Problem 1. Let V be a finite dimensional inner product space over F and $T: V \rightarrow V$ linear. Show that $\operatorname{im}\left(T^{*}\right)=\operatorname{ker}(T)^{\perp}$.

Problem 2. Let V be a finite dimensional complex inner product space and $T: V \rightarrow V$ a linear operator. Show that T is hermitian if and only if $\langle T v, v\rangle$ is real for all $v \in V$.

Problem 3. Let $T: V \rightarrow V$ be linear where V is a complex finite dimensional inner product space. Show that T is normal if and only if $T=T_{1}+\sqrt{-1} T_{2}$ for some commuting hermitian operators $T_{1}, T_{2}: V \rightarrow V$.

Problem 4. Let T be an isometry of \mathbf{R}^{3}. Suppose that $\operatorname{det} T=1$, i.e., the determinant of any matrix representation of T is one. Show that T is a rotation about some axis.

