Problem 1. Let $V=C[1,3]$ with $\langle f, g\rangle=\int_{1}^{3} f g$. Let $f(x)=\frac{1}{x}$. Show that the constant polynomial g nearest f is $g=\frac{1}{2} \ln 3$. Compute $\|g-f\|^{2}$ for this g.
Problem 2. Let $V=C[0,2 \pi]$ with $\langle f, g\rangle=\int_{0}^{2 \pi} f g$. Let $W=\{1, \cos x, \sin x\}$. Let $f(x)=x$. Find $f(x)_{W}$.
Problem 3. Let $V=\mathbf{M}_{n} \mathbf{C}$ with $\langle A, B\rangle=\operatorname{tr}\left(A B^{*}\right)$. Let

$$
S=\left\{\left.\left(\begin{array}{ccc}
\lambda_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \lambda_{n}
\end{array}\right) \right\rvert\, \lambda_{1}, \ldots, \lambda_{n} \in \mathbf{C}\right\}
$$

(i.e., the diagonal matrices). Determine S^{\perp} and $\operatorname{dim}\left(S^{\perp}\right)$.

Problem 4. Let $V=C[-1,1]$ an inner product space via $\langle f, g\rangle=\int_{-1}^{1} f g$. Let $W_{\text {odd }}:=$ $\{f \in V \mid f(x)=-f(-x)\}$. Show $W_{\text {odd }}^{\perp}=W_{\text {even }}:=\{f \in V \mid f(x)=f(-x)\}$.
Problem 5. Let V be an inner product space and $W \subset V$ a finite dimensional subspace. Show that $\left\langle v_{W}, x\right\rangle=\left\langle v, x_{W}\right\rangle$ for all $v, x \in V$.

Problem 6. Let V be an inner product space and $S \subset V$ a subset. Show
a. $\operatorname{Span}(S) \subset\left(S^{\perp}\right)^{\perp}$.
b. $\operatorname{Span}(S)=\left(S^{\perp}\right)^{\perp}$ if V is finite dimensional.

Problem 7. Let V be a finite dimensional inner product space over F and W a subspace of V. Show that $P_{W}: V \rightarrow V$ defined by $v \rightarrow v_{W}$ is a linear operator and satisfies all of the following:
(i) $\operatorname{im}\left(P_{W}\right)=W$ and $\operatorname{ker}\left(P_{W}\right)=W^{\perp}$. In particular, $V=\operatorname{im}\left(P_{W}\right) \oplus \operatorname{ker}\left(P_{W}\right)$.
(ii) $P_{W} \circ P_{W}=P_{W}$.
(iii) If $W^{\prime} \subset W^{\perp}$ is a subspace, then $P_{W} \circ P_{W^{\prime}}=0$.
(iv) $1_{V}=P_{W}+P_{W^{\perp}}$.
Problem 8. Let A be an $n \times n$ real matrix. Let $\operatorname{row}(A)$ be the subspace of \mathbf{R}^{n} spanned by the rows of A and $\operatorname{col}(A)$ be the subspace of \mathbf{R}^{n} spanned by the columns of A viewed in \mathbf{R}^{n}. Note that if R_{i} is the i th row of A and $v \in \mathbf{R}^{n \times 1}$, then $R_{i} v$ is the dot product of R_{i} and v. Show that ker $A=(\operatorname{row}(A))^{\perp}$.

Problem 9. Let A be an $m \times n$ real matrix. Show that $\left(A^{t} A\right)^{t}=A^{t} A$ and if A has rank n, then $A^{t} A$ is an invertible $n \times n$ matrix (see Problem 8).
Problem 10. Let V be an inner product space over F. Let $S=\left\{v_{1}, \ldots, v_{n}\right\}$ be an orthogonal set. Suppose that no $v_{i}=0$. Let $v \in V$. Prove Bessel's Inequality:

$$
\sum_{i=1}^{n} \frac{\left|\left\langle v, v_{i}\right\rangle\right|^{2}}{\left\|v_{i}\right\|^{2}} \leq\|v\|^{2}
$$

Moreover, show equality holds if and only if

$$
v=\sum_{i=1}^{n} \frac{\left\langle v, v_{i}\right\rangle}{\left\|v_{i}\right\|^{2}} v_{i}
$$

