Field Theory Problems

I. Degrees, etc.

- 1. Answer the following:
 - (a) Find $u \in \mathbb{R}$ such that $\mathbb{Q}(u) = \mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$.
 - (b) Describe how you would find all $w \in \mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$ such that $\mathbb{Q}(w) = \mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$.
- 2. If $a, b \in K$ are algebraic over F are of degree m, n, respectively, with (m, n) = 1, show that [F(a, b) : F] = mn.
- 3. If $|F| = q < \infty$ show:
 - (a) There exists a prime p such that char F = p.
 - (b) $q = p^n$ some n.
 - (c) $a^q = a$ for all $a \in F$.
 - (d) If $b \in K$ is algebraic over F then $b^{q^m} = b$ for some m > 0.
- 4. Let u be a root of $f = t^3 t^2 + t + 2 \in \mathbb{Q}[t]$ and $K = \mathbb{Q}(u)$.
 - (a) Show that $f = m_{\mathbb{Q}}(u)$.
 - (b) Express $(u^2+u+1)(u^2-u)$ and $(u-1)^{-1}$ in the form au^2+bu+c , for some $a, b, c \in \mathbb{Q}$.
- 5. Let $\zeta = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \in \mathbb{C}$. Show that $\zeta^{12} = 1$ but $\zeta^r \neq 1$ for $1 \leq r < 12$. Show also that $[\mathbb{Q}(\zeta) : \mathbb{Q}] = 4$ and find $m_{\mathbb{Q}}(\zeta)$.
- 6. Let K = F(u), u algebraic over F and degree of u odd. Show that $K = F(u^2)$.
- 7. Let u be transcendental over F and $F < E \subseteq F(u)$. Show that u is algebraic over E.
- 8. If $f = t^n a \in F[t]$ is irreducible, $u \in K$ is a root of f, and $n/m \in \mathbb{Z}$, show that $|F(u^m):F| = \frac{n}{m}$. What is $m_F(u^m)$?
- 9. If a^n is algebraic over a field F for some n > 0, show that a is algebraic over F.

II. Roots, splitting fields, etc

- 10. If $f \in \mathbb{Q}[t]$ and K is a splitting field of f over \mathbb{Q} , determine $[K : \mathbb{Q}]$ if f is:
 - (a) $t^4 + 1$.
 - (b) $t^6 + 1$.
 - (c) $t^4 2$.
 - (d) $t^6 2$.
 - (e) $t^6 + t^3 + 1$.
- 11. Find the splitting fields K for $f \in \mathbb{Q}[t]$ and $[K : \mathbb{Q}]$ if f is:
 - (a) $t^4 5t^2 + 6$.
 - (b) $t^6 1$.
 - (c) $t^6 8$.
- 12. Let $F = \mathbb{Z}/p\mathbb{Z}$ then show:
 - (a) There exists $f \in F[t]$ with deg f = 2 and f irreducible.
 - (b) Use the f in (a) to construct a field with p^2 elements.
 - (c) If $f_1, f_2 \in F[t]$ have deg $f_i = 2$ and f_i irreducible for i = 1, 2, show that their splitting fields are isomorphic.

- 13. Let K/F and $f \in F[t]$. Show the following:
 - (a) If $\varphi: K \to K$ is an *F*-automorphism, then φ takes roots of *f* in *K* to roots of *f* in *K*.
 - (b) If $F \subseteq \mathbb{R}$ and $\alpha = a + ib$ is a root of f with $a, b \in \mathbb{R}$ then $\bar{\alpha} = a ib$ is also a root of f.
 - (c) Let $F = \mathbb{Q}$. If $m \in \mathbb{Z}$ is not a square and $a + b\sqrt{m} \in \mathbb{C}$ is a root of f with $a, b \in \mathbb{Q}$ then $a b\sqrt{m}$ is also a root of f in \mathbb{C} .
- 14. Prove any (field) automorphism $\varphi : \mathbb{R} \to \mathbb{R}$ is the identity automorphism.
- 15. Let p_1, \ldots, p_n be *n* distinct prime numbers. Let $f = (t^2 p_1) \cdots (t^2 p_n) \in \mathbb{Q}[t]$. Show that $K = \mathbb{Q}[\sqrt{p_1}, \ldots, \sqrt{p_n}]$ is a splitting field of *f* over \mathbb{Q} and $[K : \mathbb{Q}] = 2^n$. Formulate a generalization of the statement for which your proof still works.
- 16. Find a splitting field of $f \in F[t]$ if $F = \mathbb{Z}/p\mathbb{Z}$ and $f = t^{p^e} t$, e > 0.
- 17. Let F be a field of characteristic p > 0. Show that $f = t^4 + 1 \in F[t]$ is not irreducible. Let K be a splitting field of f over F. Determine which finite field F must contain so that K = F.
- 18. Let $f = t^6 3 \in F[t]$. Construct a splitting field K of f over F and determine [K : F] for each of the cases: $F = \mathbb{Q}, \mathbb{Z}/5\mathbb{Z}$ or $\mathbb{Z}/7\mathbb{Z}$. Do the same thing if f is replaced by $g = t^6 + 3 \in F[t]$

III. Multiple roots and separability.

- 19. Show the following:
 - (a) If $f \in F[t]$, char F = 0, and the derivative f' = 0 show $f \in F$.
 - (b) If char $F = p \neq 0$, $f \in F[t]$, and f' = 0, then there exists $g \in F[t]$ such that $f(t) = g(t^p)$.
- 20. Show if x is transcendental over F, then $t^2 x \in F(x)[t]$ is irreducible.
- 21. Suppose that char $F = p \neq 0$. Show the following;
 - (a) The map $F \to F$ given by $x \mapsto x^p$ is a monomorphism. Denote its image by F^p .
 - (b) If K/F is algebraic and $\alpha \in K$ is separable over $F(\alpha^p)$, then $\alpha \in F(\alpha^p)$.
 - (c) Every finite field is perfect, i.e., every algebraic extension is separable.
- 22. Suppose that char $F = p \neq 0$. Show the following:
 - (a) If K/F is separable then $K = F(K^p)$.
 - (b) Suppose that K/F is finite and $K = F(K^p)$. If $\{x_1, ..., x_n\} \subset K$ is linearly independent over F, then so is $\{x_1^p, ..., x_n^p\}$.
 - (c) If K/F is finite and $K = F(K^p)$, then K/F is separable.
- 23. Let K/F. Show the following:
 - (a) If $\alpha \in K$ is separable over F, then $F(\alpha)/F$ is separable.
 - (b) If $\alpha_1, ..., \alpha_n \in K$ are separable over F, then $F(\alpha_1, ..., \alpha_n)/F$ is separable.
 - (c) Let $F_{sep} = \{ \alpha \in K \mid \alpha \text{ separable over } F \}$. Then F_{sep} is a field.
- 24. Show any algebraic extension of a perfect field is perfect.

- 25. Let F_o be a field of characteristic p > 0, $F = F_o(t_1^p, t_2^p)$, and $L = F_o(t_1, t_2)$. Show
 - (a) Show if $\theta \in L \setminus F$, then $[F(\theta) : F] = p$.
 - (b) There exist infinitely many fields K satisfying F < K < L. [Cf. Problem V:45.]

IV. Normality, Galois Theory

- 26. Show the following:
 - (a) If K/\mathbb{Q} and $\sigma \in \text{Aut } K$, then σ fixes \mathbb{Q} .
 - (b) The fields $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are not isomorphic.
- 27. A **primitive** *n***th root of unity** is an element $z \in \mathbb{C}$ such that $z^n = 1$ and $z^r \neq 1$ for $1 \leq r < n$. Show the following:
 - (a) There exist $\phi(n) := |\{d \mid 1 \le d \le n, (d, n) = 1\}|$ primitive *n*th roots of unity.
 - (b) If ω is a primitive *nth* root of unity, then $\mathbb{Q}(\omega)$ is a splitting field of $t^n 1 \in \mathbb{Q}[t]$ and $\mathbb{Q}(\omega)/\mathbb{Q}$ is normal.
 - (c) If $\omega_1, ..., \omega_{\phi(n)}$ are the $\phi(n)$ primitive *n*th roots of unity of $t^n 1 \in \mathbb{Q}[t]$ and $\sigma \in Aut \mathbb{Q}(\omega_1)$, then $\sigma(\omega_1) = \omega_i$ for some $i, 1 \leq i \leq \phi(n)$.
- 28. Continued from Problem IV:27. Show
 - (a) Let $\Phi_n(t) = (t \omega_1) \cdots (t \omega_{\phi(n)})$. Then show $\Phi_n(t) \in \mathbb{Q}[t]$. $\Phi_n(t)$ is called the *n*th cyclotomic polynomial.
 - (b) $\Phi_n(t) \in \mathbb{Z}[t].$
- 29. Continued from Problem IV:28. Show
 - (a) $\Phi_n(t) \in \mathbb{Z}[t]$ is irreducible.
 - (b) Calculate $\Phi_n(t)$ for n = 3, 4, 6, 8 explicitly and show directly that $\Phi_n(t) \in \mathbb{Z}[t]$ is irreducible.
- 30. Suppose you knew that, for any integers a and n with (a, n) = 1, there are infinitely many primes p that are congruent to a modulo n (this is a famous theorem of Dirichlet). Conclude that every finite abelian group occurs as a Galois group over the rational numbers. (The corresponding statement when the "abelian" is eliminated is an open problem.)
- 31. Let $K = \mathbb{Q}(r)$ with r a root of $t^3 + t^2 2t 1 \in \mathbb{Q}[t]$. Let $r_1 = r^2 2$. Show that r_1 is also a root of this polynomial. Find $G(K/\mathbb{Q})$ and show that K/\mathbb{Q} is normal.
- 32. Let K be a splitting field of $t^5 2 \in \mathbb{Q}[t]$.
 - (a) Find $G(K/\mathbb{Q})$.
 - (b) Show that there exists a group monomorphism $G(K/\mathbb{Q}) \to S_5$.
 - (c) Find all subgroups of $G(K/\mathbb{Q})$ and the corresponding fields.
- 33. Let char $F = p \neq 0$ and $a \in F$. Let $f = t^p t a \in F[t]$. Show the following:
 - (a) f has no multiple roots.
 - (b) If α is a root of f, then so is $\alpha + k$ for all $0 \le k \le p 1$.
 - (c) f is irreducible if and only if f has no root in F.
 - (d) Suppose that $a \neq b^p b$ for any $b \in F$. Find G(K/F) where K is a splitting field of $t^p t a \in F[t]$.
- 34. Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3}, u)$ where $u^2 = (9 5\sqrt{3})(2 \sqrt{2})$. Show that K/Q is normal and find $G(K/\mathbb{Q})$.

- 35. Let $F \subset E \subset K$. If K/E and E/F are both normal, is K/F normal? Prove or give a counterexample.
- 36. Let $f, g \in F[t]$ be relatively prime and suppose that u = f/g lies in $F(t) \setminus F$.
 - (a) Show that F(t)/F(u) is finite of degree $d = \max\{\deg(f), \deg(g)\}$.
 - (b) G(F(t)/F) consists of all F-automorphisms of F(t) mapping t to (at + b)/(ct + d)where $a, b, c, d \in F$ satisfies $ad - bc \neq 0$.
- 37. Suppose that K/F is Galois with Galois group $G(K/F) \cong S_n$. Show that K is the splitting field of an irreducible polynomial in F[t] of degree n over F.
- 38. Let K be a splitting field of $f \in \mathbb{Q}[t]$. Find K, G(K/F) and all intermediate fields if (a) $f = t^4 - t^2 - 6$. (b) $f = t^3 - 3$.
- 39. Suppose that L/F is a finite Galois extension and L/K/F, an intermediate field. Let $N = N_{G(L/F)}(G(L/K))$ denote the normalizer of G(L/K) in G(L/F). Show that L^N is the smallest subfield of K with K/L^N Galois.
- 40. Suppose that K/F is Galois. Let $F \subset E \subset K$ and L the smallest subfield of K containing E and such that L/F is normal. Show that $G(K/L) = \bigcap_{\sigma \in G(K/F)} \sigma G(K/E) \sigma^{-1}$.
- 41. Suppose that K/F is Galois, p a prime, and $p^r \mid [K:F]$ but $p^{r+1} \not\mid [K:F]$. Show that there exist fields L_i , $1 \leq i \leq r$, satisfying $F \subseteq L_r < L_{r-1} < \cdots < L_1 < L_0 = K$ such that L_i/L_{i+1} is normal, $[L_i:L_{i+1}] = p$ and $p \not\mid [L_r:F]$.

V. Miscellaneous

- 42. Suppose the $|K| = p^m$ and $F \subset K$. Show that $|F| = p^n$ for some n with $n \mid m$. Moreover, G(K/F) is generated by the **Frobenius automorphism** $\alpha \mapsto \alpha^{p^n}$.
- 43. Show if F is a finite field, $n \in \mathbb{Z}^+$, then there exists an irreducible polynomial $f \in F[t]$ of degree n.
- 44. Show if F is a finite field, then every element in F is a sum of two squares.
- 45. Show if K is not a finite field and u, v are algebraic and separable over K, then there exists an element $a \in K$ such that K(u, v) = K(u + av). Is this true if $|K| < \infty$ with K(u) < K(u, v) and K(v) < K(u, v)?
- 46. Let $F = \mathbb{R}$. Let $f = t^3 a_1 t^2 a_2 t a_3 \in \mathbb{R}[t]$. Show:
 - (a) The discriminant $\Delta = -4a_1^3a_3 + a_1^2a_2^2 18a_1a_2a_3 + 4a_2^3 27a_3^2$.
 - (b) f has multiple roots if and only if $\Delta = 0$.
 - (c) f has three distinct real roots if and only if $\Delta > 0$.
 - (d) f has one real root and two non-real roots if and only if $\Delta < 0$.
- 47. Let $x^3 + px + q$ be irreducible over a finite field K of characteristic not 2 or 3. Show that $-4p^3 27q^2$ is a square in K.
- 48. Let f be an irreducible quartic over a field K of characteristic zero, G the Galois group of f, and u a root of f. Show that there is no field properly between K and K(u) if

and only if $G = A_4$ or $G = S_4$. (This will explode the myth that there must be an intermediate field when the dimension is not prime.)

- 49. Let K be a subfield of the real numbers, f an irreducible quartic over K. Suppose that f has exactly two real roots. Show that the Galois group of f is either S_4 or of order 8.
- 50. Let K/F be a finite extension. Suppose that F has no nontrivial extensions of odd degree and K has no extensions of degree two. Show that F is perfect and K is algebraically closed.
- (**) (Extra Credit.) Let char F = 0. Suppose that $f \in F[t]$ is irreducible of prime degree and K/F a splitting field of f. Then f is solvable by radicals if and only if $K = F(r_i, r_j)$ for any two roots, r_i, r_j of $f \in K$.