Homework \#4

Problem 1. let V be a vector space over F. Let $T: F \rightarrow V$ be a linear map. Let $v=T(1)$. Show that $T(\alpha)=\alpha v$ for any $\alpha \in F$.

Problem 2. Let $T: V \rightarrow W$ and $S: W \rightarrow X$ be linear transformations. Show that $S \circ T: V \rightarrow X$ is a linear transformation.

Problem 3. Let $T: V \rightarrow W$ be linear. Let $Z \subset W$ be a subspace. Show that the inverse image of Z

$$
T^{-1}(Z):=\{v \in V \mid T(v) \in Z\}
$$

is a subspace of V.

Problem 4 If $T: V \rightarrow W$ is a linear transformation with a finite dimensional image, we write $\operatorname{rank}(T)$ for $\operatorname{dim} \operatorname{im}(T)$. Let $S: U \rightarrow V$ and $T: V \rightarrow W$ be linear maps of vector spaces. Suppose that both T and S have a finite dimensional image. Show all of the following:
i. $\operatorname{rank}(T \circ S) \leq \min (\operatorname{rank}(T), \operatorname{rank}(S))$.
ii. $\operatorname{rank}(T \circ S)=\operatorname{rank}(S)$ if and only if $\operatorname{im}(S) \cap \operatorname{ker}(T)=0$
iii. $\operatorname{rank}(T \circ S)=\operatorname{rank}(T)$ if and only if $\operatorname{im}(S)+\operatorname{ker}(T)=V$

Problem 5. Let V and W be vector spaces over F. Show that

$$
L(V, W):=\{T \mid T: V \rightarrow W \text { is linear }\}
$$

is a vector space over F. If V and W are both finite dimensional vector spaces, conjecture what the dimension of $L(V, W)$ is. Prove your conjecture.

Problems 6,7,8. Do three problems from Section 3.1 p. 73-4
Problems 9, 10. Do two problems from Section 3.2 p. 83-4

