Homework #5

Read Hoffman and Kunz Sections 3.5 and 3.6. We shall go over material from these sections in the 4:00 session Monday.

Problem 1. For each of the following linear transformations T, compute the **rank** of $T := \dim (\operatorname{im} T)$, the **nullity** of $T := \dim (\ker T)$ [Use the Dimension Theorem], and find the matrix representation relative to the standard bases. Also tell which of these are monomorphisms, epimorphisms, or isomorphisms.

- (a) $T: \mathbf{R}^3 \to \mathbf{R}^4$ defined by T(x, y, z) = (x z, x + z, 2x + 2z, z).
- (b) $T: \mathbf{R}^4 \to \mathbf{R}^2$ defined by T(x, y, z, w) = (x + y z w, x + z).
- (c) $T: \mathbf{R}^4 \to \mathbf{R}$ defined by T(x, y, z, w) = 0 for all $(x, y, z, w) \in \mathbf{R}^4$.
- (d) $T : \mathbf{R} \to \mathbf{R}$ defined by T(x) = 3x.
- (e) $T: \mathbf{R}^5 \to \mathbf{R}^5$ defined by T(v) = -v for all $v \in \mathbf{R}^5$.

Problem 2. Let $V = \mathbb{C}^2$. Let $S = \{e_1, e_2\}$, $\mathcal{B} = \{(1, i), (-i, 2)\}$, $\mathcal{C} = \{(-1, 2), (1, i)\}$ be bases for V and let $T: V \to V$ be defined by T(x, y) = (x - y, x + y). Compute the **rank** of $T := \dim (\operatorname{im} T)$ and the **nullity** of $T := \dim (\ker T)$. Is T a monomorphism?, an epimorphism?, an isomorphism? Then determine the following matrix representations of T.

- (a) $[T]_{\mathcal{S}}$ (b) $[T]_{\mathcal{S},\mathcal{B}}$ (c) $[T]_{\mathcal{B},\mathcal{S}}$ (d) $[T]_{\mathcal{B}}$
- (e) $[T]_{\mathcal{C}}$

Problem 3. Let S_n be the standard basis for \mathbf{R}^n . Let $\mathcal{B} = \{(1, 0, -1), (1, 1, 1), (1, 0, 0)\}$, a basis for \mathbf{R}^3 and let $\mathcal{C} = \{(0, 1), (1, 0)\}$, a basis for \mathbf{R}^2 . Let

$$T: \mathbf{R}^3 \to \mathbf{R}^2$$
 be defined by $T(x, y, z) = (x + y, 2z - x).$

Compute the **rank** of $T := \dim (\operatorname{im} T)$ and the **nullity** of $T := \dim (\ker T)$. Is T a monomorphism?, an epimorphism?, an isomorphism? Then determine the matrix representation $[T]_{\mathcal{B},\mathcal{C}}$ of T.

Problem 4. Let

$$T: \mathbf{R}^3 \to \mathbf{R}^3$$

be the linear transformation determined by

 $T(e_3) = 2e_1 + 3e_2 + 5e_3$, $T(e_2 + e_3) = e_1$ and $T(e_1 + e_2 + e_3) = e_2 - e_3$.

Compute the **rank** of $T := \dim (\operatorname{im} T)$ and the **nullity** of $T := \dim (\ker T)$. Is T a monomorphism?, an epimorphism?, an isomorphism? Then determine the matrix representation $[T]_{\mathcal{S}}$ of T.

Problem 5. Let $\mathcal{B} := \{1, t, t^2, t^3\}$, a basis for $\mathbf{R}[t]_3$. Let $T : \mathbf{R}[t]_3 \to \mathbf{R}[t]_3$ be the linear transformation determined by T(f(t)) = f(t+1), where $f(t) \in \mathbf{R}[t]_3$. Determine the image and kernel of this map as well as the rank and nullity. Determine the matrix representation $[T]_{\mathcal{B}}$ of T.

Problem 6. Let $\mathcal{B} := \{1, t, t^2\}$ and $\mathcal{C} := \{1 + t, t, 1 + t^2\}$, both bases for $\mathbf{R}[t]_2$. Let $T : \mathbf{R}[t]_2 \to \mathbf{R}[t]_2$ be the linear transformation given by

$$T(\alpha_0 + \alpha_1 t + \alpha_2 t^2) = (\alpha_0 + \alpha_1) + \alpha_2 t^2.$$

Determine the following

- (a) $[T]_{\mathcal{B}}$
- (b) $[T]_{\mathcal{C}}$
- (c) An invertible matrix C so that $C[T]_{\mathcal{B}}C^{-1} = [T]_{\mathcal{C}}$

Recall from calculus the following two facts:

- a. Two non-zero vectors in \mathbb{R}^3 are perpendicular if and only if their dot product is zero.
- b. The cross product of two linear independent vectors is perpendicular to the plane spanned by the two linearly independent vectors in \mathbf{R}^3 .

Use these facts to do the following:

Problem 7. Let v = (1, 1, 1), w = (3, 2, 1), and x = (-1, 0, 1) in \mathbb{R}^3 . Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ the linear transformation defined as follows: First rotate in the plane perpendicular to v by an angle of θ degrees, followed by a flip in the plane perpendicular to w, then followed by rotating in the plane perpendicular to x by an angle of ϕ degrees. Determine $[T]_S$. You do not have to multiply all the matrices together. [A flip in the plane perpendicular to w]

Problem 8. Let V and W be fdvs over F both of dimension n. Let $T: V \to W$ be a linear transformation. Show that there exists a basis \mathcal{B} for V and a basis \mathcal{C} for W such that $[T]_{\mathcal{B},\mathcal{C}}$ is a diagonal matrix.

Problem 9. Hoffman, Kunze p. 105 Problem 3.5/5

Problem 10. Hoffman, Kunze p. 106 Problem 3.5/12