HW #9

- Let R be a PID and 0 ≠ M a cyclic R-module. Suppose that M ≅ R/(d). Let d = p₁^{e₁} ··· p_n^{e_n} with each e_i ≥ 1 and the p_i non-associate primes. Show that

 M_{p_i} ≅ R/(p_i^{e_i}) for all i.
 M = ⊕_{i=1}ⁿ M_{p_i} ≅ ∐_{i=1}ⁿ R/(p_i^{e_i}).
- 2. Let $A \in \mathbf{M}_n(\mathbf{C})$. Show that A is similar to a diagonal matrix if and only if the minimal polynomial has no repeated roots.
- 3. Determine all abelian groups of order 400 up to isomorphism.
- 4. Show that every complex $n \times n$ matrix is similar to a matrix of the form D + N where D is a diagonal matrix, N is a nilpotent matrix (i.e., $N^r = 0$ some r > 0), and DN = ND.
- 5. Let V be a finite dimensional real vector space, T an **R**-endomorphism. Suppose that the minimal polynomial of T factors into linear terms over **R** with no repeated roots and all roots are non-negative. Then there exists an **R**-endomorphism S of V such that $S^2 = T$.
- 6. Let $A, B \in \mathbf{M}_n \mathbf{C}$ be two diagonalizable matrices. Show that there is a matrix $P \in \mathbf{Gl}_n(\mathbf{C})$ such that **both** PAP^{-1} and PBP^{-1} are diagonal matrices if and only if AB = BA.

[Hint: It is better to work with linear operators and use the Change of Basis Theorem. Recall that a linear operator $T: V \to V$ on a vector space V, is diagonalizable, i.e., has a matrix representation as a diagonal matrix relative to some basis of V if and only if V has a basis of eigenvectors for T.]