Problem 1. Let V be a finite dimensional inner product space over F and $T: V \to V$ linear. Show that $\operatorname{im}(T^*) = \ker(T)^{\perp}$.

Problem 2. Let V be a finite dimensional complex inner product space and $T: V \to V$ a linear operator. Show that T is hermitian if and only if $\langle Tv, v \rangle$ is real for all $v \in V$.

Problem 3. Let $T: V \to V$ be linear where V is a complex finite dimensional inner product space. Show that T is normal if and only if $T = T_1 + \sqrt{-1} T_2$ for some commuting hermitian operators $T_1, T_2: V \to V$.

Problem 4. Let T be an isometry of \mathbb{R}^3 . Suppose that det T = 1, i.e., the determinant of any matrix representation of T is one. Show that T is a rotation about some axis.