Read Hoffman and Kunz Section 3.7 (and finish 3.5-3.6). We shall continue going over material from these sections in the 4:00 session Wednesday.

Problem 1. Let V be a finite dimensional real vector space of odd degree. Show that any linear operator on V has an eigenvalue. Is this true if V is even dimensional? Prove of disprove.

Problem 2. Let $T: V \rightarrow V$ and $S: V \rightarrow V$ be a linear operators such that $T \circ S=S \circ T$. Let $E_{T}(\lambda)$ be an eigenspace of T. Show that $S\left(E_{T}(\lambda)\right) \subset E_{T}(\lambda)$.

Problem 3. We call a matrix $A \in \mathbf{M}_{n}(F)$ nilpotent if $A^{m}=0$ for some positive integer m. Show that if A is nilpotent, then the only eigenvalue of A is zero.
Problem 4. Let $A \in \mathbf{M}_{n}(F)$. Show that A and A^{t} have the same eigenvalues.
Problem 5. A matrix $A \in \mathbf{M}_{n}(F)$ is called upper triangular if

$$
A_{i j}=0 \quad \text { for all } \quad 1 \leq j<i \leq n .
$$

Suppose that $F=\mathbf{C}$, so every non-constant complex polynomial has a root (by the Fundamental Theorem of Algebra which we assume). Show that any matrix in $\mathbf{M}_{n}(\mathbf{C})$ is similar to an upper triangular matrix. In particular, if $T: V \rightarrow V$ is a linear operator with V a finite dimensional complex vector space, then there exists an ordered basis \mathcal{B} for V such that $[T]_{\mathcal{B}}$ is upper triangular.

Problem 6. Hoffman, Kunze p. 190 Problem 6.2/9
Problem 7. Hoffman, Kunze p. 190 Problem 6.2/13
Problem 8. Hoffman, Kunze p. 106 Problem 3.5/11
Problem 9. Hoffman, Kunze p. 115 Problem 3.7/3
Problem 10. Hoffman, Kunze p. 116 Problem 3.7/7

