HW \#7

1. Let M be an R-module and $M_{i} \subset M$ be R-submodules for all $i \in I$. We say that $\sum_{i \in I} M_{i}$ is an internal direct sum of the M_{i} if $M_{i} \cap \sum_{j \neq i} M_{j}=0$ for all $i \in I$. If this is the case, we write $\oplus_{i \in I} M_{i}$ for $\sum_{i \in I} M_{i}$. Show that if this is the case then $\sum_{i \in I} M_{i}$ is R-isomorphic to the (external) direct sum $\coprod_{i \in I} M_{i}$.
2. (*) Suppose the following diagram of R-modules and R-homomorphisms is commutative and has exact rows:

Show that if two of the maps α, β, γ are R-isomorphisms then all three are.
3.(*) Let M and M_{1}, \ldots, M_{n} be R-modules. Show that $M \cong \coprod_{i=1}^{n} M_{i}$ if and only if there exist R-homomorphisms $\iota_{i}: M_{i} \rightarrow M$ and $\pi_{i}: M \rightarrow M_{i}, i=1, \ldots, n$, satisfying all of the following:
i. $\pi_{i} \iota_{i}=I d_{M_{i}}$ for $i=1, \ldots n$.
ii. $\pi_{j} \iota_{i}=0$ for $i \neq j$.
iii. $\iota_{1} \pi_{1}+\cdots+\iota_{n} \pi_{n}=I d_{M}$.
4. Let M be an R-module. Prove the following are equivalent:
i. Every submodule of M is finitely generated (fg).
ii. M satisfies ACC (the ascending chain condition), i.e., if $M_{i} \subseteq M$ are submodules and

$$
M_{1} \subseteq M_{2} \subseteq \cdots \subseteq M_{n} \subseteq \cdots
$$

then there exists a positive integer N such that $M_{N}=M_{N+i}$ for all $i \geq 0$.
iii. M satisfies the Maximum Condition or Principle, i.e., if $S \neq \emptyset$ is a collection of submodules of M then S contains a maximal element, that is a module $M_{o} \in S$ such that if $M_{o} \subseteq N$ with $N \in S$ then $N=M_{o}$.
If M satisfies any of these equivalent conditions, we say that M is a noetherian R-module.
5. Let $N \subseteq M$ be R-modules. Show that M is an R-noetherian if and only if N and M / N are R-noetherian. In particular, show that if

$$
0 \rightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \rightarrow 0
$$

is an exact sequence of R-modules and R-homorphisms with two of the modules $M, M^{\prime}, M^{\prime \prime}$ are R-noetherian then they all are.
6. Show if M, N are noetherian R-modules then so is $M \coprod N$.

