1. Let R be a PID and $0 \neq M$ a cyclic R-module. Suppose that $M \cong R /(d)$. Let $d=p_{1}^{e_{1}} \cdots p_{n}^{e_{n}}$ with each $e_{i} \geq 1$ and the p_{i} non-associate primes. Show that
(i) $M_{p_{i}} \cong R /\left(p_{i}^{e_{i}}\right)$ for all i.
(ii) $M=\bigoplus_{i=1}^{n} M_{p_{i}} \cong \coprod_{i=1}^{n} R /\left(p_{i}^{e_{i}}\right)$.
2. Let $A \in \mathbf{M}_{n}(\mathbf{C})$. Show that A is similar to a diagonal matrix if and only if the minimal polynomial has no repeated roots.
3. Determine all abelian groups of order 400 up to isomorphism.
4. Show that every complex $n \times n$ matrix is similar to a matrix of the form $D+N$ where D is a diagonal matrix, N is a nilpotent matrix (i.e., $N^{r}=0$ some $r>0$), and $D N=N D$.
5. Let V be a finite dimensional real vector space, T an \mathbf{R}-endomorphism. Suppose that the minimal polynomial of T factors into linear terms over \mathbf{R} with no repeated roots and all roots are non-negative. Then there exists an \mathbf{R}-endomorphism S of V such that $S^{2}=T$.
6. Let $A, B \in \mathbf{M}_{n} \mathbf{C}$ be two diagonalizable matrices. Show that there is a matrix $P \in$ $\mathbf{G l}_{n}(\mathbf{C})$ such that both $P A P^{-1}$ and $P B P^{-1}$ are diagonal matrices if and only if $A B=B A$.
[Hint: It is better to work with linear operators and use the Change of Basis Theorem. Recall that a linear operator $T: V \rightarrow V$ on a vector space V, is diagonalizable, i.e., has a matrix representation as a diagonal matrix relative to some basis of V if and only if V has a basis of eigenvectors for T.]
