linear map

f : HomF(J/mJ,F)→ H1
{L⊥v }

(S, (Ad0)∗(1))∗,

and we prove that f is injective.
To define f , we have to construct a pairing ( , ):

H1
{L⊥v }

(S, (Ad0)∗(1))×HomF(J/mJ,F)→ Fp,

that satisfies (λ∗, ∗) = (∗, λ∗) for λ ∈ F.
Let u ∈ HomF(J/mJ,F) and [x] ∈ H1

{L⊥v }
(S, (Ad0)∗(1)). We have the

exact sequence :

0→ J/mJ → R�,loc,ψ
S [[X1, · · · , Xg]]/mJ → R�,ψ

S → 0.

We push-forward the exact sequence above by u and we get an exact
sequence

0→ Iu → Ru → R�,ψ
S → 0.

Note that I2
u = 0, and Iu is isomorphic to F as an Ru-module.

Let (ρ, (ρv)v∈S , (gv)v∈S) be tuple as in the proof of Proposition 4.1 rep-
resenting the tautological point of R�,ψ

S . As Ru is a R�,loc
S -algebra, for all

v ∈ S, we get a lift ρ̃v of ρv with values in GL2(Ru). Let us choose lifts
g̃v ∈ GL2(Ru) of the gv and let us write ρ̃′v = int(g̃−1

v )(ρ̃v).
Consider a set theoretic lift ρ̃ : GS → GL(VRu) of the universal repre-

sentation ρ�,ψ
S : GF → GL2(R

�,ψ
S ), such that the image of ρ̃ consists of

automorphisms of determinant the fixed determinant φ. This is possible as
SL2 is smooth. We define the 2-cocycle:

c : (GS)2 → Ad0, c(g1, g2) = ρ̃(g1)ρ̃(g2)ρ̃(g1g2)−1 − 1.

We define a 1-cochain av by the formula:

av : Dv → Ad0, ρ̃(g) = (1 + av(g))ρ̃′v(g).
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We see that c|Dv = δ(av). We define (x, u) by the formula:∑
v∈S

inv((xv ∪ av) + zv),

where x is a 1-cocycle representing [x], z is a 2-cochain of GS with values in
O∗S such that δ(z) = (x ∪ c) (see proof of Theorem 8.6.7 of [48]). We have
written ( ∪ ) for the cup-product followed by the map on cochains defined by
the pairing (Ad0)∗(1)×Ad0 → F(1)→ Fp(1), where the map F(1)→ Fp(1)
is induced by the trace F→ Fp.

The formula is meaningful as δ((xv ∪ av) + zv) = 0. By the product
formula, it does not depend on the choice of z. It does not depend on the
choice of the representative x of [x]. Indeed, if we choose x + δ(y) as a
representative, we can replace z by z + (y ∪ c), and in the formula defining
the pairing we have to add:∑

v∈S
inv((δ(yv) ∪ av) + (yv ∪ cv)).

Each term of this last sum is 0 as it is inv(δ((yv ∪ av))). It does not
depend on the choice of ρ̃. If we take as a section (1 + b)ρ̃, we replace av by
av + bv, c by c+ δ(b) and we can replace z by z − (x ∪ b), and the formula
is changed by: ∑

v∈S
inv((xv ∪ bv)− (xv ∪ bv)) = 0.

It also does not depend on the choice of the g̃v. If we change g̃v by
g̃v(1 + hv), we change av by g 7→ av(g) − (ad(g)(hv) − hv), (xv ∪ av) by
(xv ∪ av − xv ∪ δ(hv)). As xv ∪ δ(hv) = −δ(xv ∪ hv), we do not change
inv((xv ∪ av) + zv).

The application x 7→ (x, u) is obviously Fp-linear. The Fp-linearity of
u 7→ (x, u) follows from the fact that c (resp. av) is defined by evaluating
at u a cochain (GS)2 → J/mJ ⊗ Ad0 (resp. Dv → J/mJ ⊗ Ad0). As ( ∪ )
satifies the identity (λc1 ∪ c2) = (c1 ∪ λc2) for λ ∈ F, ( , ) satisfies the
analogous identity, and we get the F-linearity.

Let us prove that the map f defined by this pairing is injective. Suppose
u 6= 0. We have a part of the Poitou-Tate exact sequence:

H1(S,Ad0)→ ⊕v∈SH1(Dv,Ad0)/Lv → H1
{L⊥v }

(S, (Ad0)∗(1))∗ → III2(S,Ad0).

If f(u) = 0, we have in particular that for all [x] ∈ III1(S, (Ad0)∗(1)),
([x], u) = 0. For such an [x], it follows from 8.6.8 of [48] that ([x], u) = 0
coincides with Poitou-Tate product of [x] and the image of the class [c] of c
in III2(S,Ad0). As the Poitou-Tate pairing is non-degenerate, we see that
if f(u) = 0, we have [c] = 0. Thus we can suppose that ρ̃ is a Galois
representation and that [z] = 0. The formula defining f(u) shows that
f(u) comes from the image of (av) in ⊕v∈SH1(Dv,Ad0)/Lv. As f(u) = 0,
we can find b ∈ Z1(S,Ad0) and hv ∈ Ad such that bv = av + δ(hv) for
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each v ∈ S. If we replace the Galois representation ρ̃ by (1− b)ρ̃ and g̃v by
g̃v(1−hv), we obtain a tuple (ρ̃, (ρ̃v), (g̃v)) defining a section of the morphism
of R�,loc,ψ

S -algebras : Ru → R�,ψ
S . This is impossible as Ru → R�,ψ

S induces
an isomorphism on tangent spaces relative to R�,loc,ψ

S , hence so does the
section which is thus an isomorphism. This proves that f is injective and
the lemma. �

Using the presentation

R�,ψ
S ' R�,loc,ψ

S [[X1, · · · , Xg]]/J

and the natural maps R�,loc,ψ
S → R̄�,loc,ψ

S and R�,ψ
S → R̄�,ψ

S we deduce a
presentation.

R̄�,ψ
S ' R̄�,loc,ψ

S [[X1, · · · , Xg]]/J ′,

and get that J ′ is generated by dim(H1
{L⊥v }

(S, (Ad0)∗(1))) elements.

Thus we get a lower bound for the (absolute) dimension of R̄�,ψ
S as

|S| − 1 + abs. dim.(R̄�,loc,ψ
S ). We know that R̄�,loc,ψ

S is flat over O such
that abs. dim.(R̄�,loc,ψ

S ) = 1 + 3|S|. Thus a lower bound for the (absolute)
dimension of R̄�,ψ

S is 3|S|+1+ |S|− 1 = 4|S|. Comparing this with another
expression for the (absolute) dimension which is abs. dim.(R̄ψS) + 4|S| − 1
(see Proposition 4.1) proves the proposition.

�

Remarks: The proof above is along the lines of Lemma 4.1.1 of [37], or
Theorem 5.2 of [4]. The map

f : Hom(J/mJ,F)→ H1
{L⊥v }

(S, (Ad0)∗(1))∗

constructed above, and its injectivity, answers a question of §4 of [37].
Let r1, . . . , rr(J) be elements of J which reduce to a basis of J/mJ . We

shall prove in Theorem 10.1 that R̄ψS is O-module of finite type. It follows
that y1, · · · , y4|S|−1, r1, . . . , rr(J), p is a system of parameters of R̄�,loc,ψ

S [[X1, · · · , Xg]]
where the images of yi generate R̄�,ψ

S over R̄ψS . If the O-algebras R̄�,ψ
v are

Cohen-Macaulay, it is a regular sequence. It follows that R̄ψS is flat over O,
and Cohen-Macaulay (resp. Gorenstein, resp complete intersection) if the
R̄�,ψ
v are.

Corollary 4.7. If R̄ψS is a finitely generated Zp-module, then there is a
map of CNLO-algebras π : R̄ψS → O′ for O′ the ring of integers of a finite
extension of Qp. As R̄�,ψ

S is smooth over R̄ψS , we also get a morphism
R̄�,ψ
S → O′′, for O′′ like O′.

Proof. Let R = R̄ψS . From the hypothesis and the proposition we see that
p ∈ R is not nilpotent and hence there is a prime ideal I of R with p /∈ I,
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and thus the fraction field of R/I is a finite extension E′ of Qp with ring of
integers O′. Thus the map R→ R/I ↪→ O′(↪→ E′) is the required morphism.

�

5. Galois cohomology: auxiliary primes and twists

5.1. Generalities on twists. We preserve the notation of §4. Thus F is a
totally real number field and let ρ̄F : GF → GL2(F) = GL(VF) be absolutely
irreducible and (totally) odd. We assume that ρ̄ has non-solvable image
when p = 2, and ρ̄|F (µp) is absolutely irreducible when p > 2.

Consider a set of primes S ∪ V , and character ψ as in Section 4. Let
FSV /F denote the maximal abelian extension of F of order a power of p,
unramified outside V and split at primes in S. Let GV = Gal(FSV /F ). As
S contains all primes above p, GV is a finite abelian p-group. Let us denote
by G∗V the diagonalizable group of group of characters GV in the category
of functors from CNLO-algebras to sets (2.5). For A ∈ CNLO, G∗V (A) is
the group Hom(GV , A∗) of continuous characters that reduce to the trivial
character modulo mA.

We have an action of G∗V on SpR�
S∪V

. Indeed , if A is in CNLO and
ρA : GF → GL(VA) is a lift of ρ̄, given a character χ ∈ Hom(GV , A∗), the
representation χ⊗ ρA is unramified outside W , and for v ∈ S, as χ split at
v, the restriction of det(χ ⊗ ρA) to Dv is ψχp. The action is trivial on the
frame. More precisely, the action of χ on tuples (ρ, (ρv)v∈S , (gv)v∈S) as in
4.1.2 associates to this tuple the tuple (χ⊗ ρ, (ρv)v∈S , (gv)v∈S).

The action G∗V on SpR�
S∪V

allows to define the automorphism aχ of R�
S∪V

by aχ ◦ ρ�,univ
S∪V = χ ⊗ ρ�,univ

S∪V . The automorphism aχ commutes with the
action of (

∏
v∈S(GL2)1) on R�

S∪V (see Proposition 4.1).
If p = 2, let GV,2 = GV /2GV be the maximal quotient of GV which is a

group killed by 2. Then, if χ ∈ G∗V,2(A), we have χ2 = 1 and det(χ⊗ ρA) =
det(ρA). It follows that G∗V,2 acts on Sp

R�,ψ
S∪V

.

Note also that the action of G∗V (resp. G∗V,2) on SpR�
S∪V

(resp. Sp
R�,ψ
S∪V

)

restricts to an action on SpR̄�
S∪V

(resp. Sp
R̄�,ψ
S∪V

) factoring through one on

SpR̄S∪V (resp. Sp
R̄ψS∪V

).

5.2. Freeness of action by twists. Suppose that p = 2. The following
lemma implies that the actions of G∗V (resp. G∗V,2) on R�

S∪V (resp. R�,ψ
S∪V )

are free (2.4) :

Lemma 5.1. If A is a CNLO-algebra, then a lift ρA : GF → GL(VA) of
ρ̄ : GF → GL2(F) is not equivalent to any of its twists by a non-trivial
character χ ∈ Hom(GV , A∗).

Proof. As we have supposed that ρ̄ has non solvable image, the projective
image of ρ̄ is isomorphic to SL2(F0) for a finite field F0 of order 2∗ > 2. If
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χ is a non-trivial character we may find a g ∈ GF such that χ(g) 6= 1 and
tr(ρ̄(g)) 6= 0. Then χ(g)tr(ρA(g)) 6= tr(ρA(g)) as tr(ρA(g)) is a unit. �

5.3. A useful lemma.

Lemma 5.2. Let F be a totally real number field that is unramified above
p. Let ρ̄ : GF → GL2(F), as before, be such that ρ̄ is (totally) odd and has
non-solvable image when p = 2, and ρ̄|F (µp) is absolutely irreducible when
p > 2. (Hence ρ̄|GF (ζpm )

is irreducible for all non-negative integers m.)

Let K/F be the extension of F cut out by Ad0(ρ̄) when p > 2 and that
cut out by Ad(ρ̄) when p = 2 and set Fm = F (ζpm) in both cases. Then:

1. p > 2: H1(Gal(KFm/F ),Ad0(ρ̄)∗(1)) = 0.
2. p = 2: H1(Gal(KFm/F ),Ad(ρ̄)) = H1(Fm/F,Z), and H1(Fm/F,Z)

has dimension 2 over F for m > n0, with n0 the largest value of m for
which F+

m ⊂ F , with F+
m the totally real subfield of Fm. (We recall that

Z = Fid ⊂ Ad are the homotheties).

Proof. 1. This is proved by the argument in the proof of Theorem 2.49 of [14]
(second last paragraph on page 70 of loc. cit.) using our assumption that
ρ̄|G(F (ζp)) is irreducible. This reference assumes that F = Q, but because of
our assumption that F is unramified at p, the arguments there remain valid
in our situation. (The case of p ≥ 5 is also dealt with in Lemma 2.5 of [59].)

2. We turn to p = 2. By our assumption and Dickson’s theorem the
projective image of ρ̄ is PGL2(F′) ' SL2(F′) for |F′| = 2n with n > 1,
and thus is a simple group. Hence Gal(KFm/Fm) ' SL2(F′). Using that
H0(SL2(F′),M2(F)) = Z, inflation restriction gives

0→ H1(Fm/F,F)→ H1(KFm/F,Ad)→ H1(Gal(KFm/Fm) ' SL2(F′),Ad).

By Lemma 4.3 (5),H1(SL2(F′),Ad) = 0, and thusH1(Gal(KFm/F ),Ad(ρ̄)) =
H1(Fm/F,Z). The last statement follows from the fact that if n0 is the
largest value of m for which F+

m ⊂ F , with F+
m the maximal totally real

subfield of Fm, then for m > n0 the maximal elementary abelian (2, · · · , 2)
quotient of Gal(Fm/F ) is Z/2Z× Z/2Z. �

5.4. p > 2. For the definition of Lv in the following lemma, see case 1 of
4.1.4.

Lemma 5.3. Let p be an odd prime. Assume that F is a totally real number
field unramified at p. For each positive integer n, there is a set of primes
Qn such that:

• |Qn| = dimFH
1
{L⊥v }

(S, (Ad0)∗(1)),
• for v ∈ Qn, v is unramified in ρ̄ and ψ, ρ̄(Frobv) has distinct eigen-

values αv, βv, and N(v) = 1 mod pn,
• H1

{L⊥v }
(S ∪Qn, (Ad0)∗(1)) = 0 where L⊥v = 0 for v ∈ Qn.

Remark: F. Diamond pointed out to us that the lemma above may not
be true for p = 2. Indeed, for p = 2, we have (Ad0)∗(1) ' Ad/Z, the only
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irreducible subspace of Ad/Z is Ad0/Z, any g ∈ GL2(F) which has distinct
eigenvalues does not have 1 as eigenvalue in Ad0/Z, thus the argument of
Lemma 2.5 of [59] does not apply.

Proof. The condition (1) in the proof of Lemma 2.5 of [59] follows from
Lemma 5.2 (1). After this, the lemma follows just as in the proof of Lemma
2.5 of [59] by using the Cebotarev density theorem. �

Lemma 5.4. For v ∈ Qn, dimF(H1(Dv,Ad0)) = 2 = 1+dimF(H0(Dv,Ad0)).

Proof. By the Euler characteristic formula and Tate duality it is enough to
show that

dimF(H0(Dv, (Ad0)∗(1))) = 1

and this follows from the fact that N(v) is 1 mod p and that ρ̄(Frobv) has
distinct eigenvalues for v ∈ Qn. �

Proposition 5.5. The ring R�,ψ
S∪Qn is generated over the ring R�,loc,ψ

S by
|Qn|+ |S| − 1 = h1

{L⊥v }
(S, (Ad0)∗(1)) + |S| − 1 generators.

Proof. This follows from Lemma 5.4, Lemma 4.4 and Wiles’ formula (2). �

5.5. p = 2. Recall that F is a totally real number field and ρ̄ : GF → GL2(F)
has non-solvable image with F of residue characteristic 2. Let S be a finite
set of places of F containing the archimedean places and the primes above
2 and the primes which are ramified in ρ̄.

5.5.1. Linear disjointness. We need a result about disjointness of certain
field extensions, Proposition 5.6, that is crucial for the existence of auxiliary
sets of primes Qn proved in Lemma 5.10.

Let Mn = Q(µ2n) for n ≥ 1 and M+
n be the maximal totally real sub-field

of Mn. Let εn be roots of unity : ε1 = −1 and ε2n+1 = εn for n ≥ 1. Let

xn = εn+ε−1
n

2 . We have Mn = Q(εn) and M+
n = Q(xn); x2 = 0, x3 = 1/

√
2

where
√

2 is a square root of 2. We have for n ≥ 1 : 2x2
n+1 = xn + 1 . Let

yn = xn+1
2 so that yn = x2

n+1 and M+
n+1 = M+

n (
√
yn).

Let n0 be the biggest integer n ≥ 2 such that M+
n ⊂ F . For n > n0,

let ȳn ∈ F ∗/(F ∗)2
n

the image of yn0 , and let κn be the image of ȳn in
H1(GF , µ2n) by the Kummer map.

Let:
• n > n0

• K be the splitting field of Ad(ρ̄)
• L be the splitting field over K of the image of H1(GF,S ,Ad(ρ̄)) in

Hom(GK ,Ad(ρ̄))
• Fn = F (µ2n), Kn = K(µ2n) and Ln = L(µ2n)
• F̃n be the extension of Fn corresponding to the kernel of the image

of κn in Hom(GFn , µ2n).
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The inclusions between the fields above may be summarised by the follow-
ing diagram (which also includes the conclusion of the main result, Propo-
sition 5.6, of the present §5.5.1):

Ln

��
��

��
��

��
��

��
��

��
��

33
33

33
33

33
33

33
33

33
33

33
33

33

linearly disjoint

gg g' g' g' g' g' g' g'

&&
&f&f&f&f&f&f&f
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>>

>>
>>

Kn

}}
}}

}}
}}

NNNNNNNNNNNNN F̃n

qqqqqqqqqqqqq

K

Ad BB
BB

BB
BB

Fn

pppppppppppppp

F

Proposition 5.6. Let n > n0. Then Ln and F̃n are linearly disjoint exten-
sions of Fn.

Proof. We accomplish the proof via a succession of lemmas. We leave the
proof of the following lemma to the reader.

Lemma 5.7. Let p a prime number and Ω be a field of characteristic 6= p.
Let n be an integer ≥ 1. We suppose that Ω contains a primitive pn root of
unity. Let y ∈ Ω∗. Let 1 ≤ m ≤ n. If Ω(y1/pm)/Ω is of degree pa, a ≥ 1
then Ω(y1/pn)/Ω is of degree pa+n−m.

Next we have:

Lemma 5.8. Fn0(y
1/4
n0 ) is a dihedral extension of F of degree 8.

Proof. Let us prove the lemma. Let P := Fn0(y
1/4
n0 ). As n0 ≥ 2, the exten-

sion P/F is Galois. As M+
n0
⊂ F , we have F (i) = Fn0 and it is a quadratic

CM extension of F . By Lemma 5.7, to prove that P/F is of degree 8, we
have to prove that F (i,√yn0)/F (i) is of degree 2. But this follows from the
fact that F (√yn0) = FMn0+1 is a quadratic totally real extension of F and
it is linearly disjoint of F (i)/F . Once we know that P/F is of degree 8, it
is dihedral as Gal(F (i)/F ) acts by ε 7→ ε−1 on µ4. �

Recall n > n0. The extensions K/F and F̃n/F are linearly disjoint as
Gal(K/F ) is a simple, non-cyclic group and F̃n/F is a solvable Galois ex-
tension. In particular, F̃n and Kn are linearly disjoint over Fn. So it suffices
to prove that F̃nKn and Ln are linearly disjoint over Kn.

We have Fn(
√
yn0) = Fn as n ≥ n0 + 1. We do not have Fn(y

1/4
n0 ) = Fn

as by lemma 5.8 , Fn0(y
1/4
n0 ) is not an abelian extension of F . From Lemma

5.7 we now immediately see the first part of the following lemma:
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Lemma 5.9. 1. The extension F̃n/Fn is cyclic of degree 2n−1 and its cyclic
sub-extension of degree 2 is Fn(y

1/4
n0 ).

2. The element κn is unramified outside S, i.e. is ∈ H1(GF,S , µ2n). The
order of κn is divisible by 2n−1.

Proof. It remains only to prove 2. It suffices to prove that yn0 = x2
n0+1

is a unit at primes not above 2. Let us prove that the xn are units at
primes not above 2 for n ≥ 3. Let Rn be the minimal polynomial of xn
over Q. We have R2(X) = X, R3(X) = 2X2 − 1 and for n ≥ 3, we
have Rn(X) = Rn−1(2X2 − 1). We see that Rn has integral coefficients,
Rn(X) = 2(2n−2−1)X2n−2

+ . . ., R3(0) = −1 and for n ≥ 4:

Rn(0) = Rn−1(−1) = Rn−1(1) = R2(1) = 1.

We have the second equality as for n ≥ 3, Rn is an even polynomia. We
have the third equality by the recurrence formula for the Rn. We see that
for n ≥ 3, x−1

n is integral of norm 2(2n−2−1) if n ≥ 4 and −2 for n = 3. Thus
the restriction of κn to GFn cuts out an extension F̃n/Fn which by the first
part of the lemma is of degree 2n−1. �

As Kn/Fn and F̃n/Fn are linearly disjoint, F̃nKn/Kn is also cyclic of
degree 2n−1 and its cyclic sub-extension of degree 2 is K ′

n := Kn(y
1/4
n0 ).

To prove that F̃nKn and Ln are linearly disjoint over Kn, and as the
Galois group of Ln/Kn is abelian and of exponent dividing 2, we have to
prove that K ′

n/Kn is linearly disjoint of Ln/Kn. We have to prove that K ′
n

is not contained in Ln.
Let us suppose that K ′

n is contained in Ln. Then K ′
n would be an abelian

extension of K. As Gal(K ′
n/K) is isomorphic to Gal(Fn(y

1/4
n0 )/F ) it would

imply that Gal(Fn(y
1/4
n0 )/F ) is abelian, which is not the case by lemma

5.8. �

5.5.2. Auxiliary primes in even characteristic. Here is the analog of Lemma
5.3 for p = 2.

Lemma 5.10. For each n >> 0 (n > n0 with n0 as above suffices), there
is a finite set of primes Qn with the following properties:

• (a) Qn is of constant cardinality h1(S,Ad)− 2;
• (b) for v ∈ Qn, N(v) is 1 mod 2n, ρ̄ is unramified at v, and ρ̄(Frobv)

has distinct eigenvalues αv, βv;
• (c) v ∈ Qn splits in the Kummer extension F̃n/F , h0(Dv,Ad) = 2,

and h1
Qn−split(S,Ad) = 2;

• (d) h1
S−split(Qn,Ad) = 2−

∑
v∈S h

0(Dv,Ad) +
∑

v∈Qn h
0(Dv, Ad) =

2−
∑

v∈S h
0(Dv,Ad) + 2|Qn|;

• (e) The minimal number of generators of R�
S∪Qn over R�,loc,ψ

S is
= 2 + 2|Qn| − 1;
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• (f) Consider FSQn, the maximal abelian extension of F of degree a
power of 2 which is unramified outside Qn and is split at primes
in S. Define Gn := Gal(FSQn/F ). Then we have Gn/2n−2Gn =
(Z/2n−2Z)t where t = h1

S−split(Qn,F);
• (g) We have t = 2− |S|+ |Qn|;
• (h) Thus [h1

S−split(Qn,Ad)− h1
S−split(Qn,F)] + [

∑
v∈S h

0(Dv,Ad)−
h0(GF ,Ad)] = |Qn|+ |S| − 1.

Proof. We begin with the following observations:

• The representations ρ̄ and ρ̄|GF̃n have the same projective image
G ' SL2(F2r) for some r > 1. We know from Lemma 4.3 (5) that
the only non-zero, irreducible G- submodule V of Ad is Z.
• Thus we see that for any non-zero, irreducible G-submodule V of

Ad, there is an element σ in G such that Ad(σ) has an eigenvalue
6= 1, while Ad(σ)|V has 1 as an eigenvalue. (Any element σ ∈ G
with distinct eigenvalues works.)

We deduce:
(1) Given a ψ ∈ H1(GF ,Ad) that has non-trivial restriction toH1(GF̃n ,Ad),

and hence also to H1(GKF̃n ,Ad) as H1(G,Ad) = 0, arguing as in proof of
Lemma 2.5 of [59], we claim that we may find a place v /∈ S of F such that

• v splits in F̃n/F
• ρ̄ is unramified at v and ρ̄(Frobv) has distinct eigenvalues αv, βv
• ψ maps non-trivially to H1(GFv ,Ad) ⊂ H1(GFv ,Ad).

Namely, by the Cebotarev density theorem it is enough to find an el-
ement σ′ ∈ GF̃n such that ρ̄(σ′) has distinct eigenvalues, and ψ(σ′) /∈
(σ′−1)Ad. (The set of such σ′ is then a non-empty open subset of GF̃n .) As
H1(KF̃n/F̃n,Ad) = 0, we see that ψ(GKF̃n) is a non-trivial G-submodule
of Ad, and thus its F-span contains non-zero irreducible submodule V that
is necessarily = Z (see Lemma 4.3). Consider the element σ above that
we regard as an element of Gal(KF̃n/F̃n) (' G): it has the property that
ψ(GKF̃n) is not contained in (σ − 1)Ad. Denote by σ again (an arbitrar-
ily chosen) lift of σ ∈ Gal(KF̃n/F̃n) to GF̃n . For τ ∈ GKF̃n we have
ψ(τσ) = ψ(τ) + ψ(σ), (τσ − 1)Ad = (σ − 1)Ad, and ρ̄(τσ) has distinct
eigenvalues. If σ has the property that ψ(σ) /∈ (σ − 1)Ad then set σ′ to be
σ. Otherwise using the fact that ψ(GKF̃n) is not contained in (σ−1)Ad, we
may find a τ ∈ GKF̃n such that ψ(τσ) /∈ (τσ − 1)Ad, and set σ′ to be τσ.
This justifies the claim.

(2) Further from Proposition 5.6, and H1(proj.im(ρ̄),Ad(ρ̄)) = 0 (Lemma
4.3(5)) we see that

ker(H1(GF,S ,Ad)→ H1(GF̃n ,Ad)) = ker(H1(GF,S ,Ad)→ H1(GFn ,Ad))

= H1(Fn/F,Adim(ρ̄)) = H1(Fn/F,F),
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and the latter for n > n0 has F-dimension 2 by Lemma 5.2. This is also the
kernel of the restriction map H1(GF,S ,Ad)→ H1(GKFn,S̃ ,Ad)) (with S̃ the
places of KFn above S) by Lemma 5.2.

Applying (1) to elements in H1(GF,S ,Ad) that are in a chosen F-subspace
of H1(GF,S ,Ad) that is complementary to the kernel of the restriction map
H1(GF,S ,Ad)→ H1(GF̃n ,Ad) we get that for each n > n0:

– there is a set Qn of cardinality h1(S,Ad) − 2, such that v ∈ Qn splits
in F̃n/F ,

– ρ̄ is unramified at v, and ρ̄(Frobv) has distinct eigenvalues for v ∈ Qn
and

–H1
Qn−split(S,Ad) = ker(H1(GF,S ,Ad)→ H1(GF̃n ,Ad)) = H1(Fn/F, (Ad)im(ρ̄)) =

H1(Fn/F,Z), where the second equality uses (2) above.
As the last vector space has dimension 2 we get that h1

Qn−split(S,Ad) = 2.
For v ∈ Qn, as ρ̄ is unramified and Frobv has distinct eigenvalues in ρ̄, we
have h0(Dv,Ad) = 2. This proves (a),(b),(c) of the Proposition. Part (d)
follows using Wiles’ formula (3) of §4.1.6, and noting that for v ∈ Qn

h1(Dv,Ad)− h0(Dv,Ad) = h2(Dv,Ad) = h0(Dv,Ad).

The first equality follows from the Euler-Poincaré characteristic formula,
and the second by Tate duality.

Part (e) follows from part (d) using Lemma 4.4. The computation of
t = h1

S−split(Qn,F)(= h1
S−split(Qn,Z/2Z)) as 2 + |Qn| − |S| follows from

noting that:
– H1(GF ,F) ↪→ H1(GF ,Ad) (by Lemma 4.3(4)), H1

Qn−split(S,Ad) is the
image of H1(Fn/F,Z = F) under inflation, and thus H1

Qn−split(S,F) is also
the image of H1(Fn/F,Z = F) under inflation.

– Then by Wiles’ formula (cf. §4.1.6), applied to M = F, we derive the
formula for t.

It remains to prove (f). This time we apply Wiles’ formula (cf. §4.1.6)
with M = Z/2nZ to the finite Z/2nZ-module H1(S ∪Qn,Z/2nZ) to get

(4)
|H1

S−split(Qn,Z/2nZ)|
|H1

Qn−split(S,Z/2
nZ(1) ' µ2n)|

=
|H0(GF ,Z/2nZ)|
|H0(GF ,Z/2nZ(1))|

∏
v∈S

1
|H0(Dv,Z/2nZ)|

∏
v∈Qn

|H1(Dv,Z/2nZ)|
|H0(Dv,Z/2nZ)|

.

A simple computation, using that H1(Dv,Z/2nZ) ' (Z/2nZ)2 as N(v) is
1 mod 2n for v ∈ Qn, then gives that

|H1
S−split(Qn,Z/2nZ)| = |H1

Qn−split(S,Z/2
nZ(1))|2n−12n(|Qn|−|S|).

Note that κn (cf. §5.6) is an element of H1(S,Z/2nZ(1)), and κn has order
divisible by 2n−1 by Lemma 5.9. As places in Qn split in the Kummer
extension F̃n/F cut out by κn, we get that κn ∈ H1

Qn−split(S,Z/2
nZ(1)).
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1. Thus we get that 2n(2+|Qn|−|S|)2−2 divides the order of the finite group
H1
S−split(Qn,Z/2nZ) that has exponent dividing 2n.
2. As h1

S−split(Qn,Z/2Z) = t = 2+ |Qn|− |S|, we deduce that the Z/2nZ-
module H1

S−split(Qn,Z/2nZ)) is generated by t elements.
From 1. and 2. it easily follows that there is an isomorphismGn/2n−2Gn '

(Z/2n−2Z)t as desired.
�

5.6. Action of inertia of auxiliary primes. The following proposition is
standard (see Lemma 2.1 of [59]): p may be odd or even.

Proposition 5.11. Let v ∈ Qn. The universal deformation ρuniv,ψ
S∪Qn corre-

sponding to the ring R̄ψS∪Qn is such that ρuniv,ψ
S∪Qn |Dv , is of the form(

γαv 0
0 γβv

)
,

where γαv , γβv are characters of Dv such that γαv and γβv modulo the maxi-
mal ideal are unramified and takes Frobv to αv and βv respectively. Note that
γv := γαv |Iv = γ−1

βv
|Iv for a character γv : Iv → ∆′

v → (R̄ψS∪Qn)
∗

where ∆′
v

is the maximal p-quotient of k∗v. This naturally endows R̄ψS∪Qn (and hence

R̄�,ψ
S∪Qn) with a O[∆′

Qn
] = ⊗v∈QnO[∆′

v] module structure, and its quotient by

the augmentation ideal of O[∆′
Qn

] is isomorphic to R̄ψS (resp., R̄�,ψ
S ).

Let p = 2 and let Gn,2 be the maximal quotient of Gn (cf. Lemma 5.10)
which is a group killed by 2 so that we have an action of G∗n,2(R̄

ψ
S∪Qn) on

R̄ψS∪Qn . We have the following compatibility with the action of ∆′
Qn

. Note
that class field theory gives us a natural map ∆′

Qn
→ Gn which maps ∆′

v

for v ∈ Qn onto the inertia subgroup of Gn at v. This gives a meaning to
χ(δ) in the statement of the lemma.

Lemma 5.12. For δ ∈ ∆′
Qn

and χ ∈ (Gn,2)∗(R̄
ψ
S∪Qn) we have : aχ ◦ δ =

χ(δ)× (δ ◦ aχ).

Proof. The action of δ on R̄ψS∪Qn is by multiplication by γv(δ). The lemma
follows from the identity : aχ(γv(δ)) = χ(δ)γv(δ). �

6. Taylor’s potential version of Serre’s conjecture

We will need the following variant and extension of Taylor’s results on a
potential version of Serre’s conjecture (see [58], [59]):

Theorem 6.1. Let ρ̄ a GQ representation of S-type, with 2 ≤ k(ρ̄) ≤ p+ 1
if p > 2. We assume that ρ̄ has non-solvable image when p = 2, and ρ̄|Q(µp)

is absolutely irreducible when p > 2. Then there is a totally real field F that
is Galois over Q of even degree, F is unramified at p, and even split above
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p if ρ̄|Dp is irreducible, im(ρ̄) = im(ρ̄|GF ), ρ̄|F (µp) absolutely irreducible, and
such that:

(i) Assume k(ρ̄) = 2 if p = 2. Then ρ̄|GF arises from a cuspidal auto-
morphic representation π of GL2(AF ) that is discrete series of weight k(ρ̄)
at the infinite places and unramified at all the places above p.

(ii) ρ̄|GF also arises from a cuspidal automorphic representation π of
GL2(AF ) such that πv, at all places v above p, is of conductor dividing v
(and is unramified if ρ̄ is finite flat at v), and is of weight 2 at the infinite
places.

(iii) Further :
a) In the case k(ρ̄) = p and the representation ρ̄|Ip is trivial, we may

choose F so that at places ℘ of F above p, ρ̄|D℘ is trivial.
b) Given finitely many primes `i 6= p and extensions F`i/Q`i, then we may

choose F so that for every embedding F ↪→ Q`i, the closure of F contains
F`i.

c) In the case that p > 2 and weight k(ρ̄) = p+ 1, we may ensure that F
is split at p.

d) Given a finite extension L of Q, we can morever impose that F and L
are linearly disjoint.

Proof. We give the arguments that one has to add to Taylor’s papers [58],
[59], and Theorem 2.1 of [33], to get the additional needed statements that
are written in italics below, and which are not explicitly in these papers.

In the case when the projective image of ρ̄ is dihedral, we ensure that the
fields considered below, besides being linearly disjoint from the extension
cut out by ρ̄, are split at a prime which splits in the field cut out by the
projectivisation of ρ̄, but which is inert in the quadratic subfield of Q(µp).
This ensures that ρ̄|GF (µp)

is irreducible for all the number fields F considered
below.

We first dispose of (i) and (ii) in the cases where the image of ρ̄ is solvable.
Then it is a standard consequence of results of Langlands and Tunnell (see
[40] and [65]) that ρ̄ arises from Sk(Γ1(N)) for some positive integers N and
k ≥ 2 (see pg. 220 of [56] for a hint). Using Theorem 13.10 of [27] and [12]
(see also [23]) and Propositions 8.13 and 8.18 of [27] it furthermore follows
that ρ̄ arises from Sk(Γ1(N)) for k = k(ρ̄) and some integer N prime to p,
and also from S2(Γ1(Np)). Thus the hypotheses (α), (β) of §8.2 are satisfied
for ρ̄. After this the theorem follows from Theorem 8.2 below.

We assume that ρ̄ has non-solvable image till further notice. In the proof
of Taylor, one has a moduli problem X for Hilbert-Blumenthal abelian va-
rieties A with polarisation and level structures. It is Hilbert-Blumenthal
relative to a totally real field that we call M (as in [58] ; in [59] it is called
E). One has an embedding i : OM → End(A). The polarisation datum is an
isomorphism j of a fixed ordered invertible OM -module to the ordered in-
vertible OM -module P(A, i) of polarisations of (A, i). The level structure is
called α. In [58], the level structure is at a prime λ above p and an auxiliary
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prime that Taylor calls p (in Taylor, the residue characteristic of ρ̄ is `). We
call this auxiliary prime p0. In [59], there are two auxiliary primes p1 and
p2. The level structure at λ is given by ρ̄. There is a prime ℘ of M above p0

(resp. p1) for which the residual representation is irreducible with solvable
image. There exists a point x of X(F ) giving rise to a data(A, i, j, α). In [58]
A is defined over F and a modularity lifting theorem gives the automorphy
of the Tate module V℘(A), hence of A and of ρ̄|GF . In [59], A is defined over
a totally real extension N ′F of F which gives rise to an abelian variety B
over F (see lemma 4.4.). The modularity of B implies that of ρ̄|GF .

The existence of F and a point of X with values in F follows by a the-
orem of Moret-Bailly from the existence of points of X with values in the
completion of Q at ∞, p and the auxiliary primes. For p = 2 one proves the
existence of points with values in Q2 or Qpi , pi auxiliary prime, as for p 6= 2.

- For p = 2, there exists a point of X(R).
Let us first consider the case where ρ̄|D2

is reducible ([58]). The polar-
ization data j is an isomorphism (O+

M ) ' P(A, i) (see erratum page 776
of [59]). In the erratum, Taylor gives a data (A, i, j) over R. The torus
A(C) is CHom(M,R)/L, where L = δ−1

M 1 +OMz, δM is the different of M and
z ∈ (iR>0)Hom(M,R). For a ∈ OM , j(a) corresponds to the Riemann form :

E(x+ yz, u+ vz) = trM/Q(a(yu− xv)).
The action of the complex conjugation c over A(C) is the natural one on

the torus and we see that the action of c on the points of order 2 of A is
trivial. It follows that, if ρ̄(c) is trivial, one can define a level structure α
such that (A, i, j, α) is a real point of X. If ρ̄(c) is non trivial, let L′ ⊂ L be
defined by, for β ∈ δM such that δM,2 = βOM,2 :

L′ = {u+ zv ∈ L | v ≡ βu mod. 2OM}.

As c(L′) = L′, L′ defines an abelian variety A′ over R, which is isogenous
to A. It has an action i′ of OM . For a ∈ OM , 1/2E defines a Riemannian
form on A′ ; this gives a polarisation datum j′. If γ ∈ δ−1

M ⊗Z2 is such that
γβ ≡ 1mod. 2, the matrix of c acting on L′ ⊗ Z2 in the basis (γ + z, 2z) is(

1 0
−1 −1

)
. This implies that one can find a level structure α′ such that

(A′, i′, j′, α′) defines a point in X(R).
When ρ̄|D2

is irreducible ([59]), the polarization data j is an isomorphism
((δ−1

M )+) ' P(A, i). We can find a point (A, i, j, α) in X(R) by taking
A = E ⊗OM , E elliptic curve over R with 4 or 2 points R-rational of order
2 according whether ρ̄(c) is trivial or not.

- The case p = 2, k(ρ̄) = 4. We have to prove that ρ̄|GF is associated to
a cuspidal automorphic form of GL2(AF ) of parallel weight 2 and which is
Steinberg at places v above 2. We do this as Taylor does ([58]) when the
character χv (p. 130) is such that χ2

v = 1. The abelian variety A is chosen
to have completely toric reduction at primes above 2 (first case of lemma
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1.2. of [58]). This proves that we can take π of weight 2 and of level v for v
above 2 .

- If k(ρ̄) = 2, one can ensure π is of weight 2 and unramified at primes
above p (including p = 2) and ordinary at these places if ρ̄ is ordinary.
When the restriction of ρ̄ to the decomposition group Dp is irreducible, this
follows from the fact that in the lemma 4.3. of [59], we can impose that χ is
unramified at p (` in [59]). Then we obtain in 3. of prop. 4.1. of [59] that
the Weil-Deligne parameter at p is unramified.

When ρ̄ is ordinary, we do as in [34], as follows.
We can ensure that the point of X(Qp) given by the theorem of Moret-

Bailly (see [47]) defines an abelian variety Av which has good ordinary re-
duction. To prove this, first we twist by a character unramified at p to reduce
to the case where the restriction of det(ρ̄)χp−1 to Dp is trivial. Then, ρ̄|Dp
has the shape : (

χpχ
−1
v ∗

0 χv

)
with χv unramified. As in p. 131 of [58], we define a lifting χ̃v of χv :
we choose the first definition even if χ2

v = 1, so that χ̃v sends the Frobe-
nius to the chosen Weil number βv. The field F̃v of p. 130 of [58] is Qp.
In Lemma 1.2. of [58], we do not need to do descent. We have, as p.
135 of [58], to lift the class x ∈ H1(Dv, OM/λ(χpχ−2

v )) defining ρ̄v to an
xλ in H1(Dv, OM,λ(χpχ̃−2

v )). The obstruction to do this is an element of
H2(Dv, OM,λ(χpχ̃−2

v )). This group is dual to H0(Dv,Mλ/OM,λ(χ̃2
v)). When

χ2
v is non trivial, there is no obstruction. Let us prove that, when χ2

v is trivial,
the obstruction o is trivial. The character χ̃2

v is non trivial as the Weil num-
ber β2

v is not 1. Let a be the least integer such that χ̃2
v is non trivial modulo

pa+1 (recall that M is unramified at p). Let us write χ̃2
v = 1+paη mod.pa+1.

Let us denote o0 the corresponding obstruction for η = 0. In fact o0 is trivial
by Kummer theory. By comparing the obstructions o and o0, we prove that
the obstruction o is the cup product η with x. As η is unramified and x is
finite this obstruction vanishes. This proves that we can find Av which has
good ordinary reduction.

The abelian variety Av with the polarization and level structures define a
point xv ∈ X(Zp) (take as integral structure on X the normalization of the
integral structure for the moduli problem without level structure for primes
above p). One considers Ωv to be points of X(Qp) that reduce to xv. Then,
applying Moret-Bailly theorem 1.3. of part 2 of [47] with this Ωv, we can
impose that the point x ∈ X(F ) that we get has the same reduction as xv.
The abelian variety A has ordinary good reduction at primes of F above p.

- for p = 3 and ρ̄|Dp irreducible, adjustment of the weight. Although p = 3
is excluded in (Section 5 of) [59], as explained in Section 2 of [33], Lemma
2.2 of [33] allow one to lift this restriction.

- p 6= 2, ρ̄|Dp reducible, k(ρ̄) > 2, adjustment of the weight. The proof
of lemma 1.5. of [58] shows that A is ordinary at v such that the inertial
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Weil-Deligne parameter at v of A is (ωk(ρ̄)−2 ⊕ 1, 0) if k(ρ̄) 6= p + 1 and
(1⊕ 1, N) if k(ρ̄) = p+ 1 with N a non-zero 2× 2 nilpotent matrix. (In the
case k(ρ̄) = p and ρ̄|Dp is semisimple, the proof of the quoted lemma gives
that the inertial Weil-Deligne parameter at v of A is (ω−1⊕1, 0), it does not
say to which line of ρ̄ reduces the line of ρ on which an open subgroup of Ip
acts by the cyclotomic character). Thus as in [58] (and using Appendix B
of [13]) one knows that ρ̄ arises from a cuspidal automorphic representation
π of GL2(AF ) of parallel weight 2, and at places v above p, πv is ordinary
such that the inertial Weil-Deligne parameter of πv is the same as that of
A at v. It follows from this, using Hida theory (see Section 8 of [30], using
also Lemma 2.2 of [33] to avoid the neatness hypothesis there) that ρ̄|GF
also comes from a cuspidal automorphic representation π of GL2(AF ) that
is unramified at places above p and of parallel weight k(ρ̄).

Now we relax the assumption that ρ̄ has non-solvable image.
- for k(ρ̄) = p and the representation ρ̄|Ip is trivial, one can impose that

at places ℘ of F above p, ρ̄|G℘ is trivial by enlarging F by an extension that
is unramified at p (but not split).

- one can impose that closures of F contain locally given extensions F`i,
`i 6= 2, p, by successive applications of Grunwald-Wang theorem.

- (iii) If k(ρ̄) is even and p > 2, we can take F split at p (that proves c) of
(iii)) . If ρ̄|Dp is irreducible, we apply [59]. Let us suppose ρ̄|Dp reducible.
As p > 2 and k(ρ̄) is even, the restriction to Dp of det(ρ̄)χp−1 is a square.
It follows that there exists a character η1 : GQ → (Fp)∗ that is even and
split at p such that η2 := det(ρ̄)χp−1η−1

1 is the square of a character γ2. We
impose to F to contain the field F0 fixed by the kernel of η1. We then apply
theorem 1.6. of [58] to ρ̄|GF0

twisted by γ2
−1
|GF0

and we get F split at p.
- given a finite extension L of Q, we can impose that L and F are linearly

disjoint . When we apply Moret-Bailly theorem, we furthermore impose
that F is split at a chosen finite set of primes that are unramified in L, and
whose Frobenii generate the Galois group of the Galois closure of L/Q. We
choose the set of these primes disjoint from the finite set of primes above p
and the auxiliary primes so that we can get these conditions simultaneously.

�

7. p-adic modular forms on definite quaternion algebras

A reference for this section is Sections 2 and 3 of [59]. The modifications
used here at many places of the usual arguments to deal with non-neatness
problems is an idea of [5].

Let p be any prime, and F a totally real number field of even degree in
which p is unramified. Let D denote a quaternion algebra over F that is
ramified at all infinite places, and ramified at a finite set Σ of finite places
of F .

Fix a maximal order OD in D and isomorphisms (OD)v ' M2(OFv) for
all places v at which D is split. Let A be a topological Zp-algebra which is
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either an algebraic extension of Qp, the ring of integers in such an extension
or a quotient of such a ring of integers.

For a place v at which D is split denote by

U0(v) = {g ∈ GL2(OFv) : g =
(
a b
0 d

)
mod.(πv)},

and

U1(v) = {g ∈ GL2(OFv) : g =
(
a b
0 1

)
mod.(πv)}.

Let U = ΠvUv be an open subgroup of (D⊗F A∞
F )∗ that is of the following

shape: at places v /∈ Σ′ ⊂ Σ, Uv ⊂ (OD)∗v and is = (OD)∗v for almost all v,
and for v ∈ Σ′, Uv is D∗

v . Note that in the latter case [Uv : (OD)∗vF
∗
v ] = 2.

The case of non-empty Σ′ is considered only when p = 2, and its considera-
tion may be motivated by Lemma 7.2.

Let ψ : (A∞
F )∗/F ∗ → A∗ be a continuous character. Let τ : U → Aut(Wτ )

be a continuous representation of U on a finitely generated A-module Wτ .
We assume that

τ |U∩(A∞F )∗ = ψ−1|U∩(A∞F )∗ .

The character ψ and the representation τ will always be such that on an
open subgroup of O∗Fp , ψ is an integral power of the norm character. (The

norm character N : Πv|pF
∗
v → Q∗

p is defined by taking products of the local
norms.)

We regard Wτ as a U((A∞
F )∗)-module with U acting via τ and (A∞

F )∗

acting via ψ−1. We define Sτ,ψ(U) to be the space of functions

f : D∗\(D ⊗F A∞
F )∗ →Wτ

such that:
f(gu) = u−1f(g)

f(gz) = ψ(z)f(g)

for all g ∈ (D ⊗F A∞
F )∗, u ∈ U, z ∈ (A∞

F )∗. We also use the notation
Sτ,ψ(U,A) for Sτ,ψ(U) when we want to emphasise the role of the coefficients
A.

Fix an algebraic closure Qp of Qp, and let E ⊂ Qp be a sufficiently large
finite extension of Qp with ring of integers OE , and residue field F. We
assume that E contains the images of all embeddings F ↪→ Qp. For all
such embeddings we assume Dv ⊗F ↪→E E is split for all places v above p.
Write Wk and W̄k for ⊗F ↪→ESymk−2OE2 and ⊗F ↪→ESymk−2F2 respectively,
where k ≥ 2 is an integer, and k = 2 if p = 2. These are Πv|p(OD)∗v-
modules using an identification of OD⊗OF OE with M2(OE). The character
ψ : (A∞

F )∗/F ∗ → A∗ acts on these modules Wk and W̄k via the natural
action of A∗ ; ψ restricted to an open subgroup of (A∞

F )∗ is N2−k where N
is the product of the local norms at places above p.
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In the cases of U non-compact, and hence Σ′ non-empty, that are consid-
ered (and thus p = 2), denote by U ′ = ΠvU

′
v the open compact subgroup

of U where for places in v ∈ Σ′, U ′v is maximal compact, and for finite
places v not in Σ′, Uv = U ′v, i.e. U ′ is the maximal compact subgroup of
U . The actions of U ′ on W2 and W̄2 are trivial. Furthermore, U(A∞

F )∗/U ′

is abelian and the quotient U(A∞
F )∗/U ′(A∞

F )∗ is isomorphic to (Z/2Z)Σ
′
. It

follows that the module W2 of U ′(A∞
F )∗ can be extended to one of U(A∞

F )∗

in one of 2|Σ
′| possible ways, and we denote these extensions by the same

symbol W2 (as we will fix such an extension). The module W̄2 has a unique
extension to one of U(A∞

F )∗, and that we again denote by the same symbol
W̄2. For p > 2, Wk or W̄k are naturally Up = Πv|pUv and hence U -modules.
Thus in all cases we may regard Wk and W̄k as U(A∞

F )∗-modules.
The modules Wτ below will be of the form Wk ⊗O V where V is a finite

free O-module on which U acts through a finite quotient, or W̄k⊗O V where
V is a finite dimensional F-vector space which is a U module (and with k = 2
if p = 2).

When Wτ = Wk, W̄k we also denote Sτ,ψ(U) by Sk,ψ(U,O) and Sk,ψ(U,F)
respectively. (To be consistent we should also use ψ in the latter, but this
inconsistency should cause no confusion.)

If (D ⊗F A∞
F )∗ = IIi∈ID∗tiU(A∞

F )∗ for a finite set I and with ti ∈ (D ⊗
A∞
F )∗, then Sτ,ψ(U) can be identified with

(5) ⊕i∈IW
(U(A∞F )∗∩t−1

i D∗ti)/F ∗

τ

via f → (f(ti))i.
Let S be a finite set of places of F containing the places at infinity, Σ,

the primes dividing p, and the set of places v of F such that either Uv ⊂ D∗
v

is not maximal compact, or Uv acts on Wτ non-trivially.
For each finite place v of F we fix a uniformiser πv of Fv. We consider the

left action of g ∈ (D ⊗F A∞
F )∗ by right translation on the Wτ -valued func-

tions f on (D ⊗ A∞
F )∗ and denote this action by g.f or gf . This induces an

action of the double cosets U
(
πv 0
0 πv

)
U and U

(
πv 0
0 1

)
U on Sk,ψ(U)

for v /∈ S: we denote these operators by Sv (which is simply multiplication
by ψ(πv)) and Tv respectively. They do not depend on the choice of πv.

We denote by Tψ(U) the O-algebra generated by the endomorphisms Tv
and Sv acting on Sk,ψ(U,O) for v /∈ S. (Note that we are suppressing the
weight k in the notation for the Hecke algebra, but this should not cause
any confusion in what follows.)

A maximal ideal m of Tψ(U) is said to be Eisenstein if Tv − 2, Sv − 1 ∈ m
for all but finitely many v that split in a fixed finite abelian extension of F .
We will only be interested in non-Eisenstein maximal ideals.

We consider the localisations of the above spaces of modular forms at non-
Eisenstein ideals m: Sk,ψ(U,O)m denotes the localisation at m of Sk,ψ(U,O).
In the case k = 2, the functions in Sk,ψ(U,O) that factor through the norm
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die in such non-Eisenstein localisations. These spaces Sk,ψ(U,O)m for non-
Eisenstein m can be identified with a certain space of cusp forms using the
Jacquet-Langlands correspondence as in Lemma 1.3 of [59]. From this we
deduce that a Hecke eigenform f ∈ Sk,ψ(U,O)m gives rise to a representa-
tion ρf : GF → GL2(O) as in [10] and [61] which, as m is non-Eisenstein, is
residually irreducible. The representation ρf is characterised by the prop-
erty that for almost all places v of F , ρf is unramified at v and ρf (Frobv)
has characteristic polynomial X2− avX + N(v)ψ(Frobv) where Frobv is the
arithmetic Frobenius and av is the eigenvalue of the Hecke operator Tv acting
on f .

We record a lemma that we use a few times below. It is the analog of a
lemma of Ihara and due to Taylor [61].

Lemma 7.1. Let U = ΠvUv be an open compact subgroup of (D ⊗F A∞
f )∗

and W̄τ a U(A∞
F )∗ module as before that is a finite dimensional vector space

over F such that (A∞
F )∗ acts on it by ψ̄−1. Let w /∈ Σ be a finite place of F

such that Uw = GL2(Ow) is maximal compact at w and acts trivially on W̄τ .
Let U ′ = ΠvU

′
v be a subgroup of U such that Uv = U ′v for v 6= w, and U ′w =

U0(w). Consider the degeneracy map αw : SW̄τ ,ψ̄(U,F)2 → SW̄τ ,ψ̄(U ′,F)
given by

(f1, f2)→ f1 +
(

1 0
0 πw

)
f2.

The maximal ideals of the Hecke algebra Tψ(U) (where we assume that S
contains w) which acts diagonally on SW̄τ ,ψ̄(U,F)2 that are in the support
of ker(αw) are Eisenstein.

Proof. By passing to an open subgroup we may assume that the action of
U on W̄τ is trivial. Now observe that if (f1, f2) is an element of the kernel
of αw then f1 is invariant under USL2(Fw). Thus by strong approximation
we see that f1 is invariant under right translation by D1(A∞

F ), with D1 the
derived subgroup of D, and thus f1 factors through the norm. Thus it dies
in the localisation at any non-Eisenstein maximal ideal.

�

7.1. Signs of some unramified characters. We record a lemma which
is used in Section 9.1.

Lemma 7.2. We assume the conventions of the present Section 7. Let
U = ΠvUv be as before, but we further ask that:

(i) for all v ∈ Σ, Uv = (OD)∗v for p > 2,
(ii) for all v ∈ Σ, we assume that Uv = D∗

v for p = 2 (i.e. in the earlier
notation Σ′ = Σ).

Consider Sk,ψ(U,O)m for a non-Eisenstein maximal ideal as above, where
again by our conventions k = 2 when p = 2. Assume that Σ is disjoint from
{v|p} if k > 2. Then for each v ∈ Σ there is a fixed unramified character
γv : GFv → O∗ such that for any Hecke eigenform f ∈ Sk,ψ(U,O)m, ρf |Dv
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is of the form (
χpγv ∗

0 γv

)
.

Proof. From the Jacquet-Langlands correspondence (and its functoriality at
all places including those in Σ), and the compatibility of the local and global
Langlands correspondence for the association f → ρf proved in [10] and [61]
it follows that ρf |Dv is of the form(

χpγv,f ∗
0 γv,f

)
,

with γv,f : GFv → O∗ an unramified character such that γ2
v,f = ψv.

The claim that γv,f is independent of f follows:
(i) in the case p > 2 from the fact that the residual representation attached

to a f ∈ Sk,ψ(U,O)m is independent of f ;
(ii) in the case p = 2 from the quoted results and the fact that Uv = D∗

v

for v ∈ Σ. In a little more detail we first deduce that the local component at
v of automorphic forms on (D⊗A∞

F )∗ corresponding to the eigenforms f ∈
Sk,ψ(U,O)m is independent of f , and thus by the functoriality at places in Σ
of the Jacquet-Langlands correspondence we deduce that the corresponding
forms on GL2(AF ) have the same property. Then using the results of [10]
and [61] we are done. �

Remark: We remark that γv(Frobv) is the inverse of the eigenvalue of a
uniformiser of D∗

v acting on such f ’s.

7.2. Isotropy groups. For any t = Πvtv ∈ (D ⊗F A∞
F )∗, we have the

following exact sequences with U as before but we further assume that U is
compact (see [59]):

(6)
0→ UV ∩t−1Ddet=1t/{±1} → (U(A∞

F )∗∩t−1D∗t)/F ∗ → (((A∞
F )∗)2V ∩F ∗)/(F ∗)2

with V = Πv<∞O∗Fv , and

(7) 0→ O∗F /(O∗F )2 → (((A∞
F )∗)2V ∩ F ∗)/(F ∗)2 → H[2]→ 0

where H denotes the class group of OF .
It is easy to see that UV ∩ t−1Ddet=1t is a finite group and the p-part of

its order is bounded independently of t and U . For this note that tUV t−1 ∩
Ddet=1 is a discrete subgroup of the compact group tUV Ddet=1

∞ t−1 and maps
injectively to twUwVwt−1

w for a finite place w of F not above p (at which D
splits for instance). The latter has a pro-q subgroup whose index is bounded
independently of tw and Uw, with q a prime different from p.

Note also that (((A∞
F )∗)2V ∩ F ∗)/(F ∗)2 is finite of exponent 2.
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Thus in the case U is compact we note (for use in Lemma 7.3) that the
exponent of a Sylow p-subgroup of the finite groups (U(A∞

F )∗ ∩ t−1D∗t)/F ∗

divides 2Nw where Nw is the cardinality of GL2(kw).
In the cases of U non-compact that are considered, denote as before by

U ′ = ΠvU
′
v its maximal compact subgroup. Then U ′(A∞

F )∗ is normal of
finite index in U(A∞

F )∗ and U(A∞
F )∗/U ′(A∞

F )∗ is of type (2, · · · , 2). We
deduce that (U ′(A∞

F )∗ ∩ t−1D∗t)/F ∗ is normal, of finite index in (U(A∞
F )∗ ∩

t−1D∗t)/F ∗, and the corresponding quotient is of type (2, · · · , 2). To see
this we may use the obvious fact that if G,H,K are subgroups of a group
G′, and H is normal and of finite index in G, then H ∩K is normal in G∩K
and [G ∩K : H ∩K]|[G : H].

Thus in the cases considered where U is non-compact we note (for use in
Lemma 7.3) that the exponent of a Sylow p-subgroup of the finite groups
(U(A∞

F )∗∩t−1D∗t)/F ∗ divides 4Nw where Nw is the cardinality of GL2(kw).

7.3. Base change and isotropy groups. Let {v} be a finite set of finite
places of F , not above p, at which D is split. Let w be a place of F of
residue characteristic different from p at which D is split, and let Nw be the
order of GL2(kw).

Let F ′/F be any totally real finite extension of F that is completely split
at w. Let us denote by {v′} the places of F ′ above the fixed finite set of
finite places {v} of F .

Let UF ′ = ΠrUF ′,r be a subgroup of (DF ′ ⊗F ′ A∞
F ′)

∗ as fixed at the begin-
ning of the section (taking the F there to be F ′, and D to be DF ′ = D⊗F ′).
The first part of the following lemma has already been proved in Section 7.2.

Lemma 7.3. 1. The exponent of the Sylow p-subgroup of the isotropy groups
(UF ′(A∞

F ′)
∗ ∩ t−1D∗

F ′t)/F
′∗ divides 4Nw for any t ∈ (DF ′ ⊗F ′ A∞

F ′)
∗.

2. Let us further assume that for all places {v′} of F ′ above the places
{v}, the order of the p-subgroup of k∗v′ is divisible by the p-part of 2p(4Nw).
Assume that UF ′ is such that at places {v′} it is of the form

UF ′,v′ = {g ∈ GL2(OF ′
v′

) : g =
(
∗ ∗
0 ∗

)
mod.(πv′)}.

A character χ = Πv′χv′ of Πv′k
∗
v′ may be regarded as a character of

Πv′UF ′,v′, and hence of UF ′, via the map Πv′UF ′,v′ → Πv′k
∗
v′ with kernel

Πv′{g ∈ GL2(OF ′
v′

) : g =
(
a b
0 d

)
mod.(πv′), ad−1 = 1}.

Thus χ is trivial on UF ′ ∩ (A∞
F ′)

∗, and may be extended to a character χ of
UF ′(A∞

F ′)
∗ by defining it to be trivial on (A∞

F ′)
∗.

There is a character χ = Πv′χv′ of Πv′k
∗
v′ of order a power of p, with

each χv′ non-trivial (and of order divisible by 4 when p = 2), such that when
regarded as a character of UF ′(A∞

F ′)
∗ as above, it annihilates (UF ′(A∞

F ′)
∗ ∩

t−1D∗
F ′t)/F

′∗ for any t ∈ (DF ′ ⊗F ′ A∞
F ′)

∗.
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Proof. For the second part we only have to notice that by the hypothe-
ses it follows that there is a character χ′ = Πv′χ

′
v′ of Πv′k

∗
v′ of order a

power of p, with each χ′v′ of order divisible by the p-part of 2p(4Nw). Then
set χ = Πv′χv′ = χ′4Nw . When regarded as characters of (UF ′(A∞

F ′)
∗ ∩

t−1D∗
F ′t)/F

′∗, we still have χ = χ′4Nw . As the exponent of a Sylow p-
subgroup of (UF ′(A∞

F ′)
∗ ∩ t−1D∗

F ′t)/F
′∗ divides 4Nw, we get that χ is trivial

on (UF ′(A∞
F ′)

∗ ∩ t−1D∗
F ′t)/F

′∗. As χ = Πv′χv′ also has the property that
each χv′ is of order divisible by the p-part of 2p, we are done. �

7.4. ∆Q-freeness in presence of isotropy. Let N (a power of p) be the
least common multiple of the exponent of the Sylow p-subgroups of the finite
groups (U(A∞

F )∗∩ t−1D∗t)/F ∗ for all t ∈ (D⊗F A∞
F )∗. The integer N exists

by the discussion in Section 7.2.
Consider an integer n and a finite set of places Q = {v} of F disjoint

from S. We denote by kv the residue field at v and by N(v) its cardinality.
Assume that N(v) = 1 mod pn, n ≥ 1, and let ∆′

v be the pro-p quotient of
the cyclic group k∗v = (OFv/πv)∗.

Let ∆v be the quotient of ∆′
v by its N -torsion. Hence any character

χ : ∆v → O∗, when regarded as a character of ∆′
v, is an Nth power. We

consider subgroups UQ = Πv(UQ)v and U0
Q = Πv(U0

Q)v of U which have the
same local component as U at places outside Q and for v ∈ Q,

(UQ)v = {g ∈ GL2(OFv) : g =
(
a b
0 d

)
mod.(πv), ad−1 → 1 ∈ ∆v},

and

(U0
Q)

v
= {g ∈ GL2(OFv) : g =

(
∗ ∗
0 ∗

)
mod.(πv)}.

Then there is a natural isomorphism

U0
Q

UQ
' Πv∆v := ∆Q

via which characters of ∆Q may be regarded as characters of U0
Q.

The space Sk,ψ(UQ,O) carries an action of ∆Q and of the operators Uπv
and Sπv for v ∈ Q. The natural action of g ∈ ∆v, denoted by 〈g〉, arises
from the double coset

UQ

(
g̃ 0
0 1

)
UQ

where g̃ is a lift of g to (OF )∗v. The operators and Sπv and Uπv for v ∈ Q are

defined just as before by the action of UQ

(
πv 0
0 πv

)
UQ and UQ

(
πv 0
0 1

)
UQ.

By abuse of notation we denote these by Sv (which is just multiplication by
ψ(πv)) and Uv although they might depend on choice of πv. We consider the
extended (commutative) Hecke algebra Tψ,Q(UQ) generated over Tψ(UQ) by
these operators and ∆Q.
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A character χ : ∆Q → O∗ induces a character of U0
Q, and this character is

trivial on U0
Q ∩ (A∞

F )∗. Thus χ may be extended to a character of U0
Q(A∞

F )∗

by declaring it to be trivial on (A∞
F )∗. Let Wk(χ) denote the U0

Q(A∞
F )∗-

module which is the tensor product Wk ⊗O O(χ). Thus SWk(χ),ψ(U0
Q,O)

denotes the space of continuous functions

f : D∗\(D ⊗F A∞
F )∗ →Wk(χ)

such that:

f(gu) = (u)−1f(g)

f(gz) = ψ(z)f(g)

for all g ∈ (D ⊗F A∞
F )∗, u ∈ U0

Q, z ∈ (A∞
F )∗.

Lemma 7.4. 1. The rank of the O-module SWk(χ),ψ(U0
Q,O) is independent

of the character χ of ∆Q. Further we have a Hecke equivariant isomorphism
SWk(χ),ψ(U0

Q,O)⊗O F ' SWk(χ′),ψ(U0
Q,O)⊗O F for characters χ, χ′ of ∆Q.

2. Sk,ψ(UQ,O) is a free O[∆Q]-module of rank equal to the rank of
Sk,ψ(U0

Q,O) as an O-module.

Proof. We first claim that a character χ of ∆Q, kills (U0
Q(A∞

F )∗∩t−1D∗t)/F ∗

for all t ∈ (D ⊗F A∞
F )∗.

To prove the claim we note that the p-power order character χ, re-
garded as a character of (U0

Q(A∞
F )∗ ∩ t−1D∗t)/F ∗ is an Nth power, and

N by definition is divisible by the exponent of the Sylow p-subgroups of
(U0

Q(A∞
F )∗ ∩ t−1D∗t)/F ∗.

We next claim that for each t ∈ (D ⊗F A∞
F )∗, we have:

(8) (U0
Q(A∞

F )∗ ∩ t−1D∗t)/F ∗ = (UQ(A∞
F )∗ ∩ t−1D∗t)/F ∗.

To prove this second claim, note that we have a natural isomorphism

U0
Q(A∞

F )∗/UQ(A∞
F )∗ ' ∆Q and a natural injection

U0
Q(A∞F )∗∩t−1D∗t

UQ(A∞F )∗∩t−1D∗t
↪→ U0

Q(A∞
F )∗/UQ(A∞

F )∗.

Thus we get a surjective map from the characters of (U0
Q(A∞

F )∗∩t−1D∗t)/F ∗

induced by ∆Q, which are as noted in the first claim trivial, to the character

group of
(U0
Q(A∞F )∗∩t−1D∗t)/F ∗

(UQ(A∞F )∗∩t−1D∗t)/F ∗
. This proves the second claim.

Let {ti}, i ∈ I0 be a set of representatives of the double cosets D∗\(D⊗F
A∞
F )∗/U0

Q(A∞
F )∗. We get from (5) an isomorphism of SWk(χ),ψ(U0

Q,O) with

⊕i∈I0Wk(χ)(U
0
Q(A∞F )∗∩t−1

i D∗ti)/F ∗ .

This O-module and its image in Sk,ψ(U,F) does not depend on χ, for χ a
character of ∆Q, as by the first claim we know that such χ kill (U0

Q(A∞
F )∗ ∩

t−1
i D∗ti)/F ∗.

Namely for characters χ, χ′ : ∆Q → O∗ we have a commutative diagram
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SWk(χ),ψ(U0
Q,O)

��

// SWk(χ′),ψ(U0
Q,O)

��

Sk,ψ(U,F) = // Sk,ψ(U,F)
where the top arrow is a non-Hecke-equivariant isomorphism, and the other
arrows are Hecke equivariant. This proves 1).

For 2), we note that, by the second claim (see (8)), a set of representatives
I of the double cosets D∗\(D⊗FA∞

F )∗/UQ(A∞
F )∗ is {tiuj} where {uj} is a set

of representative of the elements of the quotient U0
Q(A∞

F )∗/UQ(A∞
F )∗ ' ∆Q.

Then, 2) follows from (5).
�

For the following corollary, consider a non-Eisenstein maximal ideal m
of Tψ(U) and assume that the eigenvalues of ρ̄m(Frobv), αv and βv, for
v ∈ Q, are distinct. Let Q′ ⊂ Q. By Hensel’s lemma the polynomial
X2 − TvX + N(v)ψ(πv) ∈ Tψ(U)m[X] splits as (X − Av)(X − Bv) where
Av modulo m is αv and Bv modulo m is βv. Then we may pull back the
maximal ideal m to a maximal ideal of Tψ,Q′(UQ′) or Tψ,Q′(U0

Q′), denoted
again by m, by declaring that Uv − α̃v ∈ m for v ∈ Q′ with α̃v some lift of
αv: that this is possible follows from 2) of Lemma 1.6 of [59].

Consider v ∈ Q\Q′. Since

T′ψ,Q′(U
0
Q′)m′ → Tψ,Q′(U0

Q′)m

is an isomorphism, where T′ψ,Q′(U
0
Q′) is defined without Tv, and m′ is the

preimage of m, it follows that

Sk,ψ(U0
Q′)m′ → Sk,ψ(U0

Q′)m

is an isomorphism. The matrix
(

1 0
0 πv

)
defines a map

Sk,ψ(U0
Q′)m′ → Sk,ψ(U0

Q′∪{v})m′

(where abusing notation as before, m′ is also the maximal ideal over m′ in
the Hecke algebra Tψ,Q′(UQ′∪{v}) defined without Uv).

Thus the formula

ξv(f) = Avf −
(

1 0
0 πv

)
f,

composed with localisation at m, defines a map Sk,ψ(U0
Q′ ,O)m → Sk,ψ(U0

Q′∪{v},O)m
for Q′ ⊂ Q and v ∈ Q\Q′. These maps are used in Corollary 7.5 below.

Corollary 7.5. Sk,ψ(UQ,O)m is a free O[∆Q]-module. The rank of Sk,ψ(UQ,O)m
as an O[∆Q]-module is the rank of Sk,ψ(U,O)m as an O-module. The ∆Q

covariants of Sk,ψ(UQ,O)m are isomorphic to Sk,ψ(U,O)m, compatibly with
a map Tψ,Q(UQ)m → Tψ(U)m sending Tv to Tv for v not in S ∪Q, 〈g〉 → 1
for 〈g〉 ∈ ∆Q and Uv → Av for v ∈ Q.
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Proof. (see also Lemma 2.2, Lemma 2.3 and Corollary 2.4 of [59]) The first
assertion follows from Lemma 7.4 as Sk,ψ(UQ,O)m is isomorphic to a direct
factor, as a module over the local ring O[∆Q], of Sk,ψ(UQ,O). The other
assertions follow from proving Sk,ψ(U0

Q,O)m ' Sk,ψ(U,O)m. The fact that
the natural map Sk,ψ(U,O)m → Sk,ψ(U0

Q,O)m (given by composing the ξv’s
for v ∈ Q above) is an isomorphism after inverting p follows as there is no
automorphic representation π of (D ⊗F AF )∗ which is (a twist of) Steinberg
at any place in Q which can give rise to ρ̄m. This in turn follows from the
compatibility of the local-global Langlands correspondence proved in [10]
and [61] as N(v) is 1 mod p for v ∈ Q, v is unramified in ρ̄m and ρ̄m(Frobv)
has distinct eigenvalues.

As we know that Sk,ψ(U,O)m → Sk,ψ(U0
Q,O)m is an injective map of

O-modules of the same rank, to prove that it is surjective it is enough to
prove that its reduction modulo the maximal ideal of O is injective. This
in turn follows from showing that for any subset Q′ of Q and q ∈ Q\Q′, the
degeneracy map Sk,ψ(U0

Q′ ,F)2 → Sk,ψ(U0
Q′∪{q},F) has Eisenstein kernel (see

Lemma 7.1). �

7.5. Twists of modular forms for p = 2. Assume p = 2, and let Qn
be a set of auxiliary primes as in Lemma 5.10. We also use the notation
of §5.6. We assume n is such that 2n > N with N as in §7.4. Recall
from Lemma 5.10 that FSQn is the maximal abelian extension of F of degree
a power of 2 which is unramified outside Qn and is split at primes in S,
that Gn := Gal(FSQn/F ), and that Gn,2 = Gn/2Gn. Consider a character
χ : Gn,2 → O∗ of order 2. As χ is split at infinite places, we can regard χ
also as a character (A∞

F )∗ → O∗. Given f ∈ Sk,ψ(UQn ,O) (so k = 2), we
can define

fχ(g) := f(g)χ(Nm(g)).

We check that fχ is in Sk,ψ(UQn ,O) again. We have to prove that for
u ∈ UQn and z ∈ (A∞

F )∗ we have χ(Nm(u)) = 1 and χ(Nm(z)) = 1. The
second equality follows from the fact that χ is of order 2. For the first one,
we have χ(Nm(u)) =

∏
v∈Qn χ(Nm(uv)) as χ is unramified at places outside

Qn. For v ∈ Qn and uv ∈ (UQn)v, det(uv) = Nm(uv) is a square in k∗v , hence
χ(Nm(uv)) = 1.

The character χ may also be regarded as a character χ : ∆Qn → O∗, by
considering the map ∆Qn → Gn,2 which maps a generator of ∆v (which by
our assumption 2n > N is a non-trivial cyclic group of order a power of
2) to a generator of an inertia group in Gn,2 above v (for v ∈ Qn) (which
is of order dividing 2). This gives a meaning to the 2. of the following
proposition.

We set Qn to Q in the following proposition.

Proposition 7.6. 1. For Tv ∈ Tψ,Q(UQ), with v a place not above S, and
πv a uniformiser at v, we have:
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(i)
fχ|Tv = χ(πv)(f |Tv)χ

for v /∈ Q;
(ii)

fχ|Uv = χ(πv)(f |Uv)χ
for v ∈ Q.

(Note that this is well-defined as for v ∈ Q, Uv depends on choice of
uniformiser πv.)

2. For h ∈ ∆Q we have

(f |〈h〉)χ = χ−1(h)fχ|〈h〉.

Proof. The proposition follows easily from the definition of fχ. For example,
1 (ii) follows from the formula (f |Uv)(g) =

∑
i f(gui) where the ui belongs

to the double coset UQ

(
πv 0
0 1

)
UQ, hence χ(Nm(ui)) = χ(πv).

�

It follows from the proposition that we can define an action of χ ∈
Hom(Gn,2,O∗) on Tψ,Qn(UQn) by sending Tv to χ(πv)Tv, Uv to χ(πv)Uv,
h to χ(h)h and Sv to itself. This action is compatible with the action of
Hom(Gn,2,O∗) on Sk,ψ(UQn ,O). As χ(σ) ≡ 1mod m for every σ ∈ Gn,2, it
follows from the proposition that the action of Hom(Gn,2,O∗) on Tψ,Qn(UQn)
preserves its maximal ideal m (defined in §7.4) . It follows that we get ac-
tions of Hom(Gn,2,O∗) on Tψ,Qn(UQn)m and Sk,ψ(UQn ,O)m that satisfy the
compatibility conditions of Proposition 7.6.

7.6. A few more preliminaries.

7.6.1. Local behaviour at p of automorphic p-adic Galois representations.
The following result is the corollary in the introduction to [39] which extends
to some more cases the results of [53].

Lemma 7.7. Let F be a totally real number field that is unramified at p and
π a cuspidal automorphic representation of GL2(AF ) that is discrete series
of (parallel) weight k ≥ 2 at the infinite places. Consider the Galois repre-
sentation ρπ : GF → GL2(E) associated to π, and assume that residually it
is absolutely irreducible. Then the association π → ρπ is compatible with the
Langlands-Fontaine correspondence.

This has the following more explicit corollary.

Corollary 7.8. Let v be a place of F above p.
(i) If πv is unramified at v, then ρπ|Dv is crystalline of weight k. Further

if πv is ordinary then ρπ|Iv is of the form(
χk−1
p ∗
0 1

)
.
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(ii) (k = 2) If πU1(v)
v is non-trivial, but πU0(v)

v is trivial, and the corre-
sponding character of k∗v factors through the norm to F∗p, then ρπ|Dv is of
weight 2 and crystalline over Qnr

p (µp). Further if πv is ordinary then ρπ|Iv
is of the form (

ωk−2
p χp ∗

0 1

)
.

If πU0(v)
v is non-trivial, but πv has no invariants under GL2(Ov), (hence πv

is (unramified twist of) Steinberg) then ρπ|Dv is semistable, non-crystalline
of weight 2, i.e. of the form (

χpγv ∗
0 γv

)
,

with γv an unramified character of Dv.

We will sometimes call unramified twists of Steinberg representations of
GL2(Fv) again Steinberg.

7.6.2. A definition. Let ρ̄ : GQ → GL2(F) as before be a continuous, abso-
lutely irreducible, totally odd representation.

Let F be a totally real number field such that F is unramified at p and
split at p if ρ̄|Dp is irreducible. We assume that ρ̄|F has non-solvable image
when p = 2, and ρ̄|F (µp) is absolutely irreducible when p > 2. We make a
useful definition:

Definition 7.9. A totally real solvable extension F ′/F , that is of even de-
gree, unramified at places above p, and split at places above p if ρ̄|Dp is
irreducible, such that im(ρ̄) = im(ρ̄|F ′) and ρ̄|F ′(µp) absolutely irreducible is
said to be an allowable base change.

In many of the considerations below, the statements of the results will
permit allowable base change, primarily because of Langlands theory of base
change (see [40]).

A totally real extension F ′/F has the property that im(ρ̄) = im(ρ̄|F ′) and
ρ̄|F ′(µp) is absolutely irreducible if (i) it is linearly disjoint from the fixed
field of the kernel of ρ̄|F ; and (ii) in the case that the projective image of
ρ̄|F is dihedral, if F ′/F has the property that it is split at a prime of F split
in the fixed field of the kernel of the projective image of ρ̄|F , but inert in
F (µp).

In the constructions below this property can easily be ensured and will
not be explictly commented upon.

7.6.3. Determinants. We will need the following lemma later to ensure that
certain lifts we construct (after twisting and allowable base change which
also splits at finitely many specified primes) have a certain prescribed de-
terminant character.
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Lemma 7.10. Suppose ψ,ψ′ : F ∗\(A∞
F )∗ → O∗ are characters that have the

same reduction. Assume that the restrictions of ψ,ψ′ to an open subgroup
of O∗Fp are equal. Assume we are given a finite set of finite places {v} of F ,
at which the restrictions of ψ,ψ′ to (OF )∗v are equal. Then after enlarging
O if necessary there is a finite order character ζ : F ∗\(A∞

F )∗ → O∗ of order
a power of p and unramified at {v}, and a totally real solvable extension
F ′/F that can be made disjoint from any given finite extension of F , and
that is split at all places in {v}, such that the characters ζ|2F ′ψF ′ , ψ′F ′ :
F ′∗\(A∞

F ′)
∗ → O∗ are equal.

Proof. Let L/F be a finite Galois extension and choose a finite set of places
{w} of F , that are unramified in L/F , and also unramified for ψ,ψ′, such
that the Frobw exhaust the conjugacy classes of Gal(L/F ).

Our assumptions imply that ψψ′−1 is a finite order character, of order
a power of p which if viewed as character of GF via the class field theory
isomorphism is totally even. For p > 2 the lemma is trivial (and we may
take F ′ = F ).

For p = 2 we use the Grunwald-Wang theorem, see Theorem 5 of Chapter
10 of [1], to find ζ of order a power of 2 such that the characters ζ2ψ,ψ′ have
the same restriction to F ∗v for the finite set of places {v} ∪ {w}. It follows
that there is a finite totally real solvable (and even cyclic) extension F ′/F
that is split at all places in {v} ∪ {w}, and thus linearly disjoint from L/F ,
such that ζ|2F ′ψF ′ , ψ′F ′ : F ′∗\(A∞

F ′)
∗ → O∗ are equal.

�

8. Modular lifts with prescribed local properties

While proving modularity lifting theorems by the Wiles, Taylor-Wiles,
Diamond, Fujiwara and Kisin patching method (see Propositions 9.2 and
9.3 below) we need to produce modular liftings of a modular residual ρ̄
that factor through the quotient of the deformation ring being considered.
The purpose of this section is to produce such liftings. As we work with
deformations of fixed determinant we also take care to produce modular lifts
with the given determinant. This we cannot always do without performing
allowable base change (also ensuring splitting behaviour at finitely many
specified primes). This is harmless for our applications.

Theorem 8.4 produces modular lifts, up to allowable base change, with
some prescribed local conditions (these are always semistable outside primes
above p). A crucial input for this is Theorem 8.2 which produces minimal
lifts (after allowable base change).

Consider the fixed S-type representation ρ̄ : GQ → GL2(F), with 2 ≤
k(ρ̄) ≤ p + 1 if p > 2, and ρ̄ has non-solvable image if p = 2 and ρ̄|Q(µp) is
irreducible if p > 2.

8.1. Fixing determinants. The proof of the following lemma is easy and
is omitted.
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Lemma 8.1. There is a totally real field F such that:
• F/Q is solvable
• F is totally real, [F : Q] is even, unramified at p, and is even split

at p if ρ̄|Dp is irreducible, or if k(ρ̄) = p+ 1 (and hence p > 2).
• ρ̄F := ρ̄|GF has non-solvable image if p = 2, and ρ̄|GF (µp)

is irre-
ducible if p > 2.
• ρ̄F is unramified at places that are not above p
• if ρ̄|Dp is unramified then for all places ℘ of F above p, ρ̄|D℘ is trivial.

We use the notations of §1.2. We furthermore suppose given an arithmetic
character ψ : F ∗\(A∞

F )∗ → O∗, unramified outside the places above p, such
that the corresponding Galois representation χpρψ : GF → O∗ (which is
totally odd), lifts the determinant of ρ̄ and such that the restriction of ψ to
O∗Fp is one of the following kind:

• (i) restricted to O∗Fp of the form N(u)2−k(ρ̄),

• (ii) restricted to O∗Fp corresponds to ωk(ρ̄)−2
p , or

• (iii) when k(ρ̄) = 2, restricted to O∗Fp it is of the form N(u)1−p.

Remark: As F. Diamond has remarked (i), (ii) and (iii) are not mutually
exclusive: (i) and (ii) coincide if k(ρ̄) = 2. If p = 2 we use only (ii) in what
ensues.

We fix such a F and ψ for the rest of this section. When referring to
properties of determinant characters we will use the numbering of this sec-
tion.

8.2. Minimal at p modular lifts and level-lowering. Consider the fol-
lowing hypotheses:

(α) ρ̄|GF arises from a cuspidal automorphic representation π of GL2(AF ),
such that πv is unramified for all v|p, and is discrete series of weight k(ρ̄) at
the infinite places.

(β) ρ̄|GF arises from a cuspidal automorphic representation π of GL2(AF ),
such that πv, at all places v above p, is of conductor dividing v, and is of
weight 2 at the infinite places.

Using the Jacquet-Langlands (JL) correspondence, we may transfer π to
inner forms of GL2 and will call it π again.

When results of this section are used later, we will verify as needed that
for p > 2 the assumptions (α) and (β) are satisfied. For p = 2, condition
(α) will be satisfied if k(ρ̄) = 2, and (β) will be satisfied for k(ρ̄) = 2 and 4.

This will be done by quoting the results of Theorem 13.10 of [27] and [12]
(see also [23]) and Propositions 8.13 and 8.18 of [27] if ρ̄ is modular. In cases
when ρ̄ itself is not supposed to be modular, but we find a F such that ρ̄F is
modular by using Theorem 6.1, that very theorem verifies these hypotheses
for us.

A key ingredient in the proof of Theorem 8.4 is the following result (which
can be regarded as a level-lowering result) which we prove following the
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idea of Skinner-Wiles in [57], except that our proof avoids using duality. It
strengthens the hypotheses (α) and (β).

Theorem 8.2. Let ρ̄, F , ψ and π as above. We assume if p > 2 that (α)
and (β) are satisfied, and if p = 2 that (α) is satisfied if k(ρ̄) = 2 and (β)
in general.

We suppose that π is as in:
– (p = 2) (α) when k(ρ̄) = 2, or as in (β)
– (p > 2) (α), or also (β) if k(ρ̄) = 2, in case (a) below, and (β) in cases

(b) and (c) below.
Let Σ be a subset of the finite places at which π is (unramified twist of)

Steinberg. Thus Σ contains no place above p when π is as in (α). When π is
as in (β), and k(ρ̄) = 2, we assume that Σ contains {v|p |πv is Steinberg}.

Then there is an allowable base change F ′′/F , that is split at p if p > 2,
and a cuspidal automorphic representation π′′ of GL2(AF ′′) that is discrete
series at infinity such that

• ρπ′′ is a lift of ρ̄F ′′
• π′′ is unramified (spherical) at all finite places not above Σ ∪ {p},

and π′′ is Steinberg at places above Σ.
• (p = 2) π′′ is of parallel weight 2; if k(ρ̄) = 2 then π′′v is unramified at

all places v dividing 2 and v /∈ Σ, and if k(ρ̄) = 4 then π′′v is Steinberg
at all places v dividing 2, and π′′ has central character ψF ′′ with ψ
supposed as in (ii). For every place v of F above 2, let ψ′v be a choice
of an unramified square-root of the unramified character ψv. Then
when k(ρ̄) = 4 we may further ensure that the Hecke operator Uv′ at
places v′ of F ′′ above v acts on π′′ by ψ′v ◦ NF ′′

v′/Fv
(πv′) with πv′ a

chosen uniformiser for the place v′.
• (p > 2) π′′ can be chosen so that it satisfies :

(a) Suppose ψ as in (i) above. Then π′′ is of parallel weight k(ρ̄),
and is unramified at places v above p that are /∈ Σ.

When k(ρ̄) = 2, and we assume that Σ contains no places above
p, π′′ can also be chosen to be of weight p+ 1 with central character
given by ψF ′′, for a choice of ψ as in (iii), and unramified at all
places above p.

(b) Suppose ψ as in (ii), and assume k(ρ̄) < p + 1. Then π′′v has
fixed vectors under U1(v) for all v|p, and the associated character
of k∗v factors through the norm to F∗p, is of parallel weight 2, with
central character given by ψF ′′.

(c) (considered only when k(ρ̄) = p+1) Suppose ψ as in (ii). Then
π′′v has fixed vectors under U0(v) for all v|p, is of parallel weight 2,
with central character given by ψF ′′.

Remark: The statement in Theorem 8.2 (and hence the Lemma 8.3), cor-
responding to p > 2 case (a), k(ρ̄) = 2 and π′′ of weight p + 1, is not used
in the present paper.
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Proof. Recall from the statement that we consider π as in:
– (p = 2) (α) when k(ρ̄) = p = 2, or as in (β)
– (p > 2) (α), or also (β) if k(ρ̄) = 2, in case (a), and (β) in cases (b) and

(c).
After an allowable base change that is split at places in Σ, we may assume

that at places v not above p such that πv is ramified, it is Steinberg of
conductor v. Denote this set of places, deprived of the places in Σ, by S.

Choose a place w /∈ Σ ∪ S ∪ {v|p}. Using Lemma 2.2 of [60], there is an
allowable base change F ′/F of even degree, that is split at Σ∪ {v|p} ∪ {w},
such that for all places {v′} of F ′ above the places {v} = S of F , the order
of the p-subgroup of k∗v′ is divisible by the p-part of 2p(4Nw), where Nw is
defined in 7.2. As we are permitted allowable base changes in the statement
of theorem, we may reinitialise and set F = F ′. Note that thus F/Q is of
even degree and |Σ| is even.

Let ψ′ = det(ρπ)χ−1
p , and consider D the definite quaternion algebra

over F ramified at exactly the infinite places and Σ. Then by the JL-
correspondence ρπ arises from an eigenform in Sk,ψ′(U ′,O) where k = k(ρ̄)
in case (a), and k = 2 otherwise. Here U ′ = ΠvU

′
v ⊂ (D ⊗F A∞

F )∗ is an open
compact subgroup such that:

– at places above p, U ′v is maximal compact if π is as in case (α), and is
otherwise U1(v)

– for the places not in S and not above p, U ′v is maximal compact
– for v ∈ S, U ′v = U0(v).
There is a maximal ideal m of Tψ(U ′) ⊂ End(Sk,ψ′(U ′,O)) such that

ρ̄m ' ρ̄F .
By Lemma 7.3 for all places v in S, there is a character χ = Πvχv of Πvk

∗
v

of order a power of p, with each χv non-trivial (and of order divisible by 4
if p = 2) with the following property:

– If we regard χ as a character of U ′ via maps U ′v → k∗v with kernel

{g ∈ U ′v : g =
(
a b
0 d

)
mod.(πv), ad−1 = 1},

then χ is trivial on (U ′(A∞
F )∗ ∩ t−1D∗t)/F ∗ for any t ∈ (D ⊗ A∞

F )∗.
Then as in Lemma 7.4 we have the isomorphism Sk,ψ′(U ′,O) ⊗O F '

SWk(χ),ψ′(U ′,O)⊗O F. We deduce there is a maximal ideal m′ of the Hecke
algebra ⊂ End(SWk(χ),ψ′(U ′,O)) such that ρ̄m′ ' ρ̄F . As χ = Πv∈Sχv and
each χv is non-trivial (and of order divisible by 4 if p = 2), each (irreducible,
cuspidal) automorphic representation π′ of GL2(AF ) that contributes to
SWk(χ),ψ′(U ′,O)m′ via the JL correspondence is a (ramified) principal series
at the places v ∈ S. Thus after another allowable base change F ′′/F that is
split at places above p and Σ, we deduce, using also Lemma 7.7, that there
is an automorphic representation π′′ of GL2(AF ′′) that gives rise to ρ̄F ′′ such
that:

• (p = 2) π′′ is of parallel weight 2, is unramified at all primes v above
2 , v /∈ Σ, if k(ρ̄) = 2, and Steinberg at all places above 2 if k(ρ̄) = 4
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• (p > 2) corresponding to the cases above (a) π′′ is of parallel weight
k(ρ̄) and unramified at places above p, v /∈ Σ, and in the case when
k(ρ̄) = 2 and Σ∩{v|p} = φ, we may also choose π′′ to be unramified
at places above p and of weight p+1, or (b) of parallel weight 2 and
at places above p the base change of the corresonding WD parameter
to Qnr

p (µp) is unramified, or (c) π′′ of parallel weight 2 and Steinberg
at places above p when k(ρ̄) = p+ 1.
• For all p, π′′ is unramified at all finite places not above p and Σ and

at places v ∈ Σ, π′′v is Steinberg.

The last part of case (a) (which is considered only for p > 2) is handled
by Lemma 8.3. Note that as ρ̄|F ′′(µp) is absolutely irreducible for p > 2 ,
we may assume for our purposes by Lemma 2.2 of [33], the U of Lemma 8.3
satisfies the conclusion of Lemma 1.1 of [59] (which ensures the surjectivity
of Sp+1,ψ(U,O)→ Sp+1,ψ(U,F)).

For p > 2 up to replacing π′′ by a twist (using the trivial p 6= 2 case of
Lemma 7.10) we obtain the desired cuspidal automorphic representation π′′

of GL2(AF ′′) with central character ψF ′′ .
In the case of p = 2, after twisting and invoking another allowable base

change that is also split at places above p and Σ, using Lemma 7.10, we may
ensure that the central character of π′′ is given by ψF ′′ thus obtaining the
desired cuspidal automorphic representation π′′ of GL2(AF ′′). The claim for
p = 2, k(ρ̄) = 4 about the eigenvalue of Uv′ acting on π′′v′ , for v′ place of F ′′

above v, may be ensured by a further allowable base change.
�

Lemma 8.3. Consider an open compact subgroup U = ΠvUv of (DF ′′ ⊗
A∞
F ′′)

∗, with DF ′′ the definite quaternion algebra over F ′′ unramified at all
finite places not above Σ, with Σ ∩ {v|p} = φ, and with Uv = GL2(OFv)
for places v above p. Let ψ : (A∞

F ′′)
∗ → F∗ be a continuous character such

that ψ|U∩(A∞
F ′′ )

∗ = 1. Assume ρ̄F ′′ arises from a maximal ideal of the Hecke
algebra (outside p) acting on S2,ψ(U,F). Then it also arises from a maximal
ideal of the Hecke algebra (outside p) acting on Sp+1,ψ(U,F).

Proof. This follows by the group-cohomological arguments in the proof of
Proposition 1 of Section 4 of [24]. Although only the case of p inert in
F ′′ is considered in [24], the argument there can be iterated to remove this
restriction. We spell this out a little more.

Let {w1, · · · , wr} be places of F ′′ above p, and for each 1 ≤ i ≤ r, let Wi =
{w1, · · · , wi} and W0 be the empty set. Let E be a large enough unramified
extension of Qp. LetWτi be the Up-module⊗ι:F ′′↪→E,ι∈JiSymmp−1(F) with Ji
the subset of the embeddings corresponding to Wi. Note that Wτi |U∩(A∞

F ′′ )
∗

is trivial.
Assume that for an i, 0 ≤ i < r, there is a maximal ideal m of the Hecke

algebra (outside p) acting on Sτi,ψ(U,F) which gives rise to ρ̄, and thus
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Sτi,ψ(U,F)m 6= 0. This assumption for i = 0 is part of the hypothesis of the
lemma.

Let U ′′ = ΠvU
′′
v be the subgroup of U such that Uv = U ′′v for v 6= w :=

wi+1, and U ′′w = U0(w). Then the kernel of the standard degeneracy map

Sτi,ψ(U,F)2 → Sτi,ψ(U ′′,F),

(f1, f2)→ f1 +
(

1 0
0 πw

)
f2, is Eisenstein (see Lemma 7.1).

Next observe that Sτi,ψ(U ′′,F) ' Sτi,ψ(U,F) ⊕ Sτ⊗V,ψ(U,F), where V is
the GL2(kw)-module ⊗ι:F ↪→E,ι∈JwSymmp−1(F) where Jwi+1 this time con-
sists of embeddings of F ′′ in E corresponding to w = wi+1. Here (see [24])
we use the fact that F[P1(kw)] is isomorphic as a GL2(kw)-module, using the

natural action of GL2(kw) on P1(kw), to id⊕V . The map f →
(

1 0
0 πw

)
f ,

that sends Sτi,ψ(U,F)m to Sτi,ψ(U ′′,F)m, when composed with the projection
Sτi,ψ(U ′′,F)m → Sτi+1,ψ(U,F)m, induces a map Sτi,ψ(U,F)m → Sτi+1,ψ(U,F)m.
This last map is seen to be injective by Lemma 7.1. Thus we see at the end
(the case i = r) that ρ̄|F ′′ also arises from a maximal ideal of the Hecke
algebra acting on Sp+1,ψ(U,F).

�

8.3. Lifting data. We will need to construct automorphic lifts of ρ̄|GF sat-
isfying various properties that are described by lifting data which consists
of imposing the determinant and some local conditions at a finite set S of
places of F including the infinite places and the places above p (the lift has
to be unramified outside S). The condition at infinite places is to be odd,
and it is implied by the determinant.

8.3.1. Determinant condition of lifting data. We fix determinant of the lifts
to be ψχp as chosen in 8.1.

8.3.2. Lifting data away from p. For finitely many places {v} of F not above
p, which are called the ramified places of the lifting data, we are given local
lifts ρ̃v of ρ̄|Dv , such that ρ̃v is ramified and of the form(

γvχp ∗
0 γv

)
,

with γv a given unramified character and γ2
v = ψv.

At all other places v not above p, the lifting data specified is that the lift
be unramified and of determinant ψvχp.

8.3.3. Lifting data at p. Suppose also that for all places v above p we are
given a lift ρ̃v of ρ̄|Dv such that det(ρ̃v) = ψvχp and such that

• (p = 2) ρ̃v is crystalline of weight 2 at all primes above 2 when
k(ρ̄) = 2, and when k(ρ̄) = 4 ρ̃v is semistable and non-crystalline of
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weight 2 at v and of the form(
γvχ2 ∗

0 γv

)
,

where χ2 is the 2-adic cyclotomic character, and γv a given unrami-
fied character such that γ2

v = ψv.
• (p > 2) ρ̃v is either (simultaneously at all places v above p)

(A) crystalline of weight k, such that 2 ≤ k ≤ p+1, with the case
k = p+ 1 considered only when F is split at p and k(ρ̄) = p+ 1, or

(B) crystalline of weight 2 over Qnr
p (µp) of Weil-Deligne parameter

(ωk−2
p ⊕ 1, 0) for a fixed k in all embeddings, or
(C) semistable, non-crystalline of weight 2 and of the form(

γvχp ∗
0 γv

)
,

where χp is the p-adic cyclotomic character, and γv is a given un-
ramified character such that γ2

v = ψv.
To make the conditions uniform with p, notice that in the case of p = 2

we only consider lifts of the type considered in (A) of weight 2, and we
do not consider the case (B) and we consider (C) only when the residual
representation has weight 4.

In (A) the character ψ has to be of the form (i), in case (B) of the form
(ii), and in case (C) it has to be of the form (ii).

We fix lifting data as above for the rest of the section. A lift ρF : GF →
GL2(O) fits the lifting data if ρF |Dv is of type ρ̃v at all places which are in
S, is unramified at the other places and ψ is det(ρF )χ−1

p .

8.4. Liftings with prescribed local properties: Theorem 8.4. The
following theorem proves that, under the hypothesis that ρ̄ is modular as in
8.2, we can find after an allowable base change a modular lift ρ of ρ̄ which
fits the lifting data that we have chosen in the last paragraph.

Theorem 8.4. Assume if p > 2, (α) and (β) of Section 8.2, and if p = 2 that
(α) is satisfied when k(ρ̄) = 2 and (β) is satisfied. There is an allowable base
change F ′/F , and a cuspidal automorphic representation π′ of GL2(AF ′)
that is discrete series at infinity of parallel weight such that

• ρπ′ is a lift of ρ̄F ′
• (p = 2) is crystalline of weight 2 at all primes above 2 when k(ρ̄) = 2,

and when k(ρ̄) = 4 it is semistable of weight 2 of the form prescribed
above.
• (p > 2) at all places above p of F ′ either crystalline of weight k,

such that 2 ≤ k ≤ p + 1 (and when the case p + 1 is considered F ′

is split at p and k(ρ̄) = p + 1), or of weight 2 and crystalline over
Qnr
p (µp) of the prescribed inertial WD parameter as in (B) above , or

as in case (C) semistable and non-crystalline of weight 2, and then
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for v|p, ρF |Dv is of the form(
γvχp ∗

0 γv

)
,

corresponding to the cases (A), (B), (C) above and where we are
denoting the restriction of the character γv by the same symbol
• ρπ′ is unramified at places where the lifting data is unramified
• at all places not above p at which the lifting data is ramified, ρπ′ |Dv

is of the form (
γvχp ∗

0 γv

)
,

with γv unramified.
• detρπ′ = ψF ′χp.

For p = 2, when k(ρ̄) = 2, π′ is unramified at places v above 2, and when
k(ρ̄) = 4 is Steinberg at places v above 2.

For p > 2, in (A) we may ensure that π′ is unramified at places v above
p, in (B) that π′v has fixed vectors under U1(v), and in (C) that π′v has fixed
vectors under U0(v).

Proof. After a suggestion of F. Diamond, we give a proof that works uni-
formly for all p. This is unlike what was done in a previous version of the
paper.

It is enough to prove the Theorem 8.4 after base changing to the F ′′ of
Theorem 8.2 with the cases (a), (b), (c) of the latter corresponding to (A),
(B), (C) of the former (except that in (a) we do not consider weight p + 1
liftings unless k(ρ̄) = p+ 1 and F split at p) : we reinitialise and take F to
be F ′′.

Theorem 8.4 follows from the existence of π′′ of Theorem 8.2 using the
method of proof of Corollary 3.1.11 (this is Ribet’s method of raising levels
using Ihara’s lemma) and Lemma 3.5.3 (use of base change and Jacquet-
Langlands) of [36]. Note that in the proof of Corollary 3.1.11 of [36] we may
allow Σ (in the notation there) to contain the places above p if we are in
case (C) and k(ρ̄) = 2, and the restriction to weight k = 2 there can be
replaced by 2 ≤ k ≤ p+ 1.

We give the details. By Theorem 8.2 we know that ρ̄F arises from a
cuspidal automorphic representation π′′ of GL2(AF ), of central character ψ,
which we may assume to be either:

– of parallel weight k(ρ̄) and unramified at all places not above p if we
are in case (A)

– of weight 2, and such that if we are in case (A) (or p = 2, k(ρ̄) = 2)
is unramified at places v|p above p, and otherwise in cases (B) and (C) (or
p = 2, k(ρ̄) = 4) has fixed vectors under U1(v).

Let Σ = {v1, · · · , vr} consist of places that are not above p at which the
lifting data is ramified, and we also include the places above p if we are in
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case (C) and k(ρ̄) = 2. After an allowable base change split at p we may
assume that |Σ| is even.

Then as in Lemma 3.5.3 of [36], there is a tower of totally real fields
F = F0 ⊂ F1 ⊂ · · ·Fr := F ′ such that for i = 1, · · · , r, Fi/Fi−1 is a
quadratic extension such that for j ∈ {1, · · · , r} any prime w of Fi−1 over
vj is inert in Fi if i 6= j and splits in Fi if i = j, and Fr/F is an allowable
base change, unramified at places above p, and even split at places above p
if we are not in case (C) with k(ρ̄) = 2.

We further ensure that ρ̄|F ′ has non-solvable image when p = 2, and
otherwise ρ̄|F ′(µp) is absolutely irreducible when p > 2 .

Choose any prime r0 of F which is not in Σ and does not lie over p.
Inductively as in the proof of Lemma 3.5.3 of [36], using Corollary 3.1.11 of
[36] repeatedly, we ensure for each 0 ≤ i ≤ r, starting for i = 0 with a π′′

provided by Theorem 8.2 (with the Σ in the statement there assumed to be
empty) the following situation:

• there is a definite quaternion algebra Di over Fi with center Fi that
is ramified exactly at all the infinite places and the places above
{v1, · · · , vi} (note that the latter has cardinality 2i),
• there is an open compact subgroup Ui = Πv(Ui)v of (Di ⊗ A∞

Fi
)∗ such

that ρ̄Fi arises from Sk,ψFi (Ui,O) such that
– (Ui)r′ is U(r′) for r′ lying over r0(this ensures that U has the

neatness property descibed in Lemma 1.1 of [59] and hence the cor-
responding space of modular forms has the usual perfect pairings)

– (Ui)v is maximal compact at all finite places v at which Di is
ramified, and all v not above p and r0,

– for the places above p at which Di is not ramified, (Ui)v is
maximal compact if we are in case (A) (or case (C) if k(ρ̄) = 2), and
otherwise (Ui)v is U1(v).

We also define the integer k to be k(ρ̄) when we are in case (A), and
k = 2 in cases (B) and (C). Assume we have proven the statement for some
i such that 0 ≤ i < r. Consider the definite quaternion algebra Di and the
subgroup Ui and the unique place wi+1 of Fi above vi+1. Let U ′i = Πv(U ′i)v
be the subgroup of Ui = Πv(Ui)v such that (U ′i)v = (Ui)v for v 6= wi+1

and (U ′i)wi+1 = U0(wi+1). Consider the degeneracy map Sk,ψFi (Ui,O)2 →
Sk,ψFi (U

′
i ,O). By Lemma 7.1 (note that when wi+1 is a place above p, then

k = 2 and the hypotheses of Lemma 7.1 are thus fulfilled), we deduce easily
that the kernel of the reduction of this map modulo the maximal ideal of
O, and hence the p-torsion of the cokernel of the characteristic 0 map, has
only Eisenstein maximal ideals in its support. Then from Corollary 3.1.11
of [36], the Jacquet-Langlands correspondence and the compatibility of the
local and global Langlands correspondence proved in [10] and [61], we see
that there is an automorphic representation πi of GL2(AFi) that has non-
zero invariants under U ′i and such that ρπi lifts ρ̄Fi , and πi is Steinberg
at all places of Fi above {v1, · · · , vi+1}. Base changing πi to Fi+1 we see
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by the Jacquet-Langlands correspondence that the conditions over Fi+1 are
ensured.

For i = r, invoke Theorem 8.2 (with the Σ there taken to be all places
lying above the Σ = {v1, · · · , vr} here) to get rid of possible ramification
at primes above r0. Then another use of the Jacquet-Langlands correspon-
dence, together with Lemma 7.7, gives that there is a cuspidal automorphic
representation π′ of GL2(AF ′) such that ρπ′ lifts ρ̄F ′ and ρπ′ gives rise to
the lifting data at least up to unramified order 2 twist at places above Σ
and above p (the latter considered only when p > 2, k(ρ̄) = 2 and we are
in case (C) or p = 2, k(ρ̄) = 4). After an allowable base change, we may in
fact ensure that that there is a cuspidal automorphic representation π′ of
GL2(AF ′) such that ρπ′ lifts ρ̄F ′ and ρπ′ gives rise to the lifting data.

Note that F ′ need not be split at p if we are in case p = 2, k(ρ̄) = 4, or
p > 2, k(ρ̄) = 2 and we are in case (C), while otherwise we may arrange it
to be split at p.

�

9. R = T theorems

Throughout this section we consider ρ̄ as in 8, ρ̄F := ρ̄|GF , ψ (see 8.1)
and the lifting data (see 8.3) as in Section 8 and assume that ρ̄F satisfies
the assumptions (α), (β) if p 6= 2, and (α) when p = k(ρ̄) = 2 and (β) if
p = 2 (see 8.2).

After possibly an allowable base change (7.6.2), Theorem 8.4 ensures that
there is a cuspidal automorphic representation π of GL2(AF ) such that ρπ
fits the prescribed lifting data. Further when we need to consider weight
p+ 1 liftings, which we consider only when k(ρ̄) = p+ 1, we may assume by
Theorem 6.1 and 8.4 that F is split at p.

9.1. Taylor-Wiles systems. For p > 2 we reproduce in our context Kisin’s
modification of the original Taylor-Wiles systems of [64] as later modified
by Fujiwara and Diamond (see [17]). In case p = 2, we patch deformation
rings for non-fixed determinants and we have to take into accounts twists
(9.1.3).

We use Proposition 3.3.1 of [36], Section 1.3 of [37], Proposition 1.3 and
Corollary 1.4 of [38] as the principal references.

9.1.1. The map R→ T. We denote by Σ the set which consists of the places
at which the lifting data is ramified that are not above p, and all the places
above p if our lifting data is in case (C) or when p = 2 and k(ρ̄) = 4. We
denote by S the union of Σ, the infinite places of F and the places of F
above p.

By an allowable base change we may assume that the number of places
in Σ above F is even, and [F : Q] is even.

Consider D the definite quaternion algebra over F that is ramified at ex-
actly the places in Σ and all the infinite places. The existence of π gives rise
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to a maximal ideal m of the Hecke algebra Tψ(U) which acts on Sk,ψ(U,O).
Here U := ΠvUv ⊂ (D ⊗F A∞

F )∗ is such that Uv is described as follows:
• Uv is maximal compact at all places v not in S,
• Uv is the group (OD)∗v (resp., D∗

v in case p = 2) for v ∈ Σ,
• For v above p, if we are in case (C), including the case p = 2, k(ρ̄) = 4,

then v ∈ Σ and we are already covered. If this is not the case, then at
places v above p, Uv is either maximal compact, or U1(v), according
to whether we are in case (A) (including p = k(ρ̄) = 2) or (B).

Here when p = 2, and hence k = 2, and we denote by U ′ the maximal
compact subgroup of U as defined in Section 7, it is understood that we have
extended the module W2 of U ′(A∞

F )∗ to one of U(A∞
F )∗, denoted again by

W2, in the unique way that allows the existence of an eigenform in Sk,ψ(U,O)
that has the same Hecke eigenvalues at places not in S as those arising from
π (see Section 7.2).

Consider the deformation ring R̄�,ψ
S where the corresponding local defor-

mation rings R̄�,ψ
v for v ∈ S parametrise the liftings as in the lifting data.

Thus these liftings are:
• semistable liftings for places v ∈ S, and not above p and infinity

with a fixed choice of unramified character γv (cd. §3.3.4);
• at infinite places the odd liftings (cf. §3.1);
• At places above p the lifts are uniformly of any of the types as in

8.3:
- (A) (including p = 2 when the weight k is 2) : low weight

crystalline ((ii) of §3.2.2) ;
- (B) (p > 2 and k(ρ̄) ≤ p) : weight 2 lifts ((i) of §3.2.2) ;
- (C) (including the case p = 2 when k(ρ̄) = 4) weight 2 semistable

lifts ((i) of §3.2.2).

Recall that the R̄�,ψ
v for v ∈ S that we consider have the following prop-

erties:
• R̄�,ψ

v is a domain flat over O
• The relative to O dimension of R̄�,ψ

v is :
- 3 if ` 6= p ;
- 3 + [Fv : Qp] if ` = p.
- 2 if v is an infinite place.

• R̄�,ψ
v [1p ] is regular.

When k(ρ̄) = p and ρ̄ is unramified at p, note, for the fact that R̄�,ψ
v is a

domain, that by lemma 8.1, (ρ̄F )|Dv is trivial (3.2.5).
The completed tensor product R̄�,loc,ψ

S is thus flat over O, a domain, and
of relative dimension 3|S|, and R̄�,loc,ψ

S [1p ] is regular (see Theorem 3.1 and
Proposition 3.2).

As in Section 1 of [59], using existence of Galois representations attached
to Hilbert modular eigenforms and the Jacquet-Langlands correspondence
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we get a continuous representation

GF → GL2(Tψ(U)m ⊗O E).

This together with Théorème 2 of [11], and the fact that the traces of the
representation are contained in Tψ(U)m yields that the representation has a
model

ρm : GF → GL2(Tψ(U)m).
The representation ρm is characterised by the property that for v /∈ S the
Eichler-Shimura relation is satisfied, i.e., the characteristic polynomial of
ρm(Frobv) is X2− TvX + N(v)ψ(πv). Here Frobv denotes arithmetic Frobe-
nius at v and N(v) denotes the order of the residue field at v. We denote
by ρ̄m : GF → GL2(F) the representation obtained by reducing ρm modulo
m: this is isomorphic to ρ̄F . Thus there is a unique map π′ : RψS → Tψ(U)m
which takes the universal representation ρuniv

S to ρm. Recall that the O-
algebra R̄�,ψ

S has a natural structure of a smooth R̄ψS -algebra.

Lemma 9.1. The map π′ : RψS → Tψ(U)m induces a surjective map π :
R̄ψS → Tψ(U)m, that takes the universal representation ρ̄univ

S to ρm. Let
T�
ψ (U)m = Tψ(U)m ⊗R̄ψS R̄

�,ψ
S . The map π also induces a surjective map

R̄�,ψ
S → T�

ψ (U)m that we again denote by π.
We pull back the maximal ideal m of Tψ(U) to a maximal ideal of the

Hecke algebra Tψ,Qn(UQn) that acts on Sk,ψ(UQn ,O) as prescribed in Sec-
tion 7.4, and again denote it by m. (Recall from Section 7.4 that for
m ⊂ Tψ,Qn(UQn), v ∈ Qn, Uv − α̃v ∈ m with α̃v a lift of one of the
two distinct eigenvalues of ρ̄m(Frobv) that we have fixed.) Then we have
a map R̄ψS∪Qn → Tψ,Qn(UQn)m, compatible with the O[∆′

Qn
]-action, and

in the p = 2 case also compatible with the actions of Hom(GQn,2,O∗) de-
fined in Sections 5.1 and 7.5, which is characterised by the property that
tr(ρ̄univ

S∪Qn(Frobv)) maps to Tv for almost all places v.

Note that as R̄�,ψ
S is formally smooth over R̄ψS , and Tψ(U)m is flat over

O and reduced we get that T�
ψ (U)m is again flat over O and reduced.

Proof. We check that the map π′ factors through a map R̄ψS → Tψ(U)m that
takes the universal representation ρ̄univ

S to ρm and is surjective.
By the compatibility of the local-global Langlands correspondence proved

in [10] and [61] away from p (see also Lemma 7.2), the properties at p in
Lemma 7.7 that are available as the residual representation ρ̄F is irreducible,
whenever we have a map x : Tψ(U)m → O′ with O′ the ring of integers of
a finite extension of E (and which gives rise to a representation ρx of GF )
the corresponding map RψS → O′, with kernel ℘x, factors through R̄ψS . As
Tψ(U)m is flat and reduced, we deduce that ∩xker(x) = 0, and thus ∩x℘x
is the kernel of the map π′ : RψS → Tψ(U)m. From this we deduce that
the map π′ factors through RψS → R̄ψS , and thus we get the desired map
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R̄ψS → Tψ(U)m which takes the universal representation ρ̄univ
S to ρm. From

this and the Eichler-Shimura relation it follows that R̄ψS → Tψ(U)m is a
surjective map.

The other part for > 2 is proved by similar arguments. We only note
that the compatibility of the local-global Langlands correspondence implies
that the map R̄ψS∪Qn → Tψ,Qn(UQn)m takes γαv(πv)→ Uv for v ∈ Qn (using
the notation of Proposition 5.11: note that Uv depends on the choice of
the uniformiser πv of Fv). For p = 2 compatiblity of the map R̄ψS∪Qn →
Tψ,Qn(UQn)m considered, with the action of G∗Qn,2 defined in Sections 5.1
and 7.5 on the domain and range, follows from the definitions. �

Remark: The proof above also yields the surjectivity of R̄ψS∪Qn → Tψ,Qn(UQn)m.
Further as the traces of the representation GF → GL2(Tψ,Qn(UQn)m) are
contained in the image of Tψ(UQn) → Tψ,Qn(UQn)m, and thus it is defined
over the image by Théorème 2 of [11], we may deduce from the above proof
that the natural map Tψ(UQn)m → Tψ,Qn(UQn)m is bijective.

9.1.2. Patching for p odd. We assume p 6= 2. The following proposition is
Kisin’s modified version of the Taylor-Wiles systems argument. It is derived
directly from the proof of Proposition 3.3.1 of [36], and Proposition 1.3 and
Corollary 1.4 of [38].

Proposition 9.2. Assume the conditions stated at the beginning of this
section.

Let d = 3|S|, h = dim(H1
{L⊥v }

(S, (Ad0)∗(1))) (see 4.1.4) and j = 4|S| − 1.

(I) We have maps of R̄�,loc,ψ
S -algebras

R̄�,loc,ψ
S [[x1, · · · , xh+j−d]]→ R∞ → R̄�,ψ

S

with R∞ a O[[y1, · · · , yh+j ]]-algebra and a R∞-module M∞ such that
(1) Each of the maps is surjective and the map on the right induces an

isomorphism R∞/(y1, · · · , yh)R∞ ' R̄�,ψ
S of R̄�,loc,ψ

S -algebras.
(2) M∞ is a finite free O[[y1, · · · , yh+j ]]-module, and the action of R∞

on the quotient M∞/(y1, · · · , yh)M∞ factors through T�
ψ (U)m and makes it

into a faithful T�
ψ (U)m -module.

(II) The ring R̄�,ψ
S is a finite O[[yh+1, · · · , yh+j ]]-module, and R̄ψS is a

finite O-module.
(III) The map π : R̄�,ψ

S → T�
ψ (U)m of Proposition 9.1 is surjective with

p-power torsion kernel.

Proof. For each positive integer n choose a set of primes Qn as in Lemma
5.3. We define T�

ψ,Qn
(UQn)m = Tψ,Qn(UQn)⊗R̄ψS∪Qn

R̄�,ψ
S∪Qn .

(I) This is a consequence of Proposition 5.11 and Corollary 7.5 using the
patching argument of [64] and [36].
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Consider the R̄�,loc,ψ
S -algebra R̄�,ψ

S∪Qn . The number of its generators as

a R̄�,loc,ψ
S -algebra is controlled by using Proposition 5.5 and is equal to

dim(H1
{L⊥v }

(S, (Ad0)∗(1))) + |S| − 1 = h+ j − d and thus we have surjective
maps

(∗∗)R̄�,loc,ψ
S [[x1, · · · , xh+j−d]]→ R̄�,ψ

S∪Qn → R̄�,ψ
S .

Using Proposition 5.11 we see that R̄�,ψ
S∪Qn is a O[∆′

Qn
][[yh+1, · · · , yh+j ]]-

module, such that theO[∆′
Qn

]-covariants is isomorphic to R̄�,ψ
S . TheO[[yh+1, · · · , yh+j ]]

structure on R̄�,ψ
S∪Qn comes from the framing, i.e., the fact that R̄�,ψ

S∪Qn is a

power series ring over R̄ψS∪Qn in j = 4|S| − 1 variables (cf. Proposition 4.1).

Consider Sk,ψ(UQn ,O)m⊗R̄ψS∪Qn
R̄�,ψ
S∪Qn . Here the tensor product is via the

mapRψS∪Qn → Tψ,Qn(UQn)m composed with Tψ,Qn(UQn)m → End(Sk,ψ(UQn ,O)m).

The Sk,ψ(UQn ,O)m ⊗R̄ψS∪Qn
R̄�,ψ
S∪Qn are O[∆Qn ][[yh+1, · · · , yh+j ]]-modules

where the O[[yh+1, · · · , yh+j ]] structure comes again from the framing, and
the O[∆Qn ]-action as in Corollary 7.5. Note that from Corollary 7.5 it
follows that Sk,ψ(UQn ,O)m is a free O[∆Qn ]-module of rank independent of
n.

The objects R∞ and M∞ are constructed by a patching argument of
the type that first occurs in [64], and in the work of Diamond ([17]) and
Fujiwara, and that occurs in the form we need it in the proof of Proposition
3.3.1 of [36].

Thus R∞ gets defined as an inverse limit of suitable finite length R̄�,loc,ψ
S -

algebra quotients of R̄�,ψ
S∪Qn . The module M∞ is defined by taking an inverse

limit over certain finite length quotients of Sk,ψ(UQn ,O)m ⊗R̄ψS∪Qn
R̄�,ψ
S∪Qn .

By virtue of (**) and the construction we get surjective maps

R̄�,loc,ψ
S [[x1, · · · , xh+j−d]]→ R∞ → R̄�,ψ

S .

As R̄�,ψ
S∪Qn is a O[∆′

Qn
][[yh+1, · · · , yh+j ]]-module, such that the O[∆′

Qn
]-

covariants are isomorphic to R̄�,ψ
S , we get from the construction in loc. cit.

that R∞ is a O[[y1, · · · , yh+j ]]-algebra such that the last map above induces
R∞/(y1, · · · , yh)R∞ ' R̄�,ψ

S . Note also that R∞/(y1, · · · , yh+j)R∞ ' R̄ψS
(since R̄�,ψ

S ' R̄ψS ⊗R̄ψS∪Qn
R̄�,ψ
S∪Qn , so R̄�,ψ

S∪Qn/(y1, · · · , yh+j)R̄�,ψ
S∪Qn ' R̄ψS for

each n).
By Corollary 7.5, Sk,ψ(UQn ,O)m is a free O[∆Qn ]-module of rank indepen-

dent of n, such that its O[∆Qn ]-covariants are isomorphic to Sk,ψ(U,O)m.
Thus by construction we get that M∞ is a finite flat O[[y1, · · · , yh+j ]]-
module. Further, the action of R∞ on the quotient M∞/(y1, · · · , yh)M∞ '
Sk,ψ(U,O)m ⊗Tψ(U)m T�

ψ (U)m factors through T�
ψ (U)m and makes it into a

faithful T�
ψ (U)m -module.
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The patching is done in such a way that the natural maps R̄�,ψ
S∪Qn →

T�
ψ,Qn

(UQn)m arising from Proposition 9.1 induce a map R∞ → End(M∞)
that is compatible with the O[[y1, · · · , yh+j ]] action.

(II) The image of R̄�,loc,ψ
S [[x1, ..., xh+j−d]] in the endomorphisms of M∞

is a finite, faithful O[[y1, · · · , yh+j ]]-module and hence of dimension at least
h+ j + 1.

We also know that R̄�,loc,ψ
S is a domain. Since the dimension of R̄�,loc,ψ

S [[x1, ..., xh+j−d]]
is h+ j + 1, we deduce that the composite

R̄�,loc,ψ
S [[x1, ..., xh+j−d]]→ R∞ → End(M∞)

is injective.
We deduce that R∞ ' R̄�,loc,ψ

S [[x1, ..., xh+j−d]]. Thus R∞ is a finite
O[[y1, · · · , yh+j ]]-module from which part (II) follows.

We also note the consequence that R∞[1p ] is a regular Noetherian domain

as R̄�,loc,ψ
S [1p ] is one.

(III) Consider the map of regular Noetherian domains

O[[y1, · · · , yh+j ]][
1
p
]→ R∞[

1
p
],

and the module M∞⊗OE (E is the fraction field of O) that is finite free over
O[[y1, · · · , yh+j ]][1p ]. From Lemma 3.3.4 of [36] (that uses the Auslander-
Buchsbaum theorem) it follows that M∞⊗OE is a finite projective, faithful
R∞[1p ]-module. In particular M∞ ⊗O E/(y1, · · · , yh)M∞ ⊗O E is a faithful
module over

R∞[
1
p
]/(y1, · · · , yh) ' R̄�,ψ

S [
1
p
].

Since the action of R̄�,ψ
S on M∞/(y1, · · · , yh)M∞ factors through T�

ψ (U)m
the last part follows. �

9.1.3. Patching for p = 2. We assume p = 2.
Recall (cf. Lemma 5.10) that we have an integer n0 and for each n ≥

n0 + 1, a finite set of auxiliary primes Qn of fixed cardinality h1(S,Ad)− 2
such that in particular the Galois group of the maximal abelian extension
of degree a power of 2 which is unramified outside Qn and is split at S
has a fixed number of generators which we note t(= h1

S−split(Qn,F)). Let
T = Hom(t,Gm) be the torus in the CNLO-category with character the
constant free abelian group t of rank t.

Proposition 9.3. Let d = 3|S|, h = |Qn| and j = 4|S| − 1.
(I) We have maps of R̄�,loc,ψ

S -algebras

R̄�,loc,ψ
S [[x1, · · · , xh+j+t−d]]→ R′∞ → R∞ → R̄�,ψ

S

with R∞ a O[[y1, · · · , yh+j ]]-algebra and a R∞-module M∞ such that
(1) Each of the maps is surjective and the map on the right induces an

isomorphism R∞/(y1, · · · , yh)R∞ ' R̄�,ψ
S of R̄�,loc,ψ

S -algebras.
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(2) M∞ is a finite free O[[y1, · · · , yh+j ]]-module, and the action of R∞
on the quotient M∞/(y1, · · · , yh)M∞ factors through T�

ψ (U)m and makes it
into a faithful T�

ψ (U)m -module.
(3) Let X ′

∞ and X∞ be the functors from CNLO-algebras to sets defined
respectively by R′∞ and R∞. We have a free action of the torus T on X ′

∞
and a map d : X ′

∞ → T such that:
– the closed immersion X∞ ↪→ X ′

∞ identifies X∞ with the closed immer-
sion defined by d(x′) = 1;

– we have for x′ ∈ X ′
∞ and t ∈ T : d(tx′) = t2d(x′).

(II) The ring R̄�,ψ
S is a finite O[[yh+1, · · · , yh+j ]]-module, and R̄ψS is a

finite O-module.
(III) The map π : R̄�,ψ

S → T�
ψ (U)m of Proposition 9.1 is surjective with

2-power torsion kernel.

Proof. Call B = R̄�,loc,ψ
S .

Let m be an integer > 0. We first give the definition of a patching data
of level m. Our definition is a slight modification of the data appearing in
the Proposition 3.3.1. of [36] and in the preceding proposition.

Let s be the rank of the free O-module Sk,ψ(U,O)m. As in Proposition
3.3.1 of loc. cit., we note rm = sm2m(h+ j) and

cm = (πmE , (1+y1)2
m−1, . . . , (1+yh)2

m−1, y2m

h+1, . . . , y
2m

h+j) ⊂ O[[y1, . . . , yh+j ]].

For r an integer and A a CNLO-algebra, we note m
(r)
A the ideal of A generated

by r powers of elements of mA. Let b be the number of generators of the
maximal ideal of B[[x1, . . . , xh+j+t−d]] and let r′ = br. For A a CNLO-
algebra which is a quotient of B[[x1, . . . , xh+j+t−d]], we therefore have that
mr′
A ⊂ m

(r)
A . We note r′m = brm. Recall that Gn is the Galois group of the

maximal abelian extension of F which is of degree a power of 2 and is split
at S and unramified outside S ∪ Qn. Let us call G′n the maximal quotient
of Gn which is killed by 2n−2; by Lemma 5.10, we know that for n > n0

G′n is isomorphic to (Z/2(n−2)Z)t. We choose an isomorphism from G′n to
t/2n−2t. We get an isomorphism of diagonalizable groups between (G′n)

∗

and the 2n−2-torsion T2n−2 of T. We allow ourselves to enlarge n0.
We let R and M be R̄�,ψ

S and Sk,ψ(U,O)m ⊗R̄ψS R̄
�,ψ
S respectively (using

the maps R̄ψS → Tψ(U)m ↪→ End(Sk,ψ(U,O)m) cf. Lemma 9.1), and note
that M is an R-module.

Let m be an integer ≥ 3. Here is the definition of a patching data of level
m denoted (Dm, Lm, D

′
m).

• (1) A sequence of CNLO-algebras

O[[y1, . . . yh+j ]]/cm → Dm → R/(cmR+ m
(rm)
R )
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where the second map is a surjective map of B-algebras and m
(rm)
Dm

=
(0). We require that the second map induces an isomorphism

Dm/(y1, · · · , yh)Dm ' R/(cmR+ m
(rm)
R ).

We also require that the O[[y1, . . . yh+j ]]-module structure which the
above sequence defines on R/(cmR + m

(rm)
R ) coincides with that on

R (with y1, · · · , yh annihilating R and the action of yh+1, · · · , yh+j
coming from the framing).
• (2) A surjection of B-algebras B[[x1, . . . , xh+j+t−d]] → D′

m, with
D′
m a CNL[r′m]

O -algebra (§2.6), a map dm in the category of functors
represented by CNLO-algebras SpD′m → T and a closed immersion

SpDm ↪→ SpD′m , a group action chunk in CNL[r′m]
O of T

[r′m]
2m on SpD′m

which is free, and such that dm(lx) = l2dm(x) for l ∈ T2m(A) and
x ∈ SpD′m(A) for A in CNL[r′m]

O . Let SpD′′m ↪→ SpD′m be the closed
immersion defined by the condition dm(x′) = 1. We ask that the
closed immersion SpDm ↪→ SpD′m factors by the closed immersion
SpD′′m ↪→ SpD′m and that the kernel of D′′

m → Dm is included in
mm
D′′m

.
• (3) A Dm-module Lm which is finite free over O[[y1, . . . , yh+j ]]/cm

of rank s (defined above) and a surjection of Dm-modules Lm →
M/cmM . Here the implied Dm-module structure on M/cmM is that
induced from the map Dm → R/(cmR+m

(rm)
R ) of (1) above, and the

fact that M/cmM is an R/(cmR+ m
(rm)
R )-module. (We refer to [36]

for the proof that M/cmM is an R/(cmR+ m
(rm)
R )-module with the

module structure induced from that of M as an R-module defined
above.)

We suppose n0 + 1 ≥ 3. Let n be an integer ≥ n0 + 1. For m with
n ≥ m ≥ 3, we now define patching data (Dm,n, Lm,n, D

′
m,n) of level m.

Let Xn and X ′
n be the functors on CNLO-algebras that are represented by

Rn := R̄�,ψ
S∪Qn and R′n := R̄�

S∪Qn respectively (cf. §4.1.1; recall the notations
of §2.1, Xn = SpRn and X ′

n = SpR′n).
As for p odd, the framing and the action of inertia groups at places in

Qn induce a structure on Rn of a O[[y1, . . . , yh+j ]]-module. More precisely,
let vi for 1 ≤ i ≤ h be the elements of Qn. Recall that ∆′

i is the maximal
2-quotient of the multiplicative group of the residue field kvi and let δi be a
generator of ∆′

i. The action of yi on Rn corresponds to the action of δi − 1
for 1 ≤ i ≤ h while the action of yi for h + 1 ≤ i ≤ h + j comes from the
framing.

Let us call Mn the Rn-module Sk,ψ(UQn ,O)m ⊗R̄ψS∪Qn
R̄�,ψ
S∪Qn where the

module structure arises from the map R̄ψS∪Qn → Tψ,Qn(UQn)m of Lemma
9.1. Let bn ⊂ O[[y1, . . . , yh+j ]] the annihilator of Mn. We know by Cor.
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7.5 that if a is a fixed integer such that 2a > N where N is the integer
appearing in §7.4, for n > a, Mn is finite free over O[[y1, . . . , yh+j ]]/bn of
rank s independent of n and that:

bn ⊂ ((1 + y1)2
n−a − 1, . . . , (1 + yh)2

n−a − 1).

We require a ≥ 2. Furthermore, M identifies to the quotient of Mn by the
ideal (y1, . . . , yh).

We take Dm,n = Rn+a/cmRn+a + m
R

(rm)
n+a

, and Lm,n = Mn+a/cmMn+a.

As in [36], we see that we realize conditions (1) and (3) (the only difference
is the a). The map Dm,n → R/(cmR+ m

(rm)
R ) is a map of O[[y1, . . . , yh+j ]]-

modules and it identifies Dm,n/(y1, · · · , yh)Dm,n with R/(cmR+ m
(rm)
R ).

Let us realize (2). We define D′
m,n = R′

[r′m]
n+a. By Lemma 5.10, we know

that the number of generators of R′n over B is 2h + 1. We also know by
Lemma 5.10 that t = 2+h−|S|, and we see that we have 2h+1 = h+j+t−d.
This gives a surjection of B-algebras B[[x1, . . . , xh+j+t−d]]→ D′

m,n.
As the number of generators of Gn is t, we can choose a surjective mor-

phism from the free abelian group t of rank t to Gn that is compatible
with the chosen morphism t → G′n. It defines an immersion of diagonaliz-
able groups G∗n ↪→ T that is compatible with the already chosen immersion
G′∗n ↪→ T. If to a lift ρA of ρ̄ with values in a CNLO-algebra A, one associates
the Galois character detρA × (χpψ)−1, one defines a map of functors from
X ′
n to the diagonalizable group G∗n. Call it dR′n . With the above immersion

G∗n ↪→ T, we can also see dR′n as a map from X ′
n to T. We define the map

dm,n : SpD′m,n → T as the map deduced by reduction from dR′n+a
.

As the maximal ideal m of R′n+a satisfies mr′m ⊂ m(rm), the surjection
R′n+a → Rn+a defines a surjection D′

m,n → Dm,n. The immersion Xn ↪→ X ′
n

identifies Xn as the closed locus dR′n(x
′) = 1. Let as above SpD′′m,n ↪→

SpD′m,n be the closed immersion defined by the condition dm,n(x′) = 1.
The closed immersion SpDm,n ↪→ SpD′m,n factors through SpD′′m,n ↪→ SpD′m,n
As furthermore Dm,n = Rn+a/(cmRn+a + m

R
(rm)
n+a

) and rm ≥ m and cm ⊂
mm
O[[y1,...yh+j ]]

, we see that the closed immersion SpDm,n ↪→ SpD′′m,n has its
ideal included in mm

D′′m,n
.

The twist defines an action of G′∗n+a on X ′
n+a (§5.1), hence, as we have

chosen a ≥ 2 an action of T2n on X ′
n+a. By Lemma 5.1, one knows that

this action is free. By truncation (§2.6), this action defines the group action
chunk in CNL[r′m]

O of T
[r′m]
2n , hence of T

[r′m]
2m , on SpD′m,n which is free, and

satisfies the claimed identity dm,n(l.x′) = l2dm,n(x′) for l ∈ T2m(A), x′ ∈
SpD′m,n(A) for any CNL[r′m]

O -algebra A. We have realized (2).
We define an isomorphism of patching data in the obvious way ([36]). As

B[[x1, . . . , xh+j+t−d]][r
′
m] is finite, we see that there are only finitely many

isomorphic classes of patching data. After extracting a subsequence of (n),
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we get a sequence (Dm, Lm, D
′
m) of patching data of levelm form >> 0 such

that for each m, we have for n ≥ m, (Dm, Lm, D
′
m) ' (Dm,n, Lm,n, D

′
m,n).

The patching data (Dm, Lm, D
′
m) form a projective system. We note R′∞ =

limmD
′
m, R∞ = limmDm and M∞ = limm Lm. Note that we get surjective

morphisms of B-algebras : B[[x1, . . . , xh+j+t−d]] → R′∞ → R∞, hence R′∞
and R∞ are CNLO-algebras. The dm define the map d. The group chunk free
actions of T

[r′m]
2m on SpD′m define the free action of T on X ′

∞ by Propositions
2.7 and 2.8.

We get (I). To check that X∞ is defined in X ′
∞ by d(x′) = 1, we use the

surjective maps B[[x1, . . . , xh+j+t−d]] → D′′
m → Dm and the fact that the

second map has its kernel included in mm
D′′m

, so that we have limmD
′′
m =

limmDm. We furthermore have isomorphisms of B and O[[y1, . . . , yh+j ]]-
algebras and modules R∞/(y1, . . . , yh)R∞ ' R and M∞/(y1, . . . , yh)M∞ '
M .

Let us finish the proof of the proposition. Towards this, let Rinv
∞ be the

algebra that represents the orbits for the action of T on X ′
∞ (cf. Proposition

2.5).

Lemma 9.4. The natural map Rinv
∞ → R∞ makes R∞ a torsor on Rinv

∞ with
group the 2-torsion T2 of the torus T.

Proof. Let X ′
∞×T T be the fiber product of (ρ, λ) such that d(ρ) = λ2. It is

a torsor on SpRinv
∞

of group T× T2, T acting diagonally on X ′
∞ × T and T2

acting trivially onX ′
∞ and by translations on T. The map (ρ, λ) 7→ (λ−1ρ, λ)

identifies the fiber product to X∞×T. In this identification, T acts trivially
on X∞ and by translations on T. Taking the quotient by the action of T, we
get by Proposition 2.6 a free action of T2 on X∞ whose quotient identifies
to SpRinv

∞
. This proves the lemma.

�

Lemma 9.5. The surjective map B[[x1, . . . , xh+j+t−d]]→ R′∞ is an isomor-
phism.

Proof. We know that B is a domain of absolute dimension d + 1. If the
map were not an isomorphism, the absolute dimension of R′∞ would be
< h + j + t + 1. It would follow from Proposition 2.5 that the absolute
dimension of Rinv

∞ would be < h+ j+1. By the preceding lemma, we would
have that the absolute dimension of R∞ would also be < h+ j + 1. This is
not possible as the action of O[[y1, . . . , yh+j ]] on M∞ is faithful and factors
through R∞, and M∞ is finite as O[[y1, . . . , yh+j ]]-module. �

It follows that R′∞ and Rinv
∞ are domains flat over O. Furthermore the

action of Rinv
∞ on M∞ is faithful. Otherwise, as Rinv

∞ is a domain and R∞
is finite on Rinv

∞ , the action of R∞ on M∞ would factor through a quo-
tient of dimension < h + j, which is not the case as O[[y1, . . . , yh+j ]] acts
faithfully on M∞ and its action factors through R∞, and M∞ is finite over
O[[y1, . . . , yh+j ]].
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Lemma 9.6. a) The rings R∞[1/2] and Rinv
∞ [1/2] are regular.

b) M∞ is a faithful R∞-module.

Proof. For a), as B[1/2] is regular, B[[x1, . . . , xh+j+t−d]][1/2] is regular. Fur-
thermore, Rinv

∞ → R′∞ ' B[[x1, . . . , xh+j+t−d]] is formally smooth. It follows
that Rinv

∞ [1/2] is regular (Lemma (33.B) of [41]), and as Rinv
∞ [1/2]→ R∞[1/2]

is etale, R∞[1/2] is regular.
Let us prove b). As R∞ (and M∞) are flat over O, it suffices to prove

that M∞[1/2] is a faithful R∞[1/2]-module. As the action of Rinv
∞ on M∞

is faithful, the support Supp of the R∞[1/2]-module M∞[1/2] contains a
irreducible component of Spec(R∞[1/2]). Since Rinv

∞ [1/2] is a (regular) do-
main, it follows from Lemma 9.4 that T2(O) ' (±1)t acts transitively on
these irreducible components. So we are reduced to proving that the Supp
is stable by the action of T2(O).

For this, we recall that for n > a we have an action of T2(O) by twists on
the space of modular forms Sk,ψ(UQn ,O)m (cf. paragraph after Proposition
7.6), hence also onMn = Sk,ψ(UQn ,O)m⊗R̄ψS∪Qn

R̄�,ψ
S∪Qn as the map R̄ψS∪Qn →

Tψ,Qn(UQn)m of Lemma 9.1 is compatible with twists.
By Lemma 5.12, the action of T2(O) on Rn is compatible with the action

of T2(O) on O[[y1, . . . , yh+j ]] given by χ.yi = χ(δi)(1 + yi)− 1 for 1 ≤ i ≤ h
and δi being a generator of ∆′

i, χ.yi = yi for h+1 ≤ i ≤ h+ j (the definition
of ∆′

i was given in §5.6 and was recalled above in this proof). The formula
χ.yi = yi for h+ 1 ≤ i ≤ h+ j follows from the commutation of the actions
of aχ and

∏
v∈S(GL2)1 on R�,ψ

S∪V (see §5.1).
It follows that cm is stable by the action of T2(O) for m ≥ 1, and we

have compatible actions of T2(O) on Dm,n = Rn+a/cmRn+a + m
R

(rm)
n+a

and

Lm,n = Mn+a/cmMn+a. The annihilator of the Dm,n module Lm,n is stable
by T2(O), and, passing to the projective limit, we see that the support of
the R∞-module M∞-module is stable under the action of T2(O) (cf. Lemma
9.4 for the action), hence also Supp. �

It follows that R∞ injects into EndO[[y1,...,yh+j ]](M∞), which is finite as
a O[[y1, . . . , yh+j ]]-module, and R∞ is finite as a O[[y1, . . . , yh+j ]]-module.
It follows that R∞/(y1, · · · , yh)R∞ ' R̄�,ψ

S is a finite O[[yh+1, . . . , yh+j ]]-
module, and R̄ψS is a finite O-module as R∞/(y1, · · · , yh+j)R∞ ' R̄ψS . This
proves (II).

Let us prove (III). We apply Lemma (3.3.4) of [36] (using Auslander-
Buschsbaum theorem) to get that for each connected component Di of
R∞[1/2], the corresponding submodule M∞[1/2]i of M∞[1/2] is finite pro-
jective over Di. The modules M∞[1/2]i are non zero as R∞ acts faithfully
on M∞. It follows that M∞[1/2] is a faithful finite projective module over
R∞[1/2]. We deduce thatM∞[1/2]/(y1, . . . , yh) is a faithfulR∞[1/2]/(y1, . . . , yh) '
R̄�,ψ
S [1/2]-module. The quotientM∞/(y1, . . . , yh) is isomorphic to Sk,ψ(U,O)m⊗R̄ψS

R̄�,ψ
S and the image of R�,ψ

S in the endomorphism ring of M∞/(y1, . . . , yh)
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is the Hecke algebra T�
ψ (U)m. We see that the natural surjective map

R̄�,ψ
S → T�

ψ (U)m has 2-power torsion kernel. Thus (III) and the propo-
sition are proved.

�

9.2. Applications to modularity of Galois representations.

Theorem 9.7. Let F be a totally real field unramified at p, split at p if ρ̄|Dp
is locally irreducible or k(ρ̄) = p + 1, such that ρ̄F has non-solvable image
when p = 2 and ρ̄|F (µp) absolutely irreducible for p > 2, and assume that
ρ̄F satisfies the assumptions (α), (β) if p 6= 2, (α) if p = 2, k(ρ̄) = 2 and
(β) if p = 2 (see §8.2). Consider a lift ρF of ρ̄F ramified only at finitely
many places, totally odd and such that at all places above p it satisfies one
of the conditions (A), (B), (C) (see §8.3.3) when p > 2, and when p = 2 is
either crystalline of weight 2 or semistable non-crystalline of weight 2 with
the latter considered only when the residual representation is not finite at
places above 2. Then ρF is modular.

Proof. After an allowable base change F ′/F , using Lemma 2.2 of [60] we
may assume that ρF ′ : GF ′ → GL2(O) is:

• totally odd
• unramified almost everywhere
• (p = 2) is crystalline of weight 2 at all primes above 2, or semistable

of weight 2 if the residual representation is not finite
• (p > 2) at all primes above p (at which it has uniform behaviour),

it is either simultaneously
(A) crystalline of weight k, such that 2 ≤ k ≤ p + 1 and when

k = p+ 1 we may assume k(ρ̄) = p+ 1 and F ′ is split at p
(B) of weight 2 and crystalline over Qnr

p (µp), or
(C) semistable, non-crystalline of weight 2, and for v|p, ρF |Dv is

of the form (
γvχp ∗

0 γv

)
,

where χp is the p-adic cyclotomic character, and γv an unramified
character.
• at all (finite) places v not above p at which ρF ′ is ramified, ρF ′ |Dv is

of the form (
γvχp ∗

0 γv

)
,

with γv an unramified character.
• ρ̄F ′ is trivial at places above p if ρ̄ is unramified at p

Then ρF ′ and det(ρF ′) automatically prescribe lifting data and character
ψ. Thus ρF ′ arises from a morphism R̄�,ψ

S → O with R̄�,ψ
S a ring of the

type considered in Section 9.1. Then after another allowable base change as
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in Theorem 8.4, we may assume that there is a cuspidal automorphic repre-
sentation π′ of GL2(AF ′) that is discrete series at infinity of parallel weight
such that ρπ′ and det(ρπ′) prescribe the same lifting data and character ψ
as ρF ′ and det(ρF ′) . At this point we are done by Propositions 9.2 and 9.3,
and solvable base change results of Langlands.

�

10. Proof of Theorems 4.1 and 5.1 of [35]

10.1. Finiteness of deformation rings. Consider ρ̄ : GQ → GL2(F) that
we have fixed. (Recall that hence 2 ≤ k(ρ̄) ≤ p + 1 when p > 2, and ρ̄
has non-solvable image when p = 2 and ρ̄|Q(µp) absolutely irerducible when
p > 2.) Consider a finite set of places S of Q that contains p and ∞,
and all the places at which ρ̄ is ramified. We fix an arithmetic character
ψ : GQ → O∗ such that ψχp lifts the determinant of ρ̄. For each v ∈ S we
consider deformation rings R̄�,ψ

v and assume them to be of one of the types
considered in Theorem 3.1. Thus for instance at p the representations ρx
arising from morphisms x : R̄�,ψ

v → O′ are either of the type (A) (including
the case k(ρ̄) = p = 2), (B), or (C) (including the case p = 2, k(ρ̄) = 4),
and at all infinite places the deformations are odd. (See Section 8.3 for the
conditions (A),(B),(C).) When we consider the case (C), we assume that
when p > 2, we have that k(ρ̄) = p+ 1.

Consider the corresponding deformation ring R̄�,ψ
S = R�,ψ

S ⊗̂
R�,loc,ψ
S

R̄�,loc,ψ
S ,

and R̄ψS the image of the universal deformation ring RS in R̄�,ψ
S .

We have the following corollary of Theorem 8.2, Theorem 6.1 and Propo-
sitions 9.2 and 9.3.

Theorem 10.1. The ring R̄ψS is finite as a Zp-module.

In the theorem we are allowing R̄�,ψ
v for v not above p and finite to be

any of the rings we have considered in Theorem 3.1, and thus they need not
be domains.

Proof. We index for this proof the global deformation rings with the number
fields whose absolute Galois group is being represented and thus denote
R̄�,ψ

Q,S = R̄�,ψ
S and R̄ψQ,S = R̄ψS .

To prove the finiteness of R̄ψQ,S as a O-module, we consider a number field
F with the following properties. This exists because of the combined effect
of Theorem 6.1 (which allows the assumptions (α) and (β) to be verified for
p > 2, and (α) when k(ρ̄) = p = 2 and (β) to be verified for p = 2), Theorem
8.2, and Lemma 4.2 of [33]:

• F/Q is a totally real extension, im(ρ̄|F ) is non-solvable for p = 2
and ρ̄|F (µp) absolutely irreducible when p > 2, F is split at p if ρ̄|Dp
is irreducible, and unramified otherwise, and ψF is unramified at all
finite places not above p. The last condition then gives that ψF is a
character of GF of the type fixed in Section 8.1.
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• if ρ̄|Dp is unramified then for all places ℘ of F above p, ρ̄|G℘ is trivial.
• Strengthened versions of (α) and (β) for p > 2, and (α) when k(ρ̄) =
p = 2 and (β) for p = 2, are satisfied:

– Assume k(ρ̄) = 2 when p = 2. Then ρ̄|GF arises from a cuspidal
automorphic representation π′ of GL2(AF ), which is unramified at
all places, and is discrete series of weight k(ρ̄) at the infinite places.
The central character of π′ is ψF . This π′ is used below in the cases
corresponding to (A).

– ρ̄|GF also arises from a cuspidal automorphic representation π′ of
GL2(AF ), such that π′v is unramified for all finite places v not above
p, such that π′v, at all places v above p, is of conductor dividing v,
and is of weight 2 at the infinite places. The central character of
π′ is ψF . Further when p = 2, k(ρ̄) = 4 we may ensure that the
representation ρπ′ at places v of F above 2 arises from R̄�,ψ

v . This
type of π′ is used below in the cases corresponding to (B) and (C).

When we need to consider weight p + 1 liftings, we may assume
by Theorem 6.1 and 8.2 that F is split at p.
• The reduction mod p of the universal representation ρ̄univ

Q,S associated

to R̄ψQ,S , denoted by τ , when restricted to GF is unramified outside
the places above p and the infinite places. This condition is ensured
by using Lemma 4.2 of [33] to see that for each of the finitely many
primes `i 6= p at which τ is ramified, there is a finite extension F`i
of Q`i such that τGF`i

is unramified and choosing F as in part (c) of
Theorem 6.1, such that a completion of F at `i contains F`i .

Consider the deformation ring R̄ψFF over F that parametrises (minimal,
odd) deformations of ρ̄F unramified outside places above p and of determi-
nant ψFχp, and such that at all places above p suitable conditions, i.e. one
of (A) (including the case k(ρ̄) = p = 2), (B) or (C) (including the case
p = 2, k(ρ̄) = 4), are uniformly satisfied. (Thus the implied set of places S
of ramification consists of places above p and the infinite places.)

The representation ρπ′ prescribes lifting data (where the choice of π′ de-
pends on if we are in cases (A),(B) or (C)), and we are in a position to
apply Propositions 9.2 and 9.3 to R̄ψFF , and conclude that R̄ψFF is finite as
a Zp-module.

As ρ̄ and ρ̄|GF are absolutely irreducible, we have by functoriality CNLO-
algebra morphisms π1 : RψFF → R̄�,ψF

F , π2 : RψQ,S → R̄�,ψ
Q,S , and also β :

RψFF → RψQ,S and α : R̄�,ψF
F → R̄�,ψ

Q,S , with απ1 = π2β. As π1(R
ψF
F ) = R̄ψFF

and π2(R
ψ
Q,S) = R̄ψQ,S , β induces a CNLO-algebra morphism γ : R̄ψFF →

R̄ψQ,S . The morphism γ takes the universal mod p representation GF →
GL2(R̄

ψF
F /(p)) to the restriction to GF of the universal mod p representation

ρ̄univ
Q,S : GQ → GL2(R̄

ψ
Q,S/(p)). As the representation GF → GL2(R̄

ψF
F /(p))

has finite image, we deduce that the universal mod p representation ρ̄univ
Q,S :
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GQ → GL2(R̄
ψ
Q,S/(p)) has finite image. From this we deduce, using 3.14 of

[31] or Lemma 3.6 of [34], that R̄ψS = R̄ψQ,S is finite as a Zp-module. �

10.2. Proof of Theorem 4.1 of [35]. We remark that some results towards
Theorem 4.1 (1) are proved by Dickinson in [21].

Theorem 4.1 (2)(i) for weights k ≤ p − 1 is proven in [20]. The weight
k = p + 1 case is proved in [38] when the lift is non-ordinary at p: note
that then residually the representation is irreducible at p of Serre weight 2
by results of Berger-Li-Zhu [3]. Also ρ̄ does arise from a newform of level
prime to p and weight p+1 by the weight part of Serre’s conjecture together
with multiplication by the Hasse invariant (see 12.4 of [32]), or Corollary 1
of Section 2 of [24].

The case of k = p+ 1 when the lifting is ordinary is treated in [16].
Theorem 4.1 (2) (ii) is proved by Kisin in [36] in the potentially Barsotti-

Tate case. The semistable weight 2 case goes back to [66] and [64], and
[16].

Thus we need only prove 4.1(1) and 4.1 (2)(i), and the latter only when
k = p.

Consider a lift ρ of ρ̄ as given in Theorem 4.1 of [35]. We are assuming
that ρ̄ is modular, and thus the assumptions (α) and (β) are fulfilled for
p > 2, and (α) when k(ρ̄) = p = 2 and (β) for p = 2, by the weight part of
Serre’s conjecture proven in Theorem 13.10 of [27] and [12], and Propositions
8.13 and 8.18 of [27]. (Note that we may assume that the hypothesis N > 4
from [27] is fulfilled as we do not care to show that ρ̄ arises from optimal
prime-to-p level. Also we do not need [27] when k = p but see the remark
below.)

At this point we are done by invoking Theorem 9.7.

Remark: The arguments here in fact treat in a self-contained manner all
cases of Theorem 4.1(2)(i) except k = p + 1 with k(ρ̄) = 2, and treats
4.1(2)(ii) when ρ|Qp(µp) is semistable weight 2.

10.3. Proof of Theorem 5.1 of [35].

10.3.1. Existence of p-adic lifts of the required type. We have to first prove
the existence of the p-adic deformation ρ := ρp of ρ̄ asserted in Theorem 5.1
of [35]. We call this a lifting of the required type: it has a certain determinant
ψχp. The ring R̄ψS is defined as in Section 10.1, and has the property that
the O′-valued points, for rings of integers O′ of finite extensions of Qp, of its
spectrum correspond exactly to the p-adic deformations of required type.

The existence of such points follows if we know that R̄ψS is finite as a
O-module as then we may use Corollary 4.7. The finiteness of R̄ψS as a
O-module follows from Theorem 10.1.



SERRE’S MODULARITY CONJECTURE 93

10.3.2. Existence of compatible systems. Now we explain how to propagate
the lifts we have produced to an almost strictly compatible system as in
[22] and [67]. For the definition of an “almost strictly compatible system”
see 5.1 of part (I). In fact, in [67] we state that we can propagate to a
strictly compatible system, which would follow from the statement of the
corollary of the introduction of [39] without the hypothesis of irreducibility
of the residual representation, which by a misunderstanding we thought to
be unnecessary. When this hypothesis will be removed, we will get a strictly
compatible system.

Consider the number field F and the cuspidal automorphic representation
π′ of the proof of Theorem 10.1. We may assume that F/Q is Galois which
we do. Then Theorem 9.7 yields that ρF := ρ|GF arises from a holomor-
phic, cuspidal automorphic representation π of GL2(AF ) with respect to the
embedding ιp.

The cuspidal automorphic representation π gives rise to a compatible
system, see [61] and [6], such that each member is irreducible, see [62].

Let G = Gal(F/Q). Using Brauer’s theorem we get subextensions Fi of F
such that Gi = Gal(F/Fi) is solvable, characters χi of Gi (that we may also
regard as characters of GFi) with values in Q (that we embed in Qp using ιp),
and ni ∈ Z such that 1G =

∑
Gi
niIndGGiχi. Using the base change results of

Langlands (as in the last paragraph of the proof of Theorem 2.4 of [60]), we
get holomorphic cuspidal automorphic representations πi of GL2(AFi) such
that if ρπi,ιp is the representation of GFi corresponding to πi w.r.t. ιp, then
ρπi,ιp = ρ|GFi . Thus ρ =

∑
Gi
niIndGQ

GFi
χi ⊗ ρπi,ιp .

For any prime ` and any embedding ι : Q → Q`, we define the virtual
representation ρι =

∑
Gi
niIndGQ

GFi
χi⊗ρπi,ι of GQ with the χi’s now regarded

as `-adic characters via the embedding ι. We check that ρι is a true repre-
sentation just as in the proof of Theorem 5.1 of [33]. For any prime number
outside a finite set, the traces of Frobq in ρ and ρι coincide. It follows that,
if F ′ is a subfield of F such that F/F ′ is solvable, and if πF ′ is the automor-
phic form associated to the restriction of ρ to GF ′ , the restriction of ρι to
GF ′ is associated πF ′ .

We prove the almost strict compatibility of (ρι). Let q be a prime num-
ber. Let F (q) be the subfield of F fixed by the decomposition subgroup of
Gal(F/Q) for a chosen prime Q of F above q. Let πq be the local com-
ponent at Q of the automorphic form corresponding to the restriction of ρ
to GF (q) . We define the representation rq of the Weil-Deligne group WDq

as the Frobenius-semisimple Weil-Deligne parameter associated by the local
Langlands correspondence to πq.

Let ι be an embedding Q → Q`. and call rq,ι the Frobenius-semisimple
Weil-Deligne parameter associated to the restriction of ρι to Dq.

As the restriction of ρι to GF (q) is associated to πF (q) , it follows from
Carayol and Taylor ([10] and [61]) that, if q 6= `, rq,ι and rq coincide.
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If q = ` 6= 2 and rq is unramified, it follows from Breuil and Berger ([6],[2])
that rq,ι and rq coincide.

Let q = ` and suppose that ρ̄ι is irreducible. Let F ′ be totally real Galois
finite extension of Q such that the restriction of ρ to GF ′ is associated to
an automorphic form π′ and F ′ is linearly disjoint from the field fixed by
Ker(ρ̄ι) ((iii) d) of Theorem 6.1). Let us define F ′(q) and π′q as above. As πq
and π′q correspond to the restriction to Dq of ρι′ for ι′ an embedding of Q
in Q`′ for `′ 6= `, we see that πq and π′q are isomorphic. As the restriction of
ρ̄ι to the Galois group of F ′(q) is irreducible, it follows from Kisin that rq,ι
corresponds to π′q, hence to πq ([39]). This finishes the proof of the almost
strict compatibility of (ρι).

(3), computation of k(ρ̄q): This follows from the almost strict compati-
bility and Corollary 6.15 (1) of Savitt’s paper [54].

(4), computation of k(ρ̄q): By the almost strict compatibility of (ρι), or
the main theorem of Saito [53] which applies to ρq|G

F (q)
(it does not need the

irreducibility of ρ̄q|G
F (q)

), using Corollary 6.15 (2) of Savitt’s paper [54], and
Serre’s definition of weights (see Section 2 of [56]), we conclude the claimed
information about k(ρ̄q).
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