Math 110B Take-home Midterm

Part II

Let R be a (possibly) non-commutative ring below.

1. A short exact sequence of R-modules

$$
0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0
$$

is called split if one of the following three equivalent conditions holds:
(a) There exists an R-homomorphism $f^{\prime}: B \rightarrow A$ such that $f^{\prime} f=I d_{A}$.

We say that f is a split monomorphism.
(b) $f(A)$ is a direct summand of B, i.e., $B=f(A) \oplus D$ for some R-module D.
(c) There exists an R-homomorphism $g^{\prime}: C \rightarrow B$ such that $g g^{\prime}=I d_{C}$.

We say that g is a split epimorphism.
i. Prove that these conditions are equivalent.
ii. Show the sequence above splits if C is R-free.
2. Let P be an free R-module on basis $\mathcal{B}=\left\{x_{i}\right\}_{i \in I}$ and $\mathfrak{A}<R$ a (2-sided) ideal. Show:
(i). $P / \mathfrak{A} P \cong \coprod_{I} R x_{i} / \mathfrak{A} x_{i} \cong \coprod_{I} R / \mathfrak{A}$.
(ii.) Let $-: R \rightarrow R / \mathfrak{A}$ be the canonical ring epimorphism. Let

$$
\overline{\mathcal{B}}=\left\{\bar{x}_{i}:=x_{i}+\mathfrak{A} P \mid i \in I\right\} .
$$

Then $P / \mathfrak{A} P$ is a free \bar{R}-module on basis $\overline{\mathcal{B}}$ and $|\overline{\mathcal{B}}|=|\mathcal{B}|$.
(iii.) R is said to have satisfy the invariant dimension property or IDP if every basis for a finitely generated free R-module has the same number of elements. Let $\phi: R \rightarrow S$ be a ring epimorphism with $S \neq 0$. If S satisfies IDP so does R.
(iv). Any commutative ring satisfies IDP.
3. Let $M \neq 0$ be an R-module.
i. If M is a simple R-module, i.e., M has no proper submodules prove that $\operatorname{End}_{R}(M)$ is a division ring.
ii. Suppose that M is a noetherian R-module, i.e., the collection of submodules of M satisfies the ascending chain condition. Show that an R-endomorphism $f: M \rightarrow M$ is an isomorphism if it is surjective.
4. Let R be a euclidean domain. Let $E_{n}(R)$ be the subgroup of $G L_{n}(R)$ generated by all matrices of the form $I+\lambda$ where λ is a matrix with precisely one non zero entry and this entry does not occur on the diagonal and I is the $n \times n$ identity matrix. Show that $S L_{n}(R)=E_{n}(R)$.
5. Let A be a finite abelian group and let $\hat{A}:=\left\{\chi: A \rightarrow \mathbf{C}^{\times} \mid \chi\right.$ a group homomorphism $\}$. It is easily checked that \hat{A} is a group via $\chi_{1} \chi_{2}(x):=\chi_{1}(x) \chi_{2}(x)$. Show
(i.) A and \hat{A} have the same order and, in fact, are isomorphic.
(ii.) If χ is not the identity element of \hat{A} then $\sum_{a \in A} \chi(a)=0$.

