Math 32A Midterm 1 Practice Problems

Sections 13.1-13.6 and 14.1, 14.2

October 19, 2018

Study tips

• Make sure you go over (most) examples provided in the textbook.
• Know/memorize the definitions and terms highlighted in the textbook (e.g. triple product, equivalent vectors, parallelepiped, etc.)
• Memorize all the theorems and formula covered in lectures.
• Understand the differences between dot product and cross product.
• After finding the intersection of 2 planes or 2 lines, plug the answer back to the original equations of the lines or planes to double check.
• Do all the homework problems.

Problem 1 Suppose the parallelogram spanned by two non-zero vectors \(\vec{v} \) and \(\vec{w} \) has its diagonals orthogonal to each other. Show that we have \(\|\vec{v}\| = \|\vec{w}\| \).

Problem 2 Suppose two non-zero vectors \(\vec{v} \) and \(\vec{w} \) satisfy \(\|\vec{v} - \vec{w}\| = \|\vec{v} + \vec{w}\| \). Show that \(\vec{v} \) and \(\vec{w} \) are orthogonal.

Problem 3 Write a parametrization of

(a) The line passes through \(S = (1, 2, -1) \) and parallel to \((-1, 0, 2) \).
(b) The plane spanned by \(P = (0, 1, 1) \), \(Q = (2, -1, 0) \) and \(R = (-1, -5, 1) \).
(c) The line perpendicular to the zx-plane and passes through the point \((2, 4, 1)\).
(d) The plane contains \((0, 1, 1)\) and is parallel to the plane \(x - y - z = 1\).

Problem 4 Find the point of intersection of
(a) The lines \(\mathbf{r}_1(t) = (1,0,0) + t(-3,1,0) \) and \(\mathbf{r}_2(t) = (0,1,1) + t(2,0,1) \).
(b) The line \(\mathbf{r}(t) = (-1,-4,2) + t(3,1,3) \) and the plane \(x - 2y - z = 1 \).

Problem 5 Let \(P = (-1,0,2) \), \(Q = (2,1,0) \), \(R = (-1,1,2) \) and \(S = (2,0,1) \).
(a) Do \(P, Q, R, S \) lie on the same plane? Explain.
(b) Find the area of the triangle \(PQR \).

Problem 6 Let \(\mathbf{u}, \mathbf{v}, \mathbf{w} \) be three vectors in \(\mathbb{R}^3 \). Show that

\[
|\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})| = |\mathbf{v} \cdot (\mathbf{w} \times \mathbf{u})| = |\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v})|.
\]

Hint: Interpret each term geometrically.

Problem 7 Find the shortest distance from \(P = (0,1,-5) \) to the plane \(x + 2y + z = 1 \).

Problem 8 A particle is moving in \(\mathbb{R}^3 \) with its position at time \(t \) is given by \(\mathbf{r}(t) = (\cos t, \sin t, 1) \) where \(t \geq 0 \).
(a) Sketch the orbit of the particle.
(b) What is the initial position of the particle? What is its velocity vector at \(t = 1 \)?
(c) Find the tangent line at \(\mathbf{r}(2) \).
(d) Show that the velocity vector \(\mathbf{v}(t) \) is always tangent to the orbit (in other words, \(\mathbf{r}(t) \) is orthogonal to \(\mathbf{v}(t) \)).

Problem 9 Show that the two planes \(x + 2y - z = 2 \) and \(-2x - 4y + 2z = 3 \) are parallel and find the distance between them.

Problem 10 Given two points \(A = (0,1,-2) \) and \(B(1,2,4) \). Find an equation of the line passes through the midpoint \(M \) of the segment \(AB \) and is normal to the plane \(2x - y - z = 1 \).

Problem 11 True or false:
(a) Two non-parallel lines in 2D intersect each other.
(b) Two non-parallel lines in 3D intersect each other.
(c) Two planes in 3D are either parallel or they intersect.